Regulatory dendritic cells program generation of interleukin-4–producing alternative memory CD4 T cells with suppressive activity

Blood ◽  
2011 ◽  
Vol 117 (4) ◽  
pp. 1218-1227 ◽  
Author(s):  
Xiongfei Xu ◽  
Zhenhong Guo ◽  
Xueyu Jiang ◽  
Yushi Yao ◽  
Qiangguo Gao ◽  
...  

Abstract The heterogeneity and mechanisms for the generation of CD4 memory T (CD4 Tm) cells remain elusive. Distinct subsets of dendritic cells (DCs) have been found to regulate a distinct T-helper (Th)–cell subset differentiation by influencing cytokine cues around CD4 T cells; however, whether and how the regulatory DC subset can regulate Tm-cell differentiation remains unknown. Further, there is no ideal in vitro experimental system with which to mimic the 3 phases of the CD4 T-cell immune response (expansion, contraction, memory generation) and/or to culture CD4 Tm cells for more than a month. By analyzing CD4 T cells programmed by long-term coculture with regulatory DCs, we identified a population of long-lived CD4 T cells with a CD44hiCD62L−CCR7− effector memory phenotype and rapid, preferential secretion of the Th2 cytokines interleukin-4 (IL-4), IL-5, IL-10, and IL-13 after antigenic stimulation. These regulatory DC-programmed Tm cells suppress CD4 T-cell activation and proliferation in vitro via IL-10 and inhibit the delayed-type hypersensitivity response once infused in vivo. We also identify their natural counterpart, which is up-regulated by regulatory DC transfusion and negatively regulates the recall response in vivo. Different from interferon-γ–producing conventional Tm cells, these IL-4–producing CD4 Tm cells act as alternative Tm cells with a regulatory function, suggesting a new way of negative immune regulation by memory T cells.

2019 ◽  
Vol 11 (2) ◽  
pp. 108-123
Author(s):  
Dan Tong ◽  
Li Zhang ◽  
Fei Ning ◽  
Ying Xu ◽  
Xiaoyu Hu ◽  
...  

Abstract Common γ chain cytokines are important for immune memory formation. Among them, the role of IL-2 remains to be fully explored. It has been suggested that this cytokine is critically needed in the late phase of primary CD4 T cell activation. Lack of IL-2 at this stage sets for a diminished recall response in subsequent challenges. However, as IL-2 peak production is over at this point, the source and the exact mechanism that promotes its production remain elusive. We report here that resting, previously antigen-stimulated CD4 T cells maintain a minimalist response to dendritic cells after their peak activation in vitro. This subtle activation event may be induced by DCs without overt presence of antigen and appears to be stronger if IL-2 comes from the same dendritic cells. This encounter reactivates a miniature IL-2 production and leads a gene expression profile change in these previously activated CD4 T cells. The CD4 T cells so experienced show enhanced reactivation intensity upon secondary challenges later on. Although mostly relying on in vitro evidence, our work may implicate a subtle programing for CD4 T cell survival after primary activation in vivo.


1997 ◽  
Vol 185 (12) ◽  
pp. 2133-2141 ◽  
Author(s):  
Elizabeth Ingulli ◽  
Anna Mondino ◽  
Alexander Khoruts ◽  
Marc K. Jenkins

Although lymphoid dendritic cells (DC) are thought to play an essential role in T cell activation, the initial physical interaction between antigen-bearing DC and antigen-specific T cells has never been directly observed in vivo under conditions where the specificity of the responding T cells for the relevant antigen could be unambiguously assessed. We used confocal microscopy to track the in vivo location of fluorescent dye-labeled DC and naive TCR transgenic CD4+ T cells specific for an OVA peptide–I-Ad complex after adoptive transfer into syngeneic recipients. DC that were not exposed to the OVA peptide, homed to the paracortical regions of the lymph nodes but did not interact with the OVA peptide-specific T cells. In contrast, the OVA peptide-specific T cells formed large clusters around paracortical DC that were pulsed in vitro with the OVA peptide before injection. Interactions were also observed between paracortical DC of the recipient and OVA peptide-specific T cells after administration of intact OVA. Injection of OVA peptide-pulsed DC caused the specific T cells to produce IL-2 in vivo, proliferate, and differentiate into effector cells capable of causing a delayed-type hypersensitivity reaction. Surprisingly, by 48 h after injection, OVA peptide-pulsed, but not unpulsed DC disappeared from the lymph nodes of mice that contained the transferred TCR transgenic population. These results demonstrate that antigen-bearing DC directly interact with naive antigen-specific T cells within the T cell–rich regions of lymph nodes. This interaction results in T cell activation and disappearance of the DC.


