scholarly journals Contact-dependent delivery of IL-2 by dendritic cells to CD4 T cells in the contraction phase promotes their long-term survival

2019 ◽  
Vol 11 (2) ◽  
pp. 108-123
Author(s):  
Dan Tong ◽  
Li Zhang ◽  
Fei Ning ◽  
Ying Xu ◽  
Xiaoyu Hu ◽  
...  

Abstract Common γ chain cytokines are important for immune memory formation. Among them, the role of IL-2 remains to be fully explored. It has been suggested that this cytokine is critically needed in the late phase of primary CD4 T cell activation. Lack of IL-2 at this stage sets for a diminished recall response in subsequent challenges. However, as IL-2 peak production is over at this point, the source and the exact mechanism that promotes its production remain elusive. We report here that resting, previously antigen-stimulated CD4 T cells maintain a minimalist response to dendritic cells after their peak activation in vitro. This subtle activation event may be induced by DCs without overt presence of antigen and appears to be stronger if IL-2 comes from the same dendritic cells. This encounter reactivates a miniature IL-2 production and leads a gene expression profile change in these previously activated CD4 T cells. The CD4 T cells so experienced show enhanced reactivation intensity upon secondary challenges later on. Although mostly relying on in vitro evidence, our work may implicate a subtle programing for CD4 T cell survival after primary activation in vivo.

2019 ◽  
Vol 221 (1) ◽  
pp. 162-167 ◽  
Author(s):  
Catherine Riou ◽  
Nishtha Jhilmeet ◽  
Molebogeng X Rangaka ◽  
Robert J Wilkinson ◽  
Katalin A Wilkinson

Abstract The reconstitution of Mycobacterium tuberculosis antigen-specific CD4 T cells in a cohort of HIV-infected persons starting antiretroviral treatment (ART) in a high tuberculosis endemic area is described. Restoration of the antigen-specific CD4 T-cell subsets mirrored the overall CD4 T-cell compartment. Activation (assessed by HLA-DR expression) decreased during ART but remained elevated compared to HIV-uninfected persons. Despite known M. tuberculosis sensitization determined by interferon-γ release assay, 12/23 participants had no M. tuberculosis-specific CD4 T cells detectable by flow cytometry, combined with overall elevated T-cell activation and memory differentiation, suggesting heightened turnover. Our data suggest early ART initiation to maintain polyfunctional immune memory responses.


Blood ◽  
2009 ◽  
Vol 114 (3) ◽  
pp. 580-588 ◽  
Author(s):  
Kathrin Gollmer ◽  
François Asperti-Boursin ◽  
Yoshihiko Tanaka ◽  
Klaus Okkenhaug ◽  
Bart Vanhaesebroeck ◽  
...  

Abstract CD4+ T cells use the chemokine receptor CCR7 to home to and migrate within lymphoid tissue, where T-cell activation takes place. Using primary T-cell receptor (TCR)–transgenic (tg) CD4+ T cells, we explored the effect of CCR7 ligands, in particular CCL21, on T-cell activation. We found that the presence of CCL21 during early time points strongly increased in vitro T-cell proliferation after TCR stimulation, correlating with increased expression of early activation markers. CCL21 costimulation resulted in increased Ras- and Rac-GTP formation and enhanced phosphorylation of Akt, MEK, and ERK but not p38 or JNK. Kinase-dead PI3KδD910A/D910A or PI3Kγ-deficient TCR-tg CD4+ T cells showed similar responsiveness to CCL21 costimulation as control CD4+ T cells. Conversely, deficiency in the Rac guanine exchange factor DOCK2 significantly impaired CCL21-mediated costimulation in TCR-tg CD4+ T cells, concomitant with impaired Rac- but not Ras-GTP formation. Using lymph node slices for live monitoring of T-cell behavior and activation, we found that G protein-coupled receptor signaling was required for early CD69 expression but not for Ca2+ signaling. Our data suggest that the presence of CCL21 during early TCR signaling lowers the activation threshold through Ras- and Rac-dependent pathways leading to increased ERK phosphorylation.


Author(s):  
Njabulo Ngwenyama ◽  
Annet Kirabo ◽  
Mark Aronovitz ◽  
Francisco Velázquez ◽  
Francisco Carrillo-Salinas ◽  
...  

Background: Despite the well-established association between T cell-mediated inflammation and non-ischemic heart failure (HF), the specific mechanisms triggering T cell activation during the progression of HF and the antigens involved are poorly understood. We hypothesized that myocardial oxidative stress induces the formation of isolevuglandin (IsoLG)-modified proteins that function as cardiac neoantigens to elicit CD4+ T cell receptor (TCR) activation and promote HF. Methods: We used transverse aortic constriction (TAC) in mice to trigger myocardial oxidative stress and T cell infiltration. We profiled the TCR repertoire by mRNA sequencing of intramyocardial activated CD4+ T cells in Nur77 GFP reporter mice, which transiently express GFP upon TCR engagement. We assessed the role of antigen presentation and TCR specificity in the development of cardiac dysfunction using antigen presentation-deficient MhcII -/- mice, and TCR transgenic OTII mice that lack specificity for endogenous antigens. We detected IsoLG-protein adducts in failing human hearts. We also evaluated the role of reactive oxygen species (ROS) and IsoLGs in eliciting T cell immune responses in vivo by treating mice with the antioxidant TEMPOL, and the IsoLG scavenger 2-hydroxybenzylamine (2-HOBA) during TAC, and ex-vivo in mechanistic studies of CD4+ T cell proliferation in response to IsoLG-modified cardiac proteins. Results: We discovered that TCR antigen recognition increases in the left ventricle (LV) as cardiac dysfunction progresses, and identified a limited repertoire of activated CD4+ T cell clonotypes in the LV. Antigen presentation of endogenous antigens was required to develop cardiac dysfunction since MhcII -/- mice reconstituted with CD4+ T cells, and OTII mice immunized with their cognate antigen were protected from TAC-induced cardiac dysfunction despite the presence of LV-infiltrated CD4+ T cells. Scavenging IsoLGs with 2-HOBA reduced TCR activation and prevented cardiac dysfunction. Mechanistically, cardiac pressure overload resulted in ROS dependent dendritic cell accumulation of IsoLG-protein adducts which induced robust CD4+ T cell proliferation. Conclusions: Collectively, our study demonstrates an important role of ROS-induced formation of IsoLG-modified cardiac neoantigens that lead to TCR-dependent CD4+ T cell activation within the heart.


1995 ◽  
Vol 182 (1) ◽  
pp. 5-13 ◽  
Author(s):  
P Stumbles ◽  
D Mason

In vitro experiments using purified rat CD4+ T cells in primary and secondary mixed leukocyte cultures (MLC) have been carried out to explore the mechanism of inhibition of cell-mediated autoimmune disease in the rat by a nondepleting monoclonal antibody (mAb) to CD4. Previous work has shown that W3/25, a mouse anti-rat CD4 mAb of immunoglobulin G1 isotype, completely prevents the development of the paralysis associated with experimental allergic encephalomyelitis (EAE) in Lewis rats, but does so without eliminating the encephalitogenic T cells. The in vitro experiments described in this study have shown that when CD4+ T cells were activated in the presence of the anti-CD4 mAb in a primary MLC, the synthesis of interferon (IFN) gamma, but not interleukin (IL) 2, was completely inhibited. After secondary stimulation, now in the absence of the mAb, the synthesis of IL-4 and IL-13 mRNA was greatly enhanced compared with that observed from CD4+ T cells derived from primary cultures in which the mAb was omitted. As IL-4 and IL-13 are known to antagonize cell-mediated immune reactions, and as EAE is cell-mediated disease, the data suggest that the W3/25 mAb controls EAE by modifying the cytokine repertoire of T cells that respond to the encephalitogen. The capacity for the mAb to suppress IFN-gamma synthesis provides, in part, an explanation for this change in cytokine production. These findings are discussed in terms of what is known of the factors that determine which cytokine genes are expressed on T cell activation. Possible implications for the evolution of T cell responses in human immunodeficiency virus infection are also discussed.


