scholarly journals Interferon gamma licensing of human dendritic cells in T-helper–independent CD8+ alloimmunity

Blood ◽  
2010 ◽  
Vol 116 (16) ◽  
pp. 3089-3098 ◽  
Author(s):  
Roxane Lemoine ◽  
Florence Velge-Roussel ◽  
Florence Herr ◽  
Romain Felix ◽  
Hubert Nivet ◽  
...  

Abstract The high frequency of allogeneic reactive CD8+ T cells in human and their resistance to immunosuppression might be one of the reasons why successful tolerance-inducing strategies in rodents have failed in primates. Studies on the requirement for T-helper cells in priming CD8+ T-cell responses have led to disparate findings. Recent studies have reported CD8+-mediated allograft rejection independently of T-helper cells; however, the mechanisms that govern the activation of these T cells are far from being elucidated. In this study, we demonstrated that lipopolysaccharide-treated dendritic cells (DCs) were able to induce proliferation and cytotoxic activity of allogeneic CD8+ T cells independently of CD4+ T cells, while adding mycophenolic acid (MPA) to LPS abolished this capacity and resulted in anergic CD8+ T cells that secreted high levels of interleukin-4 (IL-4), IL-5, IL-10, and transforming growth factor-β. Interestingly, we demonstrated that MPA inhibited the LPS-induced synthesis of tumor necrosis factor-α, IL-12, and interferon-γ (IFN-γ) in DCs. Importantly, we found that adding exogenous IFN-γ to MPA restored both the synthesis of cytokines and the ability to activate CD8+ T cells. However, adding IL-12 or tumor necrosis factor-α had no effect. These results suggest that IFN-γ has an important role in licensing DCs to prime CD4-independent CD8 allogeneic T cells via an autocrine loop.

Blood ◽  
1998 ◽  
Vol 91 (9) ◽  
pp. 3112-3117 ◽  
Author(s):  
Claudia Rieser ◽  
Christine Papesh ◽  
Manfred Herold ◽  
Günther Böck ◽  
Reinhold Ramoner ◽  
...  

The endotoxin (lipopolysaccharide)-induced cytokine response is followed by a state of unresponsiveness to lipopolysaccharide (LPS) referred to as LPS tolerance or endotoxin desensitization. LPS tolerance, which can be experimentally induced in vitro and in vivo, is also known to occur in septic disease. Here, we evaluated whether dendritic cells (DC), the most potent antigen-presenting cells, are also subject to this phenomenon. Single doses of LPS added at the initiation of DC culture inhibited in a dose-dependent fashion the production of tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), and IL-12, but not the production of IL-8, in response to a second LPS challenge in day-5 DC. In addition, the LPS-induced expression of the CD83 maturation antigen was inhibited in these cells. Moreover, the endocytic activity of DC generated in the presence of LPS was dramatically reduced. DC desensitized with LPS were potent stimulators of T-cell proliferation but poor inducers of interferon-γ (IFN-γ) production in the allogeneic mixed leukocyte reaction. TNF-α and prostaglandin E2, two major products of LPS stimulation, could replace LPS for the induction of tolerance to LPS. Moreover, treatment of desensitized DC with TNF-α plus prostaglandin E2 fully restored CD83 expression and partially restored IL-12 production as well as the IFN-γ–inducing activity of DC in the mixed leukocyte reaction. Our data show that human DC are highly susceptible to the induction of LPS tolerance, which seems to be a state of differential deactivation in which some functions are impaired whereas others are retained. Tolerization at the level of the professional antigen-presenting cell by inflammatory mediators may play an important role in septic disease and in the origin of cancers associated with chronic inflammation.


Blood ◽  
1998 ◽  
Vol 91 (9) ◽  
pp. 3112-3117 ◽  
Author(s):  
Claudia Rieser ◽  
Christine Papesh ◽  
Manfred Herold ◽  
Günther Böck ◽  
Reinhold Ramoner ◽  
...  

