scholarly journals Evaluation of efficacy and safety of the anti-VWF Nanobody ALX-0681 in a preclinical baboon model of acquired thrombotic thrombocytopenic purpura

Blood ◽  
2012 ◽  
Vol 120 (17) ◽  
pp. 3603-3610 ◽  
Author(s):  
Filip Callewaert ◽  
Jan Roodt ◽  
Hans Ulrichts ◽  
Thomas Stohr ◽  
Walter Janse van Rensburg ◽  
...  

Abstract ALX-0681 is a therapeutic Nanobody targeting the A1-domain of VWF. It inhibits the interaction between ultra-large VWF and platelet GpIb-IX-V, which plays a crucial role in the pathogenesis of thrombotic thrombocytopenic purpura (TTP). In the present study, we report the efficacy and safety profile of ALX-0681 in a baboon model of acquired TTP. In this model, acute episodes of TTP are induced by administration of an ADAMTS13-inhibiting mAb. ALX-0681 completely prevented the rapid onset of severe thrombocytopenia and schistocytic hemolytic anemia. After induction of TTP, platelet counts also rapidly recovered on administration of ALX-0681. This effect was corroborated by the full neutralization of VWF activity. The schistocytic hemolytic anemia was also halted and partially reversed by ALX-0681 treatment. Brain CT scans and post mortem analysis did not reveal any sign of bleeding, suggesting that complete neutralization of VWF by ALX-0681 under conditions of thrombocytopenia was not linked with an excessive bleeding risk. The results obtained in this study demonstrate that ALX-0681 can successfully treat and prevent the most important hallmarks of acquired TTP without evidence of a severe bleeding risk. Therefore, ALX-0681 offers an attractive new therapeutic option for acquired TTP in the clinical setting.

2018 ◽  
Vol 1 (1) ◽  
pp. 1-9
Author(s):  
Amr Hanafy ◽  
◽  
Waseem Seleem ◽  
Salem Mohamed ◽  

Background and aim Experts have reported thrombocytopenia linked to chronic liver disease in up to 70% in patients with advanced fibrosis and portal hypertension. Thrombotic thrombocytopenic purpura (TTP) occurrence with HCV infection is a rare and life-threatening event. We aimed to investigate the cause of disturbed conscious level, acute hemolytic anemia, and severe thrombocytopenia in a male patient with chronic HCV and under treatment with direct-acting antivirals. Case report: Development of severe thrombocytopenia, acute hemolytic anemia, neurological symptoms in the form of fits and coma in a 32- year- old man with chronic HCV infection after one week of treatment with direct-acting antivirals (sofosbuvir 400mg PO daily, and daclatasvir 60 mg PO daily). Brain CT was normal, with a negative Coombs test and the presence of schistocytes in the peripheral blood smear. The patient presentation was suggestive of thrombotic thrombocytopenic purpura (TTP). Conclusion: This is a case of TTP after one week of direct-acting antiviral drugs despite the safety profile of these medications. Studying the pathophysiology of TTP after DAAs needs more clarifications.


Blood ◽  
2010 ◽  
Vol 116 (12) ◽  
pp. 2005-2010 ◽  
Author(s):  
Hendrik B. Feys ◽  
Jan Roodt ◽  
Nele Vandeputte ◽  
Inge Pareyn ◽  
Seb Lamprecht ◽  
...  

Abstract Thrombotic thrombocytopenic purpura (TTP) is the prototypical microangiopathy characterized by disseminated microthromboses, hemolytic anemia, and ultimately organ dysfunction. A link with deficiency of the von Willebrand factor–cleaving protease (ADAMTS13) has been demonstrated, but additional genetic and/or environmental triggers are thought to be required to incite acute illness. Here we report that 4 days of ADAMTS13 functional inhibition is sufficient to induce TTP in the baboon (Papio ursinus), in the absence of inciting triggers because injections with an inhibitory monoclonal antibody (mAb) consistently (n = 6) induced severe thrombocytopenia (< 12 × 109/L), microangiopathic hemolytic anemia, and a rapid rise in serum lactate dehydrogenase. Immunohistochemical staining revealed the characteristic disseminated platelet- and von Willebrand factor–rich thrombi in kidney, heart, brain, and spleen but not lungs. Prolonged inhibition (14 days, n = 1) caused myocardial ischemic damage and asplenia but not death. Control animals (n = 5) receiving equal doses of a noninhibitory anti-ADAMTS13 mAb remained unaffected. Our results provide evidence for a direct link between TTP and ADAMTS13 inhibition and for a mild disease onset. Furthermore, we present a reliable animal model of this disease as an opportunity for the development and validation of novel treatment strategies.


