scholarly journals Pharmacokinetics, pharmacodynamics, and pharmacogenetics of hydroxyurea treatment for children with sickle cell anemia

Blood ◽  
2011 ◽  
Vol 118 (18) ◽  
pp. 4985-4991 ◽  
Author(s):  
Russell E. Ware ◽  
Jenny M. Despotovic ◽  
Nicole A. Mortier ◽  
Jonathan M. Flanagan ◽  
Jin He ◽  
...  

Abstract Hydroxyurea therapy has proven laboratory and clinical efficacies for children with sickle cell anemia (SCA). When administered at maximum tolerated dose (MTD), hydroxyurea increases fetal hemoglobin (HbF) to levels ranging from 10% to 40%. However, interpatient variability of percentage of HbF (%HbF) response is high, MTD itself is variable, and accurate predictors of hydroxyurea responses do not currently exist. HUSTLE (NCT00305175) was designed to provide first-dose pharmacokinetics (PK) data for children with SCA initiating hydroxyurea therapy, to investigate pharmacodynamics (PD) parameters, including HbF response and MTD after standardized dose escalation, and to evaluate pharmacogenetics influences on PK and PD parameters. For 87 children with first-dose PK studies, substantial interpatient variability was observed, plus a novel oral absorption phenotype (rapid or slow) that influenced serum hydroxyurea levels and total hydroxyurea exposure. PD responses in 174 subjects were robust and similar to previous cohorts; %HbF at MTD was best predicted by 5 variables, including baseline %HbF, whereas MTD was best predicted by 5 variables, including serum creatinine. Pharmacogenetics analysis showed single nucleotide polymorphisms influencing baseline %HbF, including 5 within BCL11A, but none influencing MTD %HbF or dose. Accurate prediction of hydroxyurea treatment responses for SCA remains a worthy but elusive goal.

Hematology ◽  
2015 ◽  
Vol 2015 (1) ◽  
pp. 436-443 ◽  
Author(s):  
Russell E. Ware

Abstract Hydroxyurea has proven efficacy in numerous clinical trials as a disease-modifying treatment for patients with sickle cell anemia (SCA) but is currently under-used in clinical practice. To improve the effectiveness of hydroxyurea therapy, efforts should be directed toward broadening the clinical treatment indications, optimizing the daily dosage, and emphasizing the benefits of early and extended treatment. Here, various issues related to hydroxyurea treatment are discussed, focusing on both published evidence and clinical experience. Specific guidance is provided regarding important but potentially unfamiliar aspects of hydroxyurea treatment for SCA, such as escalating to maximum tolerated dose, treating in the setting of cerebrovascular disease, switching from chronic transfusions to hydroxyurea, and using serial phlebotomy to alleviate iron overload. Future research directions to optimize hydroxyurea therapy are also discussed, including personalized dosing based on pharmacokinetic modeling, prediction of fetal hemoglobin responses based on pharmacogenomics, and the risks and benefits of hydroxyurea for non-SCA genotypes and during pregnancy/lactation. Another critical initiative is the introduction of hydroxyurea safely and effectively into global regions that have a high disease burden of SCA but limited resources, such as sub-Saharan Africa, the Caribbean, and India. Final considerations emphasize the long-term goal of optimizing hydroxyurea therapy, which is to help treatment become accepted as standard of care for all patients with SCA.


