scholarly journals Role of the microenvironment in mantle cell lymphoma: IL-6 is an important survival factor for the tumor cells

Blood ◽  
2012 ◽  
Vol 120 (18) ◽  
pp. 3783-3792 ◽  
Author(s):  
Liang Zhang ◽  
Jing Yang ◽  
Jianfei Qian ◽  
Haiyan Li ◽  
Jorge E. Romaguera ◽  
...  

Abstract Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin lymphoma frequently involved in the lymph nodes, bone marrow, spleen, and gastrointestinal tract. We examined the role of IL-6 in MCL. Human MCL cells expressed the membrane gp130 and soluble gp80, and some of them also secreted IL-6. Neutralizing autocrine IL-6 and/or blocking IL-6 receptors in IL-6+/gp80+ MCL cells inhibited cell growth, enhanced the rate of spontaneous apoptosis, and increased sensitivity to chemotherapy drugs. For IL-6− or gp80low MCL cells, paracrine or exogenous IL-6 or gp80 protected the cells from stress-induced death. Knockdown of gp80 in gp80high MCL cells rendered the cells more sensitive to chemotherapy drugs, even in the presence of exogenous IL-6. In contrast, overexpression of gp80 in gp80low/IL-6+ MCL cells protected the cells from chemotherapy drug-induced apoptosis in vitro and compromised the therapeutic effect of chemotherapy in vivo. IL-6 activated the Jak2/STAT3 and PI3K/Akt pathways in MCL, and the inhibition of these pathways completely or partially abrogated IL-6–mediated protection of MCL cells. Hence, our study identifies IL-6 as a key cytokine for MCL growth and survival and suggests that targeting the IL-6 pathway may be a novel way to improve the efficacy of chemotherapy in MCL patients.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4811-4811
Author(s):  
Jing Wang ◽  
Wei Zhang ◽  
Yanfang Wang ◽  
Fei Dong ◽  
Mingxia Zhu ◽  
...  

Abstract Objective : To investigate the effects of B7-H3 (CD276) on oncogenesis and chemosensitivity in mantle cell lymphoma (MCL). Methods : The B7-H3 expression was detected by flow cytometry in cell lines, 20 patients with MCL and 20 volunteers. B7-H3 knockdown was performed using lentivirus transduction in the Maver and Z138 mantle cell lymphoma cell lines, respectively. The effects of B7-H3 on cell proliferation, cycle, migration and invasion were investigated by CCK-8 assay, methyl cellulose colony forming assay, PI staining, and Transwell assays in vitro. By establishing Maver and Z138 xenograft models, the effects of B7-H3 on tumourigenicity were observed, and Ki-67 and PCNA was detected through immunohistochemical. Moreover, the impacts of B7-H3 RNAi on the anti-tumor effect of chemotherapy drugs were determined with CCK-8, Annexin V-FITC/PI and Hoechst 33342 staining assays in vitro and with xenograft models in vivo. Results: The frequency of B7-H3positive expression cases was 65.0% (13/20) in MCL patients and 10.0% (2/20) in volunteers. The down-regulation of B7-H3 significantly decreased tumor proliferation in MCL in vitro and in vivo. In the B7-H3 knockdown groups of Maver and Z138 xenograft models, the mean inhibition rate of tumor growth was 59.1% and 65.0% (p = 0.010 and 0.003), and the expression of both Ki-67 and PCNA were significantly lower, respectively. After B7-H3 silencing, the cell cycles of Maver and Z138 were both arrested at G0/G1 phase, and the expression of cell cycle-related proteins Cyclin D1 and CDK4 was lower. The cell migration rates and invasion capacity were decreased, and the rates of distant metastasis in B7-H3 knockdown both Maver and Z138 xenografts were significantly declined as well. The expression of invasion-related proteins MMP-2 and MMP-9 was lower in B7-H3 knockdown cells and xenografts. The silencing of B7-H3 increased the sensitivity of Maver and Z138 cells to Rituximab and Bendamustine and enhanced the drug-induced apoptosis, respectively. The activity of caspase-3 in vitro and the expression of caspase-3 in both Maver and Z138 xenografts was significantly increased in the B7-H3 shRNA combined with chemotherapy drugs groups. Conclusions: B7-H3 levels in MCL patients were signifiantly higher than that in volunteers. Our study demonstrates for the first time that B7-H3 promotes mantle cell lymphoma progression and B7-H3 knockdown significantly enhances the chemosensitivity. This may provide a new therapeutic approach to mantle cell lymphoma. Disclosures No relevant conflicts of interest to declare.