2021 ◽  
Vol 10 (3) ◽  
pp. 536
Author(s):  
Senthil Sukumar ◽  
Bernhard Lämmle ◽  
Spero R. Cataland

Thrombotic thrombocytopenic purpura (TTP) is a rare thrombotic microangiopathy characterized by microangiopathic hemolytic anemia, severe thrombocytopenia, and ischemic end organ injury due to microvascular platelet-rich thrombi. TTP results from a severe deficiency of the specific von Willebrand factor (VWF)-cleaving protease, ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13). ADAMTS13 deficiency is most commonly acquired due to anti-ADAMTS13 autoantibodies. It can also be inherited in the congenital form as a result of biallelic mutations in the ADAMTS13 gene. In adults, the condition is most often immune-mediated (iTTP) whereas congenital TTP (cTTP) is often detected in childhood or during pregnancy. iTTP occurs more often in women and is potentially lethal without prompt recognition and treatment. Front-line therapy includes daily plasma exchange with fresh frozen plasma replacement and immunosuppression with corticosteroids. Immunosuppression targeting ADAMTS13 autoantibodies with the humanized anti-CD20 monoclonal antibody rituximab is frequently added to the initial therapy. If available, anti-VWF therapy with caplacizumab is also added to the front-line setting. While it is hypothesized that refractory TTP will be less common in the era of caplacizumab, in relapsed or refractory cases cyclosporine A, N-acetylcysteine, bortezomib, cyclophosphamide, vincristine, or splenectomy can be considered. Novel agents, such as recombinant ADAMTS13, are also currently under investigation and show promise for the treatment of TTP. Long-term follow-up after the acute episode is critical to monitor for relapse and to diagnose and manage chronic sequelae of this disease.


2009 ◽  
Vol 101 (02) ◽  
pp. 233-238 ◽  
Author(s):  
Sara Gastoldi ◽  
Erica Daina ◽  
Daniela Belotti ◽  
Enrico Pogliani ◽  
Paolo Perseghin ◽  
...  

SummaryThrombotic thrombocytopenic purpura (TTP) is a rare and severe disease characterized by thrombocytopenia, microangiopathic haemolytic anemia, neurological and renal involvement associated with deficiency of the von Willebrand factor-cleaving protease, ADAMTS13. Persistence of high titers of anti-ADAMTS13 autoantibodies predisposes to relapsing TTP. Since relapses are associated with high morbidity and mortality rates, the optimal therapeutic option should be a pre-emptive treatment able to deplete anti-ADAMTS13 autoantibodies and avoid relapses. Five patients who presented with persistence of undetectable ADAMTS13 activity and high titers of autoantibodies, were treated with rituximab as pre-emptive therapy during remission. Four of them were affected by relapsing TTP and one was treated after the first episode. ADAMTS13 activity ranging from 15% to 75% with disappearance of inhibitors was achieved after three months in all patients, and persisted >20% without inhibitors at six months. In three patients disease-free status is still ongoing after 29, 24 and six months, respectively. Relapses were documented in two patients during follow-up: in one patient remission lasted 51 months; while in the other patient relapse occurred after 13 months. Results demonstrated that rituximab used as pre-emptive treatment may be effective in maintaining a sustained remission in patients with anti-ADAMTS13 antibodies in whom other treatments failed to limit the production of inhibitors, and suggests that re-treatment with rituximab should be considered when ADAMTS13 activity decreases and inhibitors reappear into the circulation, to avoid a new relapse.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 217-217
Author(s):  
Felipe Massicano ◽  
Elizabeth M. Staley ◽  
Konstantine Halkidis ◽  
Nicole K. Kocher ◽  
Lance A. Williams ◽  
...  

Background: Immune thrombotic thrombocytopenic purpura (iTTP) is a potentially fatal syndrome, resulting primarily from autoantibodies against ADAMTS13. However, the mechanism underlying the autoantibody formation and the contribution of other genomic alterations to the pathogenesis of iTTP are largely unknown. Methods: Whole exome sequencing (WES) and bioinformatic analyses were performed to determine the genetic variations in 40 patients with iTTP who had ADAMTS13 activity &lt;10 IU/dL and a positive inhibitor or an elevated anti-ADAMTS13 IgG in concordance with clinical presentations of severe thrombocytopenia and microangiopathic hemolytic anemia with various degrees of organ injury. WES was also performed at the same time in fifteen age-, gender-, and ethnicity- matched individuals who did not have a history of iTTP or other hematological disorders as controls. Results: WES identified variants or mutations in the genes involving in glycosylation, including O-linked glycosylation, to be the major pathway affected in patients with iTTP. We propose that the altered glycosylation may be responsible for the development of autoantibodies against ADAMTS13 which impair the proteolytic cleavage of von Willebrand factor, accelerate the clearance of ADAMTS13 from circulation, and result in severe thrombocytopenia platelets in patients with iTTP. We also identified defects in ankyrin repeat containing protein ANKRD36C, a protein with hitherto unknown function, as the most statistically significant genomic alterations associated with iTTP (p &lt; 10-5). Moreover, candidate gene analysis revealed that various genes involving in hemostasis, complement activation, platelet function and signaling pathway, and inflammation were all affected in patients with iTTP, which may contribute to the onset, progress, severity, and long-term outcome of iTTP. Finally, we also identified two patient subgroups where the disease mechanism might be different. Conclusion: Our findings provide novel insight into the pathogenic mechanism underlying ADAMTS13 autoantibody production and the potential contribution of other genetic abnormalities in modifying the iTTP clinical presentations in the individuals with severe deficiency of plasma ADAMTS13 activity. Disclosures Zheng: Alexion: Speakers Bureau; Ablynx/Sanofi: Consultancy, Speakers Bureau; Shire/Takeda: Research Funding; Clotsolution: Other: Co-Founder.


Sign in / Sign up

Export Citation Format

Share Document