2015 ◽  
Vol 36 (4) ◽  
pp. 1259-1273 ◽  
Author(s):  
Virginia Seiffart ◽  
Julia Zoeller ◽  
Robert Klopfleisch ◽  
Munisch Wadwa ◽  
Wiebke Hansen ◽  
...  

Background/Aims: IL10 is a key inhibitor of effector T cell activation and a mediator of intestinal homeostasis. In addition, IL10 has emerged as a key immunoregulator during infection with various pathogens, ameliorating the excessive T-cell responses that are responsible for much of the immunopathology associated with the infection. Because IL10 plays an important role in both intestinal homeostasis and infection, we studied the function of IL10 in infection-associated intestinal inflammation. Methods: Wildtype mice and mice deficient in CD4+ T cell-derived or regulatory T cells-derived IL10 were infected with the enteric pathogen Citrobacter (C.) rodentium and analyzed for the specific immune response and pathogloy in the colon. Results: We found that IL10 expression is upregulated in colonic tissue after infection with C. rodentium, especially in CD4+ T cells, macrophages and dendritic cells. Whereas the deletion of IL10 in regulatory T cells had no effect on C. rodentium induced colitis, infection of mice deficient in CD4+ T cell-derived IL10 exhibited faster clearance of the bacterial burden but worse colitis, crypt hyperplasia, and pathology than did WT mice. In addition, the depletion of CD4+ T cell-derived IL10 in infected animals was accompanied by an accelerated IFNγ and IL17 response in the colon. Conclusion: Thus, we conclude that CD4+ T cell-derived IL10 is strongly involved in the control of C. rodentium-induced colitis. Interference with this network could have implications for the treatment of infection-associated intestinal inflammation.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 300 ◽  
Author(s):  
Konstantina Antoniou ◽  
Fanny Ender ◽  
Tillman Vollbrandt ◽  
Yves Laumonnier ◽  
Franziska Rathmann ◽  
...  

Activation of the C5/C5a/C5a receptor 1 (C5aR1) axis during allergen sensitization protects from maladaptive T cell activation. To explore the underlying regulatory mechanisms, we analyzed the impact of C5aR1 activation on pulmonary CD11b+ conventional dendritic cells (cDCs) in the context of house-dust-mite (HDM) exposure. BALB/c mice were intratracheally immunized with an HDM/ovalbumin (OVA) mixture. After 24 h, we detected two CD11b+ cDC populations that could be distinguished on the basis of C5aR1 expression. C5aR1− but not C5aR1+ cDCs strongly induced T cell proliferation of OVA-reactive transgenic CD4+ T cells after re-exposure to antigen in vitro. C5aR1− cDCs expressed higher levels of MHC-II and CD40 than their C5aR1+ counterparts, which correlated directly with a higher frequency of interactions with cognate CD4+ T cells. Priming of OVA-specific T cells by C5aR1+ cDCs could be markedly increased by in vitro blockade of C5aR1 and this was associated with increased CD40 expression. Simultaneous blockade of C5aR1 and CD40L on C5aR1+ cDCs decreased T cell proliferation. Finally, pulsing with OVA-induced C5 production and its cleavage into C5a by both populations of CD11b+ cDCs. Thus, we propose a model in which allergen-induced autocrine C5a generation and subsequent C5aR1 activation in pulmonary CD11b+ cDCs promotes tolerance towards aeroallergens through downregulation of CD40.


1997 ◽  
Vol 185 (12) ◽  
pp. 2133-2141 ◽  
Author(s):  
Elizabeth Ingulli ◽  
Anna Mondino ◽  
Alexander Khoruts ◽  
Marc K. Jenkins