ESMO Open ◽  
2018 ◽  
Vol 3 (6) ◽  
pp. e000387 ◽  
Author(s):  
Chiara Tarantelli ◽  
Elena Bernasconi ◽  
Eugenio Gaudio ◽  
Luciano Cascione ◽  
Valentina Restelli ◽  
...  

BackgroundThe outcome of patients affected by mantle cell lymphoma (MCL) has improved in recent years, but there is still a need for novel treatment strategies for these patients. Human cancers, including MCL, present recurrent alterations in genes that encode transcription machinery proteins and of proteins involved in regulating chromatin structure, providing the rationale to pharmacologically target epigenetic proteins. The Bromodomain and Extra Terminal domain (BET) family proteins act as transcriptional regulators of key signalling pathways including those sustaining cell viability. Birabresib (MK-8628/OTX015) has shown antitumour activity in different preclinical models and has been the first BET inhibitor to successfully undergo early clinical trials.Materials and methodsThe activity of birabresib as a single agent and in combination, as well as its mechanism of action was studied in MCL cell lines.ResultsBirabresib showed in vitro and in vivo activities, which appeared mediated via downregulation of MYC targets, cell cycle and NFKB pathway genes and were independent of direct downregulation of CCND1. Additionally, the combination of birabresib with other targeted agents (especially pomalidomide, or inhibitors of BTK, mTOR and ATR) was beneficial in MCL cell lines.ConclusionOur data provide the rationale to evaluate birabresib in patients affected by MCL.


2015 ◽  
Vol 21 (19) ◽  
pp. 4391-4397 ◽  
Author(s):  
Matthew J. Barth ◽  
Cory Mavis ◽  
Myron S. Czuczman ◽  
Francisco J. Hernandez-Ilizaliturri

2013 ◽  
Vol 20 (2) ◽  
pp. 393-403 ◽  
Author(s):  
Alexandra Moros ◽  
Sophie Bustany ◽  
Julie Cahu ◽  
Ifigènia Saborit-Villarroya ◽  
Antonio Martínez ◽  
...  

Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 864-869 ◽  
Author(s):  
Michele Magni ◽  
Massimo Di Nicola ◽  
Liliana Devizzi ◽  
Paola Matteucci ◽  
Fabrizio Lombardi ◽  
...  

Abstract Elimination of tumor cells (“purging”) from hematopoietic stem cell products is a major goal of bone marrow–supported high-dose cancer chemotherapy. We developed an in vivo purging method capable of providing tumor-free stem cell products from most patients with mantle cell or follicular lymphoma and bone marrow involvement. In a prospective study, 15 patients with CD20+ mantle cell or follicular lymphoma, bone marrow involvement, and polymerase chain reaction (PCR)–detectable molecular rearrangement received 2 cycles of intensive chemotherapy, each of which was followed by infusion of a growth factor and 2 doses of the anti-CD20 monoclonal antibody rituximab. The role of rituximab was established by comparison with 10 control patients prospectively treated with an identical chemotherapy regimen but no rituximab. The CD34+ cells harvested from the patients who received both chemotherapy and rituximab were PCR-negative in 93% of cases (versus 40% of controls;P = .007). Aside from providing PCR-negative harvests, the chemoimmunotherapy treatment produced complete clinical and molecular remission in all 14 evaluable patients, including all 6 with mantle cell lymphoma (versus 70% of controls). In vivo purging of hematopoietic progenitor cells can be successfully accomplished in most patients with CD20+ lymphoma, including mantle cell lymphoma. The results depended on the activity of both chemotherapy and rituximab infusion and provide the proof of principle that in vivo purging is feasible and possibly superior to currently available ex vivo techniques. The high short-term complete-response rate observed suggests the presence of a more-than-additive antilymphoma effect of the chemoimmunotherapy combination used.


Blood ◽  
2016 ◽  
Vol 128 (21) ◽  
pp. 2517-2526 ◽  
Author(s):  
Caron Jacobson ◽  
Nadja Kopp ◽  
Jacob V. Layer ◽  
Robert A. Redd ◽  
Sebastian Tschuri ◽  
...  

Key Points Inhibition of HSP90 targets multiple dependences in mantle cell lymphoma. Clinically available HSP90 inhibitors overcome ibrutinib resistance in vitro and in vivo.


2015 ◽  
Vol 43 (9) ◽  
pp. 770-774.e2 ◽  
Author(s):  
Rajeswaran Mani ◽  
Chi-Ling Chiang ◽  
Frank W. Frissora ◽  
Ribai Yan ◽  
Xiaokui Mo ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3729-3729
Author(s):  
Heather Gilbert ◽  
John Cumming ◽  
Josef T. Prchal ◽  
Michelle Kinsey ◽  
Paul Shami

Abstract Abstract 3729 Poster Board III-665 Mantle cell lymphoma (MCL) is a well defined B-cell non-Hodgkin lymphoma characterized by a translocation that juxtaposes the BCL1 gene on chromosome 11q13, which encodes cyclin D1 (CD1), next to the immunoglobulin heavy chain gene promoter on chromosome 14. The resulting constitutive overexpression of CD1 leads to a deregulated cell cycle and activation of cell survival mechanisms. In addition, the gene which encodes GST-n, an enzyme that has been implicated in the development of cancer resistance to chemotherapy, is also located on chromosome 11q13 and is often coamplified along with the BCL1 gene in MCL (1). These two unique biological features of MCL - the overproduction of cyclin D1 and GST-n – may be involved in the carcinogenesis, tumor growth and poor response of this disease to treatment, and they offer potential mechanisms for targeted anti-cancer therapy. Nitric oxide (NO) is a biologic effector molecule that contributes to a host's immune defense against microbial and tumor cell growth. Indeed, NO is potently cytotoxic to tumor cells in vitro (2–4). However, NO is also a potent vasodilator and induces hypotension, making the in vivo administration of NO very difficult. To use NO in vivo requires agents that selectively deliver NO to the targeted malignant cells. A new compound has recently been developed that releases NO upon interaction with glutathione in a reaction catalyzed by GST-n. JS-K seeks to exploit known GST-n upregulation in malignant cells by generating NO directly in cancer cells, and it has been shown to decrease the growth and increase apoptosis in vitro in AML cell lines, AML cells freshly isolated from patients, multiple myeloma cell lines, hepatoma cells and prostate cancer cell lines (3, 5–7). JS-K also decreases tumor burden in NOD/SCID mice xenografted with AML and multiple myeloma cells (5, 7). Importantly, JS-K has been used in cytotoxic doses in the mouse model without significant hypotension. To evaluate whether JS-K treatment has anti-tumor activity in MCL, the human MCL cell lines Jeko1, Mino, Granta and Hb-12 were grown with media only, with JS-K at varying concentrations and with DMSO as an appropriate vehicle control. For detection of apoptotic cells, cell-surface staining was performed with FITC-labeled anti–Annexin V and PI. Cell growth was evaluated using the Promega MTS cytotoxicity assay. Results show that JS-K (at concentrations up to 10 μM) inhibits the growth of MCL lines compared to untreated controls, with an average IC50 of 1 μM. At 48 hours of incubation, all cell lines showed a significantly greater rate of apoptosis than untreated controls. A human MCL xenograft model was then created by subcutaneously injecting two NOD/SCID IL2Rnnull mice with luciferase-transfected Hb12 cells. Seven days post-injection, one of the mice was treated with JS-K at a dose of 4 μmol/kg (expected to give peak blood levels of around 17 mM in a 20 g mouse). Injections of JS-K were given intravenously through the lateral tail vein 3 times a week. The control mouse was injected with an equivalent volume of micellar formulation (vehicle) without active drug. The Xenogen bioluminescence imaging clearly showed a difference in tumor viability, with a significantly decreased signal in the JS-K treated mouse. Our studies demonstrate that JS-K markedly decreases cell proliferation and increases apoptosis in a concentration- and time-dependent manner in mantle cells in vitro. In a xenograft model of mantle cell lymphoma, treatment with JS-K results in decreased tumor viability. Proposed future research includes further defining the molecular basis of these treatment effects; using this therapy in combination with other cancer treatments both in vitro and in vivo; and studying JS-K treatment in MCL patients. Disclosures: Shami: JSK Therapeutics: Founder, Chief Medical Officer, Stockholder.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3063-3063
Author(s):  
Kamal Sharma ◽  
Violetta V. Leshchenko ◽  
Zainul Hasanali ◽  
August Stuart ◽  
Sara Shimko ◽  
...  

Abstract Previously, we reported that epigenetic therapy with cladribine, SAHA, and rituximab (SCR) for newly diagnosed mantle cell lymphoma was remarkably effective, with 100% overall response rate, 85-90% CR rate, and durable responses( Hasanali, AACR,2013 LBA140). Over 40 patients now have been enrolled with all patients completing therapy. Final response and CR rates will be reported at the meeting. This abstract will focus on the correlative studies performed as part of this trial. Cladribine, a purine analog with reported epigenetic activity was shown here by HELP assays to inhibit DNA methylation in vivo in 6 patients with leukemic MCL. Similar activity was also observed in two MCL and two CLL patients treated with cladribine without vorinostat off trial, suggesting cladribine is a DNA hypomethylating agent. Due to cladribine's ability to inhibit the enzyme SAH hydrolase and thus inhibit the donation of methyl groups by S-adenosyl methionine (SAM), we assayed the ability of cladibine to inhibit histone methylation in vitro by Western blot analysis and in vitro assays of histone methyltransferase (HMT) activity on H3lys9 and H3lys27. Both assays demonstrated inhibition of methylated histones (Western) and HMT activity using MCL cell cells and nuclear extract at concentrations of cladribine in the 10-20 um range, higher than the in vivo concentration of 10-20 nm. These observations could be due to the lack of sensitivity of these assays, and more sensitive assays are in development. Studies to help elucidate the mechanism of action of synergy of epigenetic drugs with the monoclonal antibody rituximab were performed. Using cells from patients with leukemic MCL treated with SCR, we assayed for characteristic changes of apoptosis using Western blotting and TUNEL assays. None were detected. We were unable to observe complement mediated cytoxicity in vitro using human serum and rituximab with added cladribine or vorinostat. With ADCC being the primary mechanism of presumed combined epigenetic and rituximab synergy, we investigated ADCC further. CD137 transcriptional upregulation was seen in several but not all treated patients, and some patients showed up regulation of perforin and granzyme mRNA by QRTPCR. An NK cell line, NKL, showed transcriptional upregulation of CD137 after treatment with cladribine and vorinostat. A polymorphism at an intron-exon junction effects the nuclear localization of cyclin D1 by removing a nuclear export signal. Although there is published evidence supporting the role of nuclear cyclin D1 in increased oncogenesis, the role of this polymorphism in MCL remains controversial. Samples from peripheral blood of patients on trial were genotyped at the cyclin D1 locus as AA, AG, or GG, with the A allele being the loss of function allele. The presence of the A allele strongly correlated with the blastic phenotype and the lack of complete remission after SCR therapy, with both being statistically significant (table 1). Immunofluorescent studies with cyclin D1 antibodies showed nuclear and cytoplasmic localization as predicted in patients with the AA and GG genotypes (Fig 1). The heterozygotes are under investigation and will be reported. The mechanism of resistance to SCR was studied in a patient with blastic, leukemic MCL. A 63 male achieved complete remission after two cycles of SCR. Subsequently, he developed neurologic symptoms and was found to have CNS disease. At autopsy, CD20+ disease was found in his CNS and CD20- disease was found systemically. A cell line was established from his peripheral blood that showed significantly reduced levels of CD20 mRNA. Treatment of these cells with a variety of epigenetic drugs was unable to upregulate CD20 mRNA. These cells have been in continuous culture for over 1 year and continue to show diminished levels of CD20 mRNA and protein. Epigenetic changes at the promoter are being studied by chromatin immunoprecipation (ChiP) assays. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document