Hematology ◽  
2015 ◽  
Vol 2015 (1) ◽  
pp. 436-443 ◽  
Author(s):  
Russell E. Ware

Hydroxyurea has proven efficacy in numerous clinical trials as a disease-modifying treatment for patients with sickle cell anemia (SCA) but is currently under-used in clinical practice. To improve the effectiveness of hydroxyurea therapy, efforts should be directed toward broadening the clinical treatment indications, optimizing the daily dosage, and emphasizing the benefits of early and extended treatment. Here, various issues related to hydroxyurea treatment are discussed, focusing on both published evidence and clinical experience. Specific guidance is provided regarding important but potentially unfamiliar aspects of hydroxyurea treatment for SCA, such as escalating to maximum tolerated dose, treating in the setting of cerebrovascular disease, switching from chronic transfusions to hydroxyurea, and using serial phlebotomy to alleviate iron overload. Future research directions to optimize hydroxyurea therapy are also discussed, including personalized dosing based on pharmacokinetic modeling, prediction of fetal hemoglobin responses based on pharmacogenomics, and the risks and benefits of hydroxyurea for non-SCA genotypes and during pregnancy/lactation. Another critical initiative is the introduction of hydroxyurea safely and effectively into global regions that have a high disease burden of SCA but limited resources, such as sub-Saharan Africa, the Caribbean, and India. Final considerations emphasize the long-term goal of optimizing hydroxyurea therapy, which is to help treatment become accepted as standard of care for all patients with SCA.


Blood ◽  
2011 ◽  
Vol 118 (20) ◽  
pp. 5664-5670 ◽  
Author(s):  
Aisha L. Walker ◽  
Shirley Steward ◽  
Thad A. Howard ◽  
Nicole Mortier ◽  
Matthew Smeltzer ◽  
...  

Abstract Hydroxyurea has been shown to be efficacious for the treatment of sickle cell anemia (SCA), primarily through the induction of fetal hemoglobin (HbF). However, the exact mechanisms by which hydroxyurea can induce HbF remain incompletely defined, although direct transcriptional effects and altered cell cycle kinetics have been proposed. In this study, we investigated potential epigenetic and alternative molecular mechanisms of hydroxyurea-mediated HbF induction by examining methylation patterns within the Gγ-globin promoter and miRNA expression within primary CD71+ erythrocytes of patients with SCA, both at baseline before beginning hydroxyurea therapy and after reaching maximum tolerated dose (MTD). Using both cross-sectional analysis and paired-sample analysis, we found that the highly methylated Gγ-globin promoter was inversely correlated to baseline HbF levels, but only slightly altered by hydroxyurea treatment. Conversely, expression of several specific miRNAs was significantly increased after hydroxyurea treatment, and expression of miR-26b and miR-151-3p were both associated with HbF levels at MTD. The significant associations identified in these studies suggest that methylation may be important for regulation of baseline HbF, but not after hydroxyurea treatment, whereas changes in miRNA expression may be associated with hydroxyurea-mediated HbF induction. This study was registered at ClinicalTrials.gov (NCT00305175).


Blood ◽  
2012 ◽  
Vol 119 (8) ◽  
pp. 1915-1921 ◽  
Author(s):  
Jeffrey D. Lebensburger ◽  
Thad Howard ◽  
Yunming Hu ◽  
Tamara I. Pestina ◽  
Geli Gao ◽  
...  

Abstract Sickle cell anemia is characterized by chronic hemolysis coupled with extensive vascular inflammation. This inflammatory state also mechanistically promotes a high risk of lethal, invasive pneumococcal infection. Current treatments to reduce vaso-occlusive complications include chronic hydroxyurea therapy to induce fetal hemoglobin. Because hydroxyurea also reduces leukocytosis, an understanding of the impact of this treatment on pneumococcal pathogenesis is needed. Using a sickle cell mouse model of pneumococcal pneumonia and sepsis, administration of hydroxyurea was found to significantly improve survival. Hydroxyurea treatment decreased neutrophil extravasation into the infected lung coincident with significantly reduced levels of E-selectin in serum and on pulmonary epithelia. The protective effect of hydroxyurea was abrogated in mice deficient in E-selectin. The decrease in E-selectin levels was also evident in human sickle cell patients receiving hydroxyurea therapy. These data indicate that in addition to induction of fetal hemoglobin, hydroxyurea attenuates leukocyte–endothelial interactions in sickle cell anemia, resulting in protection against lethal pneumococcal sepsis.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 982-982
Author(s):  
Patrick T. McGann ◽  
Min Dong ◽  
Russell E. Ware ◽  
Alexander A Vinks