2003 ◽  
Vol 198 (2) ◽  
pp. 235-247 ◽  
Author(s):  
Sayuri Yamazaki ◽  
Tomonori Iyoda ◽  
Kristin Tarbell ◽  
Kara Olson ◽  
Klara Velinzon ◽  
...  

An important pathway for immune tolerance is provided by thymic-derived CD25+ CD4+ T cells that suppress other CD25− autoimmune disease–inducing T cells. The antigen-presenting cell (APC) requirements for the control of CD25+ CD4+ suppressor T cells remain to be identified, hampering their study in experimental and clinical situations. CD25+ CD4+ T cells are classically anergic, unable to proliferate in response to mitogenic antibodies to the T cell receptor complex. We now find that CD25+ CD4+ T cells can proliferate in the absence of added cytokines in culture and in vivo when stimulated by antigen-loaded dendritic cells (DCs), especially mature DCs. With high doses of DCs in culture, CD25+ CD4+ and CD25− CD4+ populations initially proliferate to a comparable extent. With current methods, one third of the antigen-reactive T cell receptor transgenic T cells enter into cycle for an average of three divisions in 3 d. The expansion of CD25+ CD4+ T cells stops by day 5, in the absence or presence of exogenous interleukin (IL)-2, whereas CD25− CD4+ T cells continue to grow. CD25+ CD4+ T cell growth requires DC–T cell contact and is partially dependent upon the production of small amounts of IL-2 by the T cells and B7 costimulation by the DCs. After antigen-specific expansion, the CD25+ CD4+ T cells retain their known surface features and actively suppress CD25− CD4+ T cell proliferation to splenic APCs. DCs also can expand CD25+ CD4+ T cells in the absence of specific antigen but in the presence of exogenous IL-2. In vivo, both steady state and mature antigen-processing DCs induce proliferation of adoptively transferred CD25+ CD4+ T cells. The capacity to expand CD25+ CD4+ T cells provides DCs with an additional mechanism to regulate autoimmunity and other immune responses.


2000 ◽  
Vol 191 (12) ◽  
pp. 2159-2170 ◽  
Author(s):  
Kevin J. Maloy ◽  
Christoph Burkhart ◽  
Tobias M. Junt ◽  
Bernhard Odermatt ◽  
Annette Oxenius ◽  
...  

To analyze the antiviral protective capacities of CD4+ T helper (Th) cell subsets, we used transgenic T cells expressing an I-Ab–restricted T cell receptor specific for an epitope of vesicular stomatitis virus glycoprotein (VSV-G). After polarization into Th1 or Th2 effectors and adoptive transfer into T cell–deficient recipients, protective capacities were assessed after infection with different types of viruses expressing the VSV-G. Both Th1 and Th2 CD4+ T cells could transfer protection against systemic VSV infection, by stimulating the production of neutralizing immunoglobulin G antibodies. However, only Th1 CD4+ T cells were able to mediate protection against infection with recombinant vaccinia virus expressing the VSV-G (Vacc-IND-G). Similarly, only Th1 CD4+ T cells were able to rapidly eradicate Vacc-IND-G from peripheral organs, to mediate delayed-type hypersensitivity responses against VSV-G and to protect against lethal intranasal infection with VSV. Protective capacity correlated with the ability of Th1 CD4+ T cells to rapidly migrate to peripheral inflammatory sites in vivo and to respond to inflammatory chemokines that were induced after virus infection of peripheral tissues. Therefore, the antiviral protective capacity of a given CD4+ T cell is governed by the effector cytokines it produces and by its migratory capability.