Abstract The endotoxin (lipopolysaccharide)-induced cytokine response is followed by a state of unresponsiveness to lipopolysaccharide (LPS) referred to as LPS tolerance or endotoxin desensitization. LPS tolerance, which can be experimentally induced in vitro and in vivo, is also known to occur in septic disease. Here, we evaluated whether dendritic cells (DC), the most potent antigen-presenting cells, are also subject to this phenomenon. Single doses of LPS added at the initiation of DC culture inhibited in a dose-dependent fashion the production of tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), and IL-12, but not the production of IL-8, in response to a second LPS challenge in day-5 DC. In addition, the LPS-induced expression of the CD83 maturation antigen was inhibited in these cells. Moreover, the endocytic activity of DC generated in the presence of LPS was dramatically reduced. DC desensitized with LPS were potent stimulators of T-cell proliferation but poor inducers of interferon-γ (IFN-γ) production in the allogeneic mixed leukocyte reaction. TNF-α and prostaglandin E2, two major products of LPS stimulation, could replace LPS for the induction of tolerance to LPS. Moreover, treatment of desensitized DC with TNF-α plus prostaglandin E2 fully restored CD83 expression and partially restored IL-12 production as well as the IFN-γ–inducing activity of DC in the mixed leukocyte reaction. Our data show that human DC are highly susceptible to the induction of LPS tolerance, which seems to be a state of differential deactivation in which some functions are impaired whereas others are retained. Tolerization at the level of the professional antigen-presenting cell by inflammatory mediators may play an important role in septic disease and in the origin of cancers associated with chronic inflammation.


2015 ◽  
Vol 20 (3) ◽  
pp. 167-172 ◽  
Author(s):  
Arief Nurrochmad ◽  
Muthi Ikawati ◽  
Ika Puspita Sari ◽  
Retno Murwanti ◽  
Agung Endro Nugroho

The present study aimed to examine the immunomodulatory effect of ethanolic extract of Typhonium flagelliforme (Lodd) Blume in cyclophosphamide-treated rats. The immunomodulatory effects were determined by lymphocytes proliferation, phagocytic activity of macrophages, plasma cytokines of tumor necrosis factor-α, interleukin-1α, interleukin-10 levels, and killer T cells (CD8+ T cells) counts. The results showed that the administration of ethanolic extract of T flagelliforme reduced immunosupessive effect on lymphocyte proliferation, increase the number and phagocytic activity of macrophages in cyclophosphamide-treated rats. Moreover, the ethanolic extract of T flagelliforme also significantly ( P < .05) improved the immune system activities especially the proliferation of CD8+T cells and reduced the suppressive effects on cytokines such as tumor necrosis factor-α and interleukin-1α. In conclusion, the ethanolic extract of T flagelliforme has immunomodulatory properties in cyclophosphamide-treated rats. The results suggest that T flagelliforme can reduce immunosuppresive effect caused by a chemotherapeutic agent.


2007 ◽  
Vol 27 (6) ◽  
pp. 580-588 ◽  
Author(s):  
Ilan Bank ◽  
Shomron Ben-Horin ◽  
Itamar Goldstein ◽  
Alexander Koltakov ◽  
Pnina Langevitz ◽  
...  

2001 ◽  
Vol 195 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Mauritius Menges ◽  
Susanne Rößner ◽  
Constanze Voigtländer ◽  
Heike Schindler ◽  
Nicole A. Kukutsch ◽  
...  

Mature dendritic cells (DCs) are believed to induce T cell immunity, whereas immature DCs induce T cell tolerance. Here we describe that injections of DCs matured with tumor necrosis factor (TNF)-α (TNF/DCs) induce antigen-specific protection from experimental autoimmune encephalomyelitis (EAE) in mice. Maturation by TNF-α induced high levels of major histocompatibility complex class II and costimulatory molecules on DCs, but they remained weak producers of proinflammatory cytokines. One injection of such TNF/DCs pulsed with auto-antigenic peptide ameliorated the disease score of EAE. This could not be observed with immature DCs or DCs matured with lipopolysaccharide (LPS) plus anti-CD40. Three consecutive injections of peptide-pulsed TNF/DCs derived from wild-type led to the induction of peptide-specific predominantly interleukin (IL)-10–producing CD4+ T cells and complete protection from EAE. Blocking of IL-10 in vivo could only partially restore the susceptibility to EAE, suggesting an important but not exclusive role of IL-10 for EAE prevention. Notably, the protection was peptide specific, as TNF/DCs pulsed with unrelated peptide could not prevent EAE. In conclusion, this study describes that stimulation by TNF-α results in incompletely matured DCs (semi-mature DCs) which induce peptide-specific IL-10–producing T cells in vivo and prevent EAE.


Sign in / Sign up

Export Citation Format

Share Document