Abstract Background: Hydroxyurea is the primary disease-modifying therapy for adults and children with sickle cell anemia (SCA). Recent NHLBI guidelines include a recommendation for expanded hydroxyurea use, particularly for young children. The laboratory and clinical benefits of hydroxyurea therapy are optimized when escalated to maximum tolerated dose (MTD), but the process of dose escalation requires expertise and frequent laboratory tests. The time to reach MTD using traditional empirical escalation usually takes >6 months, which can delay the laboratory and clinical benefits. In addition, all children with good adherence at MTD will respond to hydroxyurea, but with substantial interpatient variability in both the MTD itself and the %HbF levels achieved, suggesting important individual differences in pharmacokinetics (PK) that contribute to this phenotypic variability. Objective: The primary objective of this study was to develop an individualized Bayesian adaptive dosing strategy to reduce the time required to reach hydroxyurea MTD for children with SCA. Achieving this objective required the development of a population PK model and identification of the most informative sampling times for Bayesian estimation order to reduce the number of observations required for robust estimation of hydroxyurea PK parameters for individual patients. Methods: PK data at baseline from 96 children with SCA enrolled in the prospective Hydroxyurea Study of Long-term Effects (HUSTLE, NCT00305175) were used to develop a population PK model using nonlinear mixed effects modeling (NONMEM 7.2). Patient demographics and clinical chemistry measurements were included for covariate analyses. The final model was validated by bootstrap analysis and visual predictive check. To identify the optimal sampling times and number of samples required to robustly estimate individual PK parameters and total hydroxyurea exposure (AUC), a D-optimal design analysis was performed using the final PK model with constraints of clinical feasibility. Results: Hydroxyurea PK profiles were best described by a one compartment model with Michaelis Menten elimination and a transit absorption model. Hydroxyurea serum concentrations showed substantial interpatient variability with AUC on Day 1 ranging from 40.0 to 149.2 mg*h/L. The average AUC at MTD (mean ± SD) was 115.7 ± 34.0 mg*h/L, so this value was chosen as the target hydroxyurea AUC for the final PK model-based approach. Of the tested covariates, body weight and cystatin C were identified as significant predictors of hydroxyurea clearance, but neither serum creatinine nor estimated creatinine clearance was identified as predictors of hydroxyurea clearance. D-optimal design indicated that three serum concentrations collected at 15-20 minutes, 50-60 minutes, and 3 hours after oral administration would accurately estimate systemic hydroxyurea exposure. Figure 1 demonstrates an example from a patient, demonstrating the PK profile obtained using the sparse sampling technique (Panel A) and the modeling to predict a dose that would target a AUC of 115 mg*h/L (Panel B). Conclusions: We have established a PK model-based individualized dosing strategy to predict hydroxyurea MTD in children with SCA. Our selective sampling strategy requires only three serum samples to be collected over 3 hours and is therefore more feasible and practical, particularly for very young children, than traditional hydroxyurea PK analysis that requires frequent blood collections over 6-8 hours. This novel Bayesian approach is being prospectively evaluated in the Therapeutic Response Evaluation and Adherence Trial (TREAT, ClinicalTrials.gov NCT02286154). In TREAT, hydroxyurea concentrations are measured using HPLC after a single oral dose of 20 mg/kg, requiring only 3 fingerstick blood samples over 3 hours for accurate assessment of each patient's unique hydroxyurea PK profile. The predicted MTD is then calculated based on the amount of drug required to meet the target AUC. This strategy has the potential to individualize therapy and optimize the dose titration of hydroxyurea therapy for children with SCA, such that the laboratory and clinical benefits at MTD are achieved more quickly. Disclosures Off Label Use: Hydroxyurea is not FDA-approved for children with sickle cell anemia. Ware:Bristol Myers Squibb: Research Funding; Biomedomics: Research Funding; Eli Lilly: Other: DSMB membership; Bayer Pharmaceuticals: Consultancy.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3171-3171
Author(s):  
Russell E. Ware ◽  
Barry Eggleston ◽  
Tatiana Abramova ◽  
Sherri A. Zimmerman ◽  
Alice Lail ◽  
...  

Abstract Fetal hemoglobin (HbF) is recognized as a major determinant of clinical disease severity in children and adults with sickle cell anemia (SCA). Patients with elevated HbF levels have a milder disease course, and many current therapeutic protocols for SCA include pharmacological induction of HbF. However, baseline and treatment HbF levels vary widely due to presumed genetic and environmental factors. Recognized globin gene modifiers of HbF include the beta globin haplotype and a potential contribution from concomitant alpha thalassemia. To characterize more fully the influence of globin gene modifiers on both baseline and treatment HbF levels, we retrospectively determined the beta globin haplotype (Benin, CAR, Senegal, Cameroon, or Arab-Indian) by selective gamma globin gene nucleotide sequencing and the alpha globin gene number (2, 3, or 4) by PCR for 67 African-American children with SCA receiving hydroxyurea therapy at stable maximal tolerated dose (MTD). The four beta globin haplotypes and frequencies identified in our cohort of children include Benin (0.61), CAR (0.17), Senegal (0.12), and Cameroon (0.10). The number of alpha globin genes and frequencies identified were 4 genes (0.72), 3 genes (0.25) and 2 genes (0.03). Baseline and MTD HbF levels were analyzed according to each variable. The average baseline HbF value for the entire cohort of children was 7.7 ± 4.4% (median 7.6%, range 1.3 – 19.3%), while the average treatment HbF value was 23.9 ± 7.2 % (median 22.9%, range 10.2 – 40.7%). All 67 children increased their HbF in response to hydroxyurea therapy (median 16.7%, range 5.0 – 28.8%). There was a modest but statistically significant correlation between the baseline and treatment HbF (r=0.66, p<.0001). The estimated effect of one unit change in baseline HbF on treatment HbF was 1.11 (95% CI of 0.78, 1.43). When baseline %HbF was analyzed according to the beta globin haplotype, the overall ANOVA had a p-value of 0.02, indicating a statistically significant influence. Further analysis confirmed associations previously identified in adults with SCA, i.e. children with at least one copy of the CAR haplotype had a lower baseline HbF (5.9% vs 8.4%, p=.05), while those with at least one copy of the Senegal haplotype had a higher baseline HbF (11.1% vs 6.7%, p<.001). When hydroxyurea MTD (treatment) HbF values were analyzed according to beta globin haplotype while adjusting for baseline HbF, however, the effect of beta globin haplotype was not statistically significant (p=.13). Analyses of HbF according to alpha globin gene number revealed no statistically significant effects on either baseline or treatment HbF values. Taken together, these data support the hypothesis that beta globin haplotype significant influences baseline HbF values for children with SCA, but has no significant effects on hydroxyurea MTD HbF values. Accordingly, children with SCA should be offered hydroxyurea based solely on clinical indications, without consideration of baseline HbF or beta globin haplotype. Even children with low baseline HbF values or the CAR beta globin haplotype can respond to hydroxyurea therapy with an elevated %HbF. Future studies designed to identify genetic modifiers of treatment HbF values should focus on sequence polymorphisms in non-globin genes that have trans-acting effects on gamma globin gene expression.


Blood ◽  
2005 ◽  
Vol 106 (7) ◽  
pp. 2269-2275 ◽  
Author(s):  
Jane S. Hankins ◽  
Russell E. Ware ◽  
Zora R. Rogers ◽  
Lynn W. Wynn ◽  
Peter A. Lane ◽  
...  