1998 ◽  
Vol 188 (12) ◽  
pp. 2289-2299 ◽  
Author(s):  
Mark Bix ◽  
Zhi-En Wang ◽  
Bonnie Thiel ◽  
Nicholas J. Schork ◽  
Richard M. Locksley

The dysregulated expression of interleukin 4 (IL-4) can have deleterious effects on the outcome of infectious and allergic diseases. Despite this, the mechanisms by which naive T cells commit to IL-4 expression during differentiation into mature effector cells remain incompletely defined. As compared to cells from most strains of mice, activated CD4+ T cells from BALB mice show a bias towards IL-4 production and T helper 2 commitment in vitro and in vivo. Here, we show that this bias arises not from an increase in the amount of IL-4 produced per cell, but rather from an increase in the proportion of CD4+ T cells that commit to IL-4 expression. This strain-specific difference in commitment was independent of signals mediated via the IL-4 receptor and hence occurred upstream of potential autoregulatory effects of IL-4. Segregation analysis of the phenotype in an experimental backcross cohort implicated a polymorphic locus on chromosome 16. Consistent with a role in differentiation, expression of the phenotype was CD4+ T cell intrinsic and was evident as early as 16 h after the activation of naive T cells. Probabilistic gene activation is proposed as a T cell–intrinsic mechanism capable of modulating the proportion of naive T cells that commit to IL-4 production.


Blood ◽  
2004 ◽  
Vol 104 (4) ◽  
pp. 1094-1099 ◽  
Author(s):  
Allan B. Dietz ◽  
Lina Souan ◽  
Gaylord J. Knutson ◽  
Peggy A. Bulur ◽  
Mark R. Litzow ◽  
...  

Abstract Imatinib mesylate (STI571, imatinib) inhibited DNA synthesis in primary human T cells stimulated with allogeneic mature dendritic cells or phytohemagglutinin (PHA) but did not induce apoptosis. The values for the concentration that inhibits 50% (IC50) of T-cell proliferation stimulated by dendritic cells and PHA were 3.9 μM and 2.9 μM, respectively, that is, within the concentration range found in patients treated with imatinib mesylate. Interestingly, imatinib mesylate did not inhibit expression of T-cell activation markers CD25 and CD69, although it reduced the levels of activated nuclear factor-κB (NF-κB) and changed phosphorylation or protein levels of Lck, ERK1/2, retinoblastoma protein, and cyclin D3. When T cells were washed free of imatinib mesylate, they proliferated in response to PHA, demonstrating that inhibition is reversible. Treatment with imatinib mesylate led to accumulation of the cells in G0/G1 phase of the cell cycle. The in vitro observations were confirmed in vivo in a murine model of delayed-type hypersensitivity (DTH). In mice treated with imatinib mesylate, DTH was reduced in comparison to sham-injected controls. However, the number of splenic T cells was not reduced showing that, similarly to in vitro observations, imatinib mesylate inhibited T-cell response, but did not cause apoptosis. These findings indicate that long-term administration of high-dose imatinib mesylate might affect immunity.


Blood ◽  
2003 ◽  
Vol 102 (1) ◽  
pp. 36-42 ◽  
Author(s):  
Michel Gilliet ◽  
Martin Kleinhans ◽  
Erica Lantelme ◽  
Dirk Schadendorf ◽  
Günter Burg ◽  
...  

Abstract Dendritic cells (DCs) represent the most potent antigen-presenting cells of the immune system capable of initiating primary immune responses to neoantigens. Here we characterize the primary CD4 T-cell immune response to protein keyhole limpet hemocyanin (KLH) in 5 metastatic melanoma patients undergoing a tumor peptide–based dendritic cell vaccination trial. Monocyte-derived dendritic cells displaying a semimature phenotype, as defined by surface markers, were loaded ex vivo with antigen and injected intranodally at weekly intervals for 4 weeks. All patients developed a strong and long-lasting delayed-type hypersensitivity reactivity to KLH, which correlated with the induction of KLH-dependent proliferation of CD4 T cells in vitro. Secondary in vitro stimulation with KLH showed significant increase in interferon-γ and interleukin-2 (IL-2) but not IL-4, IL-5, nor IL-10 secretion by bulk T cells. On the single-cell level, most TH1 cells among in vitro–generated KLH-specific T-cell lines confirmed the preferential induction of a KLH-specific type 1 T helper immune response. Furthermore, the induction of KLH-specific antibodies of the IgG2 subtype may reflect the induction of a type 1 cytokine profile in vivo after vaccination. Our results indicate that intranodal vaccination with semimature DCs can prime strong, long-lasting CD4 T-cell responses with a TH1-type cytokine profile in cancer patients. (Blood. 2003;102:36-42)