Although lymphoid dendritic cells (DC) are thought to play an essential role in T cell activation, the initial physical interaction between antigen-bearing DC and antigen-specific T cells has never been directly observed in vivo under conditions where the specificity of the responding T cells for the relevant antigen could be unambiguously assessed. We used confocal microscopy to track the in vivo location of fluorescent dye-labeled DC and naive TCR transgenic CD4+ T cells specific for an OVA peptide–I-Ad complex after adoptive transfer into syngeneic recipients. DC that were not exposed to the OVA peptide, homed to the paracortical regions of the lymph nodes but did not interact with the OVA peptide-specific T cells. In contrast, the OVA peptide-specific T cells formed large clusters around paracortical DC that were pulsed in vitro with the OVA peptide before injection. Interactions were also observed between paracortical DC of the recipient and OVA peptide-specific T cells after administration of intact OVA. Injection of OVA peptide-pulsed DC caused the specific T cells to produce IL-2 in vivo, proliferate, and differentiate into effector cells capable of causing a delayed-type hypersensitivity reaction. Surprisingly, by 48 h after injection, OVA peptide-pulsed, but not unpulsed DC disappeared from the lymph nodes of mice that contained the transferred TCR transgenic population. These results demonstrate that antigen-bearing DC directly interact with naive antigen-specific T cells within the T cell–rich regions of lymph nodes. This interaction results in T cell activation and disappearance of the DC.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
S. Mburu ◽  
J. L. Marnewick ◽  
A. Abayomi ◽  
H. Ipp

Persistent immune activation characterises HIV infection and is associated with depletion of CD4+ T-cells and increased risk of disease progression. Early loss of gut mucosal integrity results in the translocation of microbial products such as lipopolysaccharide (LPS) into the systemic circulation. This is an important source of on-going immune stimulation. The purpose of this study was to determine levels of CD4+ T-cell activation (%CD25 expression) and apoptosis (% annexin V/7-AAD) in asymptomatic, untreated HIV infection at baseline and after stimulation with LPS and incubation with or without vitamin C and N-acetylcysteine. LPS induced a significant (P<0.03) increase in %CD25 expression, annexin V, and 7-AAD in HIV positive individuals. NAC in combination with vitamin C, significantly (P=0.0018) reduced activation and early apoptosis of CD4+ T-cells to a greater degree than with either antioxidant alone. Certain combinations of antioxidants could be important in reducing the harmful effects of chronic immune activation and thereby limit CD4+ T-cell depletion. Importantly, we showed that CD4+ T-cells of the HIV positive group responded better to a combination of the antioxidants at this stage than those of the controls. Therefore, appropriate intervention at this asymptomatic stage could rescue the cells before repetitive activation results in the death of CD4+ T-cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3891-3891
Author(s):  
Zwi N. Berneman ◽  
Nathalie Cools ◽  
Viggo F.I. Van Tendeloo ◽  
Marc Lenjou ◽  
Griet Nijs ◽  
...  

Abstract Dendritic cells (DC), the professional antigen presenting cells of the immune system, exert important functions both in induction of T cell immunity as well as of tolerance. Previously, it was accepted that the main function of immature DC (iDC) in their in vivo steady state condition is to maintain peripheral tolerance to self-antigens and that these iDC mature upon encounter of so-called danger signals and subsequently promote T cell immunity. However, a growing body of experimental evidence now indicates that traditional DC maturation can no longer be used to distinguish between tolerogenic and immunogenic properties of DC. In this study, we compared the in vitro stimulatory capacity of immature DC (iDC), cytokine cocktail-matured DC (CC-mDC) and poly I:C-matured DC (pIC-mDC) in the absence and presence of antigen. All investigated DC types could induce at least 2 subsets of regulatory T cells. We observed a significant increase in both the number of functionally suppressive transforming growth factor (TGF)-beta+ interleukin (IL)-10+ T cells as well as of CD4+CD25+FOXP3+ T cells within DC/T cell co-cultures as compared to T cell cultures without DC. The induction of these regulatory T cells correlates with in vitro T cell non-responsiveness after co-culture with iDC and CC-mDC, while stimulation with pIC-mDC resulted in reproducible cytomegalovirus pp65 or influenza M1 matrix peptide-specific T cell activation as compared to control cultures in the absence of DC. In addition, the T cell non-responsiveness after stimulation with iDC was shown to be mediated by TGF-beta and IL-10. Moreover, the suppressive capacity of CD4+ T cells activated by iDC and CC-mDC was shown to be transferable when these CD4+ T cells were added to an established T cell response. In contrast, addition of CD4+ T cells stimulated by pIC-mDC made responder T cells refractory to their suppressive activity. In conclusion, we hypothesize that DC have a complementary role in inducing both regulatory T cells and effector T cells, where the final result of antigen-specific T cell activation will depend on the activation state of the DC. This emphasizes the need for proper DC activation when T cell immunity is the desired effect, especially when used in clinical trials.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3901-3901
Author(s):  
Sara Trabanelli ◽  
Darina Očadlíková ◽  
Sara Gulinelli ◽  
Antonio Curti ◽  
Francesco di Virgilio ◽  
...  