AbstractThe long-term efficacy and toxicity of hydroxyurea for infants are undefined, and its role in preventing organ dysfunction is unknown. Short-term feasibility of hydroxyurea administration, toxicities, hematologic effects, and effect on spleen function in infants with sickle cell anemia (SCA) were reported (Hydroxyurea Safety and Organ Toxicity [HUSOFT] trial). These infants completing 2 years of hydroxyurea therapy (20 mg/kg/d) were offered study extension with dose escalation to 30 mg/kg/d. Patients were monitored with laboratory tests and biannual imaging studies. Hematologic indices were compared with predicted age-specific values and event rates compared with historic rates. All 21 subjects completing the original trial enrolled in the extension study: median age, 3.4 years old (range, 2.6 to 4.4 years); 12 females; 20 with Hb SS, 1 with Hb S/β0-thalassemia. Seventeen patients completed 4 years of hydroxyurea, and 11 completed 6 years. After 4 years, hydroxyurea was associated with increased hemoglobin concentration, percentage of fetal hemoglobin (Hb F), and mean corpuscular volume (MCV) and decreased reticulocytes, white blood cells (WBCs), and platelets (P < .01). Patients experienced 7.5 acute chest syndrome (ACS) events per 100 person-years, compared with 24.5 events per 100 person-years among historic controls (P = .001). Treated patients had better spleen function than expected and improved growth rates. Infants with SCA tolerate prolonged hydroxyurea therapy with sustained hematologic benefits, fewer ACS events, improved growth, and possibly preserved organ function.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 17-17
Author(s):  
Banu Aygun ◽  
George A. Tomlinson ◽  
Patrick T. McGann ◽  
Leon Tshilolo ◽  
Thomas N. Williams ◽  
...  

Introduction: Realizing Effectiveness Across Continents with Hydroxyurea (REACH, NCT01966731) is an open-label study of hydroxyurea for children with sickle cell anemia (SCA) in sub-Saharan Africa (Angola, DR Congo, Kenya, and Uganda). Initial results documented the feasibility, safety, and benefits of hydroxyurea for SCA in sub-Saharan Africa but guidance for optimizing hydroxyurea therapy is needed. We describe 5 years of hydroxyurea dosing and monitoring in the largest prospective cohort of children with SCA receiving hydroxyurea to date. Methods: Children 1-10 years of age with SCA were enrolled. The hydroxyurea dose was fixed at 15-20 mg/kg/day for the first 6 months with monthly complete blood counts (CBCs) to ensure safety. From month 6-24, the dose was escalated (5 mg/kg every 8 weeks) to maximum tolerated dose (MTD), defined as mild myelosuppression with absolute neutrophil count (ANC) <4.0 x 109/L on 2 consecutive CBCs without hematological toxicities. CBCs were performed monthly until MTD or a stable dose was achieved, then subsequently every 3 months. Dose limiting toxicities (DLT) requiring a temporary treatment hold were defined as ANC <1.0 x 109/L, Hb <4.0 g/dL, reticulocyte count <80 x 109/L unless Hb >7.0 g/dL, or platelets <80 x 109/L. Known genetic modifiers of SCA, including G6PD deficiency and α-thalassemia trait, were determined for all participants. Results: A total of 606 children initiated hydroxyurea and currently 555 (92%) remain on treatment, with average treatment duration of 48 ± 12 months and a total of 2,441 patient-years of hydroxyurea treatment. Over 85% achieved MTD with an average hydroxyurea dose of 22.5 ± 5.0 mg/kg/day, ranging from 19.0 mg/kg/day in Angola to 25.4 mg/kg/day in Uganda. With dose increases over time, the most recent average dose is 23.9 ± 5.4 mg/kg/day (site range 22.9-24.6 mg/kg/day). Lab benefits have been sustained; Hb increased from 7.3 g/dL at baseline to 8.4 g/dL at MTD and remains 8.3 g/dL at Month 60. Similarly, the average HbF increased from 11% baseline to 25% at MTD and remains 23% at Month 60. The average ANC decreased from 6.8 x 109/L at baseline to 3.2 x 109/L at MTD and remains 3.5 x 109/L at Month 60. Lab toxicities are infrequent, transient, and mostly incidental. Of 19,730 CBCs obtained during the treatment phase, 421 (2.1%) in 225 participants included a DLT. The most common DLT was thrombocytopenia (33%), with only 4 platelet counts <20 x 109/L and no bleeding. Anemia was the second most common DLT (26%), most commonly associated with a high reticulocyte count and malarial infection, unrelated to hydroxyurea. Severe neutropenia (ANC <0.5 x 109/L) was rare (5 events) with no neutropenic infections. Over 2/3 of DLT events were identified incidentally during a scheduled visit when the study participant was asymptomatic, including all 5 severe neutropenic episodes. Weight-for-age and height-for-age Z-scores were not associated with higher rates of DLT during hydroxyurea treatment. Children with two-gene deletional α-thalassemia trait tolerated significantly lower hydroxyurea doses than the normal genotype (MTD dose 20.0 vs. 24.0 mg/kg/day, p <0.001) and had significantly different treatment responses at Month 60 including lower HbF (19.5 vs 24.3%, p <0.0001) and MCV (72 vs 99 fL, p<0.001) but higher hemoglobin (8.5 vs 8.1 g/dL, p=0.016). DLT frequency was unaffected by α-thalassemia status. Males with G6PD A- deficiency did not demonstrate significant differences in dosing, response, or toxicity. Conclusions: Hydroxyurea is safe, well-tolerated, and effective for children with SCA living in sub-Saharan Africa. Treatment responses are robust and sustained in REACH across all 4 clinical sites and unaffected by baseline Z-score. Hydroxyurea optimization requires periodic dose escalation for weight gain and titration to mild myelosuppression. Deletional α-thalassemia trait significantly influences the hydroxyurea dose and treatment responses, but the lab benefits with optimized dosing are still robust regardless of the α-globin genotype. Lab toxicities from hydroxyurea are uncommon and typically asymptomatic, suggesting that routine CBC monitoring is needed only at 3-month intervals once a stable dose is achieved, more to optimize the dose than to identify incidental toxicities. This approach to optimizing hydroxyurea therapy will allow more widespread utilization in low-resource settings with limited laboratory monitoring. Disclosures Aygun: National Heart, Lung, and Blood Institute: Research Funding; National Institute of Nursing Research: Research Funding; Patient-Centered Outsomes Research Institute: Research Funding; bluebird bio: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 85-85 ◽  
Author(s):  
Jeremie H. Estepp ◽  
Matthew P. Smeltzer ◽  
Guolian Kang ◽  
Banu Aygun ◽  
Russell E. Ware ◽  
...  

Abstract Background. Hydroxyurea has proven laboratory and clinical benefits for children with sickle cell anemia (SCA); however, the benefits of escalation to a maximum tolerated dosage (MTD) over a fixed or low-dose approach to therapy, remains controversial. Clinical trials utilizing hydroxyurea at MTD reported higher fetal hemoglobin (HbF) levels (~20% versus ~15%) compared to those with a fixed lower-dose (Ware, Blood 2010). The clinical benefits gained, if any, from increasing HbF levels from 15% to 20% has not been described. The Hydroxyurea Study of Long-Term Effects (HUSTLE) provides the opportunity to examine the relationship between the magnitude and duration of pharmacologically induced HbF and clinical outcomes, specifically the number of hospitalizations for vaso-occlusive complications such as acute chest syndrome (ACS) and vaso-occlusive events (VOE). Methods. The Hydroxyurea Study of Long-Term Effects (HUSTLE) is a prospective observational study (NCT00305175) with a primary goal of describing the long-term effects of HU therapy in children with SCA, using serial and longitudinal collection of laboratory and clinical data. All children (≤18 years of age) who enrolled in HUSTLE and did not receive chronic blood transfusions are included in this analysis. All participants received hydroxyurea therapy escalated to a stable MTD, which was defined by moderate myelosuppression (typically ANC of 2,000-4,000 x 106/L) and no dose-limiting toxicities. Children were initially evaluated monthly but then every 2-3 months after achieving MTD. Neutropenia was defined as an ANC of <1,000 x 106/L. For this analysis, laboratory and clinical data were abstracted over twenty-seven months following enrollment onto HUSTLE, which constituted nine consecutive three month intervals. Hospitalizations for VOE and ACS were evaluated categorically for each three month time period, and %HbF levels at the beginning of each interval were used as the representative value for that period. To account for the correlated nature of the data, with potentially multiple hospitalizations per patient and time, a generalized estimating equation model was utilized. Results. A total of 162 children with SCA (148 HbSS, 14 HbSβ0thalassemia) at a mean (SD) age of 10.7 (4.3) years were analyzed. Children were hospitalized a total of 253 (52 ACS, 201 VOE) times during the first twenty-seven months following enrollment. The Figure illustrates the number of individuals hospitalized (yes versus no), stratified by HbF category, for each consecutive 3-month interval following HUSTLE enrollment. Compared to intervals when HbF levels were >20%, those with HbF levels of ≤20% had 2.2 (95% CI: 1.2-4.0; p=0.013) higher chance of hospitalization, and intervals with HbF levels <15% had 2.6 (95% CI: 1.3-5.1; p=0.021) times higher odds of hospitalization. For every 5% decrease in HbF, the odds of hospitalization due to VOE/ACS increased by 1.3 (95% CI: 1.1-1.5; p=0.014), correlating to a 30% increase. There was no statistically significant association between hydroxyurea dose (mg/kg) and hospitalization over time. Neutropenia occurred 39 times in 22 (13.6%) children; no episodes were associated with an invasive bacterial infection. Figure Children hospitalized versus not during three month intervals following HUSTLE enrollment, stratified by fetal hemoglobin percentage. Figure. Children hospitalized versus not during three month intervals following HUSTLE enrollment, stratified by fetal hemoglobin percentage. Discussion. In this pediatric cohort receiving hydroxyurea therapy escalated to MTD, higher %HbF levels conferred greater protection against hospitalization for severe vaso-occlusive pain or ACS. Escalation of hydroxyurea to MTD was rarely associated with neutropenia and had no clinical implications. These prospectively collected data from HUSTLE suggest that hydroxyurea dose escalation to MTD, designed to maximize %HbF levels, provides additional clinical benefit by reducing vaso-occlusive complications in children with SCA. Disclosures Estepp: Ely Lily: Research Funding; NIH: Research Funding. Off Label Use: Hydroxyurea in children with sickle cell anemia.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2554-2554
Author(s):  
Jonathan M Flanagan ◽  
Thad A. Howard ◽  
Nicole Mortier ◽  
Svetlana Avlasevich ◽  
Matthew Smeltzer ◽  
...  

Abstract Abstract 2554 Poster Board II-531 Introduction: Hydroxyurea induces fetal hemoglobin (HbF), improves laboratory parameters, and reduces acute clinical complications of sickle cell anemia (SCA), but its long-term efficacy and safety remain incompletely defined. One long-term safety concern is that hydroxyurea may elicit DNA alterations via genotoxic damage. During normal erythropoiesis, red blood cells (RBC) extrude their nucleus as they develop into functional reticulocytes. Occasionally, membrane bound DNA remains in the cell after erythrocyte maturation and these inclusion bodies are known as micronuclei (MN) or Howell-Jolly Bodies. MN-containing reticulocytes are formed at higher frequency upon exposure to genotoxic agents. Patients with SCA have increased basal MN production while also having decreased MN clearance due to diminished splenic filtrative function. In a previous small cross sectional study, we showed that hydroxyurea exposure further increases MN production in SCA patients. To better address this long-term safety issue of hydroxyurea, we evaluated MN production and clearance both in a large cross-sectional and prospective study of children with SCA on hydroxyurea therapy. Patients and Methods: A high-throughput flow cytometric technique was used to detect and quantitate MN within circulating erythrocyte subpopulations. After written informed consent, venous blood samples were collected from children with SCA enrolled in the Hydroxyurea Study of Long-term Effects (HUSTLE, ClinicalTrials.gov NCT00305175). A total of 105 subjects had at least 1 MN measurement, including 37 subjects with serial measurements at baseline and at follow-up time points up to 24 months of hydroxyurea exposure. MN were quantified in both reticulocytes (MN-CD71(+)) and mature RBC (MN-RBC), and then tested for associations with individual subject laboratory and clinical data. Results: In cross-sectional analysis of 293 samples from 105 children with SCA and a median of 2 years hydroxyurea exposure (range 3 months – 12 years), hydroxyurea therapy significantly lowered %CD71(+) reticulocytes (mean fold reduction 0.53 ± 0.44, p < 0.001). Compared to baseline values, hydroxyurea treatment increased levels of MN in both reticulocytes (%MN-CD71(+), mean fold increase 1.80 ± 0.91, p < 0.05) and mature RBC (%MN-RBC, mean fold increase 1.89 ± 1.39, p<0.01). The increase in MN-CD71(+) was evident by 6 months of hydroxyurea treatment, but did not significantly escalate further with up to 12 years of continued drug exposure (Fig. 1). To prospectively determine the genotoxic effect of hydroxyurea, serial measurements over 2 years were performed on 37 patients. After 9 months on hydroxyurea therapy all subjects were on a stable maximum tolerated dose (MTD, average 25.1 mg/kg/day); 15 of 37 children had > 3.0 fold increase in %MN-CD71(+) while 22 of 37 had < 3.0 fold increase (Mean 3.68 ± 0.65 vs. 1.52 ± 0.52, p < 0.001). The observed inter-individual variation was associated with the predicted laboratory effects of hydroxyurea; increases in %MN-CD71(+) were positively correlated with MTD values of HbF (r2=0.22, p=0.005), mean corpuscular volume (r2=0.35, p=0.002), and mean corpuscular hemoglobin (r2=0.29, p=0.006) but negatively correlated with absolute neutrophil count (r2=0.14, p=0.02) and bilirubin levels (r2=0.20, p=0.008). There were no significant associations between %MN-CD71(+) and gender, age, or hydroxyurea dosage although %MN-RBC clearance decreased with age. Conclusions: A highly sensitive and quantitative flow cytometric technique can detect circulating MN-containing erythrocytes and this technique may be used to assess the in vivo genotoxic effect of any drug. Children with SCA have high basal MN production that is probably related to the degree of erythropoiesis in these patients. Hydroxyurea therapy was associated with genotoxicity but with substantial inter-patient variability in hydroxyurea induced %MN-CD71(+) levels. The increases in %MN-CD71(+) are observed within 6 months of starting hydroxyurea therapy but persist at the same level in patients with up to 12 years of continued drug exposure. Correlations between increased %MN-CD71(+) and predicted hydroxyurea effects on other laboratory parameters suggest that hydroxyurea induces measurable genotoxicity that may be related to individual patient sensitivity and efficacy of hydroxyurea within the bone marrow. These patients will be monitored further to confirm that hydroxyurea does not pose any long term safety issues. Disclosures: Off Label Use: Off label use of hydroxyurea in children with sickle cell anemia. Avlasevich:Litron Laboratories: Employment. Dertinger:Litron Laboratories: Employment.


Sign in / Sign up

Export Citation Format

Share Document