2000 ◽  
pp. 300-306 ◽  
Author(s):  
M Schott ◽  
J Feldkamp ◽  
D Schattenberg ◽  
T Krueger ◽  
C Dotzenrath ◽  
...  

BACKGROUND: Cytotoxic T-lymphocyte-mediated tumor immunity against major histocompatibility antigen class II-negative tumors requires help from CD4(+) T-cells. The major antigen presenting cells for CD4(+) cell activation are dendritic cells. Studies in mice and humans have demonstrated the potent capacity of these cells to induce specific antitumor immunity. OBJECTIVE: To control the growth of a metastasized parathyroid carcinoma, by immunizing a patient with tumor lysate and parathyroid hormone-pulsed dendritic cells. DESIGN AND METHODS: Mature dendritic cells were generated from peripheral blood monocytes in the presence of granulocyte/macrophage colony-stimulating factor, interleukin-4 and tumor necrosis factor alpha. Antigen-loaded dendritic cells were delivered by subcutaneous and intralymphatical injections. After five cycles, we added keyhole limpet hemocyanin (KLH) as a CD4(+) helper antigen. RESULTS: After 10 vaccinations, a specific cellular immune response to tumor lysate was observed. In vitro T-cell proliferation assays revealed a dose-dependent stimulation index of 1.8-5.7 compared with 0.9-1.1 before vaccination. In vivo immune response was demonstrated by positive delayed-type hypersensitivity toward tumor lysate. Intradermal injection of tumor lysate resulted in an erythema and induration, suggesting the efficient generation of tumor lysate-specific memory T-cells. CONCLUSIONS: These data indicate that dendritic cell vaccination can induce in vitro and in vivo responses in a highly malignant endocrine carcinoma. Regardless of the clinical outcome of our patient, this approach might be generally applicable to other advanced, radio- and chemotherapy-resistant endocrine malignancies, such as adrenal carcinomas and metastasized medullary and anaplastic thyroid carcinomas.


Blood ◽  
2004 ◽  
Vol 104 (10) ◽  
pp. 3294-3301 ◽  
Author(s):  
Emmanuel Xystrakis ◽  
Anne S. Dejean ◽  
Isabelle Bernard ◽  
Philippe Druet ◽  
Roland Liblau ◽  
...  

Abstract The immune system contains natural regulatory T cells that control the magnitude of the immune response during physiologic and pathologic conditions. Although this suppressive function was historically attributed to CD8 T cells, most recent reports have focused on natural regulatory CD4 T cells. In the present study, we describe a new subset of natural CD8 regulatory T cells in normal healthy animals. This subset expresses low levels of CD45RC at its surface (CD45RClow); produces mainly interleukin-4 (IL-4), IL-10, and IL-13 cytokines upon in vitro stimulation; expresses Foxp3 and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4); and is not cytotoxic against allogeneic targets. This subset suppresses the proliferation and differentiation of autologous CD4 T cells into type-1 cytokines producing T cells after stimulation with allogeneic accessory cells. We also provide evidence that this regulatory subset mediates its suppression by cell-to-cell contact and not through secretion of suppressive cytokines. Finally, the regulatory activity of CD8 CD45RClow cells is also demonstrated in vivo in a rat model of CD4-dependent graft-versus-host disease. Collectively, these data demonstrate for the first time that freshly isolated rat CD8 CD45RClow T cells contain T cells with regulatory properties, a result that enlarges the general picture of T-cell-mediated regulation. (Blood. 2004;104:3294-3301)


Sign in / Sign up

Export Citation Format

Share Document