Abstract Abstract 3901 Adenosine 5'-triphosphate (ATP) is emerging as an extracellular signaling molecule playing a pivotal role in several cellular processes, through specific cell membrane purinergic P2 receptors (P2Rs). Under physiological conditions, ATP is present in the extracellular space at low concentrations (1-10 nM), whereas during inflammation and tumor cell growth ATP is present in the extracellular space at high concentrations, when 5–10 mM of ATP are quickly released from cytoplasm following plasma membrane damage or membrane stretching. For these reasons, extracellular ATP, via activation of P2Rs, might be an important regulator of inflammatory and immune response. CD4+ T cells are often exposed to different ATP concentrations in healthy or in injured/inflamed tissues. In the present study, we investigated the expression of purinergic P2 receptors (P2Rs) on human activated and regulatory CD4+ T cells and tested the lymphocyte functions in presence of low (1-10 nM), intermediate (250 nM) and high (1 mM) concentration of extracellular ATP. We assessed CD4+ T cells proliferation, apoptosis, phenotype, cytokine release, migration and matrix/cells adhesion. We show that activated CD4+ T cells express all P2Rs subtypes, whereas Tregs do not express P2X6 and P2Y2. At a functional level, low concentrations of extracellular ATP do not modulate CD4+ T cell functions. An increase in ATP concentration (250 nM) stimulates CD4+ T cells during activation: activated CD4+ T cells enhance their proliferation, the secretion of several cytokines critical for T cell functions (IL-2, IL-1b, IFN-g, IL-8), the expression of adhesion molecules (CD49d and CD54) and the capacity to adhere to cellular matrix or to other cells. Tregs seem to be unaffected by 250 nM of ATP. In contrast, high concentrations of ATP (1 mM) “turn off” activated CD4+ T cells and “turn on” Tregs. 1 mM of ATP inhibits activation of CD4+ T cells, by enhancing apoptosis and diminishing proliferation, cell-adhesion and the release of pro-inflammatory cytokines. Conversely, 1 mM of ATP attracts Tregs and stimulates their proliferation and their capacity to adhere to other cells. Moreover, Tregs cultured in presence of 1 mM of extracellular ATP are more efficient in inhibiting T cell proliferation. In summary, the present data show that the concentration of extracellular ATP regulates CD4+ T cell functions. Low ATP concentrations, as in physiological conditions, do not affect CD4+ T cell functions, whereas any enhancement of ATP concentration alters CD4+ T cell behavior. Specifically, a small increase stimulates CD4+ T cell activation, whereas a high increase inhibits CD4+ T cell activation and promotes the immunosuppression Tregs-mediated. We propose that the present in vitro data might explain how in vivo ATP regulates the behavior of activated CD4+ T cells and Tregs in case of inflammation or tumor cell growth. A small enhancement of ATP concentration occurs at the beginning of an inflammatory state or at the first stages of tumor growth; these ATP concentrations alert CD4+ T cells to the presence of a possible damage, which does not yet require Tregs involvement. In contrast, in case of severe inflammation, high ATP concentrations might prevent a further involvement of activated CD4+ T cells and promotes Tregs recruitment, avoiding hyper-inflammation. In case of advanced stages of tumorigenesis, high ATP concentration might be a tumor-escape mechanism, by killing activated CD4+ T cells and by attracting Tregs to surround the tumor. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document