scholarly journals Hyperfunctional coagulation factor IX improves the efficacy of gene therapy in hemophilic mice

Blood ◽  
2012 ◽  
Vol 120 (23) ◽  
pp. 4517-4520 ◽  
Author(s):  
Alessio Cantore ◽  
Nisha Nair ◽  
Patrizia Della Valle ◽  
Mario Di Matteo ◽  
Janka Màtrai ◽  
...  

Abstract Gene therapy may provide a cure for hemophilia and overcome the limitations of protein replacement therapy. Increasing the potency of gene transfer vectors may allow improvement of their therapeutic index, as lower doses can be administered to achieve therapeutic benefit, reducing toxicity of in vivo administration. Here we generated codon-usage optimized and hyperfunctional factor IX (FIX) transgenes carrying an R338L amino acid substitution (FIX Padua), previously associated with clotting hyperactivity and thrombophilia. We delivered these transgenes to hemophilia B mice by hepatocyte-targeted integration-competent and -defective lentiviral vectors. The hyperfunctional FIX transgenes increased FIX activity reconstituted in the plasma without detectable adverse effects, allowing correction of the disease phenotype at lower vector doses and resulting in improved hemostasis in vivo. The combined effect of codon optimization with the hyperactivating FIX-R338L mutation resulted in a robust 15-fold gain in potency and therefore provides a promising strategy to improve the efficacy, feasibility, and safety of hemophilia gene therapy.

Blood ◽  
2005 ◽  
Vol 105 (6) ◽  
pp. 2316-2323 ◽  
Author(s):  
Joerg Schuettrumpf ◽  
Roland W. Herzog ◽  
Alexander Schlachterman ◽  
Antje Kaufhold ◽  
Darrel W. Stafford ◽  
...  

Abstract Intramuscular injection of adeno-associated viral (AAV) vector to skeletal muscle of humans with hemophilia B is safe, but higher doses are required to achieve therapeutic factor IX (F.IX) levels. The efficacy of this approach is hampered by the retention of F.IX in muscle extracellular spaces and by the limiting capacity of muscle to synthesize fully active F.IX at high expression rates. To overcome these limitations, we constructed AAV vectors encoding F.IX variants for muscle- or liver-directed expression in hemophilia B mice. Circulating F.IX levels following intramuscular injection of AAV-F.IX-K5A/V10K, a variant with low-affinity to extracellular matrix, were 2-5 fold higher compared with wild-type (WT) F.IX, while the protein-specific activities remained similar. Expression of F.IX-R338A generated a protein with 2- or 6-fold higher specific activity than F.IX-WT following vector delivery to skeletal muscle or liver, respectively. F.IX-WT and variant forms provide effective hemostasis in vivo upon challenge by tail-clipping assay. Importantly, intramuscular injection of AAV-F.IX variants did not trigger antibody formation to F.IX in mice tolerant to F.IX-WT. These studies demonstrate that F.IX variants provide a promising strategy to improve the efficacy for a variety of gene-based therapies for hemophilia B.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 5136-5136
Author(s):  
Daniel L. Coutu ◽  
Jessