scholarly journals Developmental origins and impact of BCR-ABL1 fusion and IKZF1 deletions in monozygotic twins with Ph+ acute lymphoblastic leukemia

Blood ◽  
2011 ◽  
Vol 118 (20) ◽  
pp. 5559-5564 ◽  
Author(s):  
Giovanni Cazzaniga ◽  
Frederik W. van Delft ◽  
Luca Lo Nigro ◽  
Anthony M. Ford ◽  
Joannah Score ◽  
...  

Abstract The timing and developmental sequence of events for BCR-ABL1+ acute lymphoblastic leukemia (ALL), usually associated with IKAROS (IKZF1) deletions, are unknown. We assessed the status of BCR-ABL1 and IKZF1 genes in 2 pairs of monozygotic twins, one pair concordant, the other discordant for Philadelphia chromosome positive (Ph+) ALL. The twin pair concordant for ALL shared identical BCR-ABL1 genomic sequence indicative of monoclonal, in utero origin. One twin had IKZF1 deletion and died after transplantation. The other twin had hyperdiploidy, no IKZF1 deletion, and is still in remission 8 years after transplantation. In the twin pair discordant for ALL, neonatal blood spots from both twins harbored the same clonotypic BCR-ABL1 sequence. Low level BCR-ABL1+ cells were present in the healthy co-twin but lacked the IKZF1 deletion present in the other twin's leukemic cells. The twin with ALL relapsed and died after transplantation. The co-twin remains healthy and leukemia free. These data show that in childhood Ph+ ALL, BCR-ABL1 gene fusion can be a prenatal and possibly initiating genetic event. In the absence of additional, secondary changes, the leukemic clone remains clinically silent. IKZF1 is a secondary and probable postnatal mutation in these cases, and as a recurrent but alternative copy number change is associated with poor prognosis.

Blood ◽  
1989 ◽  
Vol 73 (1) ◽  
pp. 271-280 ◽  
Author(s):  
FM Uckun ◽  
KJ Gajl-Peczalska ◽  
AJ Provisor ◽  
NA Heerema

Abstract The present study is a detailed analysis of the cytogenetic features of leukemic cells from 104 immunologically classified acute lymphoblastic leukemia (ALL) (78 B lineage and 26 T lineage) cases. Clonal chromosomal abnormalities were found in marrow blasts from 77 of 104 (74%) cases. Hyperdiploidy was much more frequent in B-lineage ALL cases, whereas normal diploidy was more common in T-lineage ALL cases. Fifty-nine of 104 cases (46 of 78 B-lineage ALL and 13 of 26 T-lineage ALL cases) had structural chromosomal abnormalities. Structural abnormalities involving 2p11, 7p13, 7p22, proximal q arm of 7 (7q11 or 7q22), 11q23–24, and translocations involving 12p11–13 appeared to be B- lineage specific. By comparison, structural abnormalities involving 7p15, 7q32, and 14q11 displayed T-lineage specificity. Structural abnormalities involving 9p22-p23 or 14q32, del (6)(q21-q23), del (12)(p11-p13), and the Philadelphia chromosome were found in B-lineage as well as T-lineage ALL cases. This study expands the current knowledge about immunophenotype-karyotype associations in ALL.


Blood ◽  
2001 ◽  
Vol 98 (2) ◽  
pp. 478-482 ◽  
Author(s):  
Ana Teresa Maia ◽  
Anthony M. Ford ◽  
G. Reza Jalali ◽  
Christine J. Harrison ◽  
G. Malcolm Taylor ◽  
...  

The occurrence of childhood acute lymphoblastic leukemia (ALL) in 2 of 3 triplets provided a unique opportunity for the investigation of leukemogenesis and the natural history of ALL. The 2 leukemic triplets were monozygotic twins and shared an identical, acquiredTEL-AML1 genomic fusion sequence indicative of a single-cell origin in utero in one fetus followed by dissemination of clonal progeny to the comonozygotic twin by intraplacental transfer. In accord with this interpretation, clonotypic TEL-AML1 fusion sequences could be amplified from the archived neonatal blood spots of the leukemic twins. The blood spot of the third, healthy, dizygotic triplet was also fusion gene positive in a single segment, though at age 3 years, his blood was found negative by sensitive polymerase chain reaction (PCR) screening for the genomic sequence and by reverse transcription–PCR. Leukemic cells in both twins had, in addition toTEL-AML1 fusion, a deletion of the normal, nonrearrangedTEL allele. However, this genetic change was found by fluorescence in situ hybridization to be subclonal in both twins. Furthermore, mapping of the genomic boundaries of TELdeletions using microsatellite markers indicated that they were individually distinct in the twins and therefore must have arisen as independent and secondary events, probably after birth. These data support a multihit temporal model for the pathogenesis of the common form of childhood leukemia.


Blood ◽  
2003 ◽  
Vol 102 (2) ◽  
pp. 659-661 ◽  
Author(s):  
Wolf-Karsten Hofmann ◽  
Martina Komor ◽  
Barbara Wassmann ◽  
Letetia C. Jones ◽  
Harald Gschaidmeier ◽  
...  

AbstractThe tyrosine kinase inhibitor STI571 (imatinib) binds competitively to the adenosine triphosphate (ATP) binding site of the ABL kinase, thereby inhibiting auto- and substrate phosphorylation of the oncogenic protein BCR-ABL and preventing the activation of downstream signaling pathways. Comparative studies on leukemic cell samples obtained from chronic myelogenous leukemia (CML) and Philadelphia chromosome–positive (Ph+) acute lymphoblastic leukemia (ALL) patients before and after treatment with STI571 reported point mutations in resistant samples after a short time of therapy. The aim of this study was to determine whether patients with Ph+ ALL in whom resistance developed as a consequence of the Glu255Lys mutation already harbored this subclone prior to STI571 treatment. First, the migration pattern of cDNAs from 30 bone marrow samples from patients with Ph+ ALL was analyzed by polymerase chain reaction–single strand conformation polymorphism (PCR-SSCP). Thereafter, detailed mutational analysis using genomic DNA was performed on initial STI571-naive bone marrow samples of 4 individuals with Ph+ ALL, for whom the mutation Glu255Lys in association with STI571 treatment had been shown. A 166-bp PCR fragment spanning from nucleotide (nt) 862 to nt 1027 was cloned, and 108 clones per sample were analyzed by direct sequencing. This more sensitive technique revealed the presence of the Glu255Lys mutation in 2 initial samples, one clone each. We identified for the first time the mutation Glu255Lys in STI571-naive leukemic samples of Ph+ ALL patients. The findings suggest that the mutation exists in a very small subpopulation of leukemic cells at the beginning of STI571 therapy.


Blood ◽  
1990 ◽  
Vol 76 (1) ◽  
pp. 136-141
Author(s):  
J van Denderen ◽  
D van der Plas ◽  
T Meeuwsen ◽  
N Zegers ◽  
W Boersma ◽  
...  

Philadelphia (Ph′)-positive acute lymphoblastic leukemia (ALL) is highly associated with two forms of chimeric bcr-abl proteins: P190bcr- abl and P210bcr-abl. Whereas P210bcr-abl also occurs in chronic myeloid leukemia, P190bcr-abl is uniquely expressed in Ph′-positive ALL. As a consequence, P190bcr-abl is preeminently a tumor-specific marker in leukemic cells of ALL patients. Because P190bcr-abl is composed of the normal bcr and abl proteins, the major part of the P190bcr-abl molecule comprises nontumor-specific determinants. The joining region between bcr and abl, newly generated during the Ph′ translocation, is exclusively a tumor-specific epitope on the P190bcr-abl molecule. Therefore, only antibodies against the bcr-abl joining region will detect the tumor-specificity of P190bcr-abl. In this study a polyclonal antiserum, termed BP-ALL, was raised against a synthetic peptide corresponding to the bcr-abl junction in P190bcr-abl. The reactivity of BP-ALL with native P190bcr-abl derived from a Ph′-positive ALL cell line (TOM-1) was tested using immunoprecipitation analysis. BP-ALL reacted highly specifically with P190bcr-abl but not with P210bcr-abl isolated from chronic myeloid leukemia cell lines. Peptide inhibition studies further confirmed the fine specificity of BP-ALL. Our data indicate that the tumor-specific bcr-abl junction domain is exposed in an antigenic fashion on the P190bcr-abl molecule.


Blood ◽  
1989 ◽  
Vol 73 (5) ◽  
pp. 1307-1311 ◽  
Author(s):  
N Heisterkamp ◽  
R Jenkins ◽  
S Thibodeau ◽  
JR Testa ◽  
K Weinberg ◽  
...  

Abstract In chronic myelogenous leukemia (CML) and in a percentage of childhood and adult acute lymphoblastic leukemia (ALL) the Philadelphia (Ph′) chromosome is present in the leukemic cells of patients. This chromosome is the result of a reciprocal translocation between chromosomes 9 and 22. In CML the break on chromosome 22 occurs within the major breakpoint cluster region (Mbcr) of the bcr gene. In this study, we report on the examination of DNAs from nine Ph′-chromosome positive ALL patients for rearrangements within the bcr gene using Southern blot analysis. Of nine patients having a karyotypically identifiable Ph′-chromosome, only five exhibited rearrangements of the bcr gene. This could indicate that in ALL, chromosome 22 sequences other than the bcr gene are involved in the Ph′-translocation. Within the group of Ph′-positive ALL patients having a bcr gene breakpoint, a correlation appears to exist between the age of the patient and the location of the breakpoint within the gene: all or the vast majority of pediatric patients analyzed to date do not have a Mbcr breakpoint as found in CML and in adult ALL.


Blood ◽  
1984 ◽  
Vol 63 (2) ◽  
pp. 310-313 ◽  
Author(s):  
T Maekawa ◽  
Y Sonoda ◽  
M Taniwaki ◽  
S Misawa ◽  
T Abe ◽  
...  

Abstract A 13-yr-old Japanese female with acute lymphoblastic leukemia (ALL) that was associated with a Philadelphia chromosome (Ph1) as well as a 14q+ chromosome abnormality is reported. The cell surface phenotype of leukemic cells was determined to be non-T, non-B ALL on the basis of positive Ia-like antigen, terminal deoxynucleotidyl transferase activity, and lack of receptors for sheep erythrocytes, surface immunoglobulin, or intracytoplasmic mu-chain immunoglobulin. The combination of both a Ph1 and a 14q+ has not been reported previously in patients with ALL.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3482-3482
Author(s):  
Jingliao Zhang ◽  
Yongjuan Duan ◽  
Yanxia Chang ◽  
Yue Wang ◽  
Chao Liu ◽  
...  

Abstract T-lineage acute lymphoblastic leukemia (T-ALL) comprises approximately 10-15% of pediatric ALL cases with distinct feature in biology and largely inferior outcome compared to B-ALL. Growing evidence has reflected pivotal roles of clonal evolution in T-ALL recurrence, but bulk sequencing may not serve as the perfect model to reliably infer clonal heterogeneities and their immunomodulatory milieu during leukemia development. In this study, single-cell sequencing was applied to uncover leukemic clonal relationships with relapse throughout chemotherapy in T-ALL at a more accurate resolution. We performed bulk whole-exome sequencing for sorted CD7 + BMMCs from 5 pairs of diagnosis-relapse (Dx_Rel) samples, revealing a series of well-reported hotspot mutations in T-ALL. Among those, we observed diagnosis-specific variations and relapse-emerged variations, suggesting the putative correlations with chemo-resistance. Transcriptomic sequencing highlighted additional stemness and metabolic abnormalities underlying leukemic re-occurrence. Incorporated Dx_Rel paired ATAC-seq depicted relapse-specific activated chromatin regions, such as ELK1, ELK4, RUNX1. To dissect clonal diversities within and across the 5 Dx_Rel T-ALL pairs, we carried out high-throughput droplet-based 5'-single-cell RNA-seq (scRNA-seq) and paired T cell receptor sequencing (scTCR-seq). By performing unsupervised clustering of scRNA-seq profiles encompassing 10 samples, we identified 23 distinct T-lineage clusters (Cluster 0-22) based on the two-dimensional UMAP visualization. In 2 out of 5 patients (T593 and T788), diffusion map of T-lineage sub-clusters between diagnostic and relapsed samples appeared to be almost identical, while distinct shifts from diagnosis to relapse in the compositions have been observed in the other 3 out of 5 patients (T956, T723 and T856). Besides, it was noteworthy that two T-cell sub-clusters were concluded as "normal" T cells (Cluster 9 and 12) uniformly presented in both diagnostic and relapsed diffusion of T-cell sub-clusters across 5 Dx_Rel, from which TCR repertoires and expression profiles could well discriminate leukemic cells. Next, we sought to further deconvolute the clonal evolution patterns for T-ALL Dx_Rel pairs. We observed that except in T788 lacking of clonal TCRs, dominant diagnostic clones of the other 4 patients diminished (T593) or vanished (T956, T723, T856) at relapse, sparing newly emerged subclones predominantly substituted at relapse. We clearly depicted two distinct patterns of evolutionary trajectories in these 4 Dx_Rel pairs by comprehensively mapping hierarchical TCR clonotypes onto leukemic clonotypes at single cell levels. Specifically, in T956 and T723, we observed significant outgrowth of incidental diagnostic sub-clones at relapse, whereby surrogate TCR repertoires correspondingly enumerated, suggestive of dynamic shifts in dominant clone over continuous chemo-exposure. Whereas in T593 and T856, expanding clones at relapse were showed up with completely different gene signatures from the diagnostic ones, but dominant clones at diagnosis and relapse were surprisingly presented with identical TCR repertoires. This was undoubtedly informative of leukemic "clonal drift" within which hypothetical intrinsic transformation happened to the same subclones over persistent chemotherapy. Besides, we took advantage of our well-discriminated model to fully delineated the involvement of "normal" T subclusters in leukemic latency and chemo-responsiveness. By analyzing TCR repertoires in combined with expression profiles, we noted that "normal" T cells infiltrated by T-ALL were majorly distributed in CD8-effector sub-clusters compared to those from healthy donor, suggesting a robust leukemic stimulation on effector CD8 signaling in T-ALL microenvironment. Collectively, our presented study accurately distinguished leukemic cells from normal T cells in T-ALL at a single-cell resolution. By tracking transcriptomic profiles within and across Dx_Rel T-ALL pairs, we further identified distinct clonal evolutionary patterns, which may determine diversified fates of leukemic clones in response to therapeutic pressures. In the meantime, we provided a comprehensive phenotypic view on "normal" T cells under leukemic prevalence and re-occurrence, extending significant implications for future precise immunotherapies. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1989 ◽  
Vol 73 (1) ◽  
pp. 271-280
Author(s):  
FM Uckun ◽  
KJ Gajl-Peczalska ◽  
AJ Provisor ◽  
NA Heerema

The present study is a detailed analysis of the cytogenetic features of leukemic cells from 104 immunologically classified acute lymphoblastic leukemia (ALL) (78 B lineage and 26 T lineage) cases. Clonal chromosomal abnormalities were found in marrow blasts from 77 of 104 (74%) cases. Hyperdiploidy was much more frequent in B-lineage ALL cases, whereas normal diploidy was more common in T-lineage ALL cases. Fifty-nine of 104 cases (46 of 78 B-lineage ALL and 13 of 26 T-lineage ALL cases) had structural chromosomal abnormalities. Structural abnormalities involving 2p11, 7p13, 7p22, proximal q arm of 7 (7q11 or 7q22), 11q23–24, and translocations involving 12p11–13 appeared to be B- lineage specific. By comparison, structural abnormalities involving 7p15, 7q32, and 14q11 displayed T-lineage specificity. Structural abnormalities involving 9p22-p23 or 14q32, del (6)(q21-q23), del (12)(p11-p13), and the Philadelphia chromosome were found in B-lineage as well as T-lineage ALL cases. This study expands the current knowledge about immunophenotype-karyotype associations in ALL.


Blood ◽  
1989 ◽  
Vol 73 (5) ◽  
pp. 1307-1311
Author(s):  
N Heisterkamp ◽  
R Jenkins ◽  
S Thibodeau ◽  
JR Testa ◽  
K Weinberg ◽  
...  

In chronic myelogenous leukemia (CML) and in a percentage of childhood and adult acute lymphoblastic leukemia (ALL) the Philadelphia (Ph′) chromosome is present in the leukemic cells of patients. This chromosome is the result of a reciprocal translocation between chromosomes 9 and 22. In CML the break on chromosome 22 occurs within the major breakpoint cluster region (Mbcr) of the bcr gene. In this study, we report on the examination of DNAs from nine Ph′-chromosome positive ALL patients for rearrangements within the bcr gene using Southern blot analysis. Of nine patients having a karyotypically identifiable Ph′-chromosome, only five exhibited rearrangements of the bcr gene. This could indicate that in ALL, chromosome 22 sequences other than the bcr gene are involved in the Ph′-translocation. Within the group of Ph′-positive ALL patients having a bcr gene breakpoint, a correlation appears to exist between the age of the patient and the location of the breakpoint within the gene: all or the vast majority of pediatric patients analyzed to date do not have a Mbcr breakpoint as found in CML and in adult ALL.


Sign in / Sign up

Export Citation Format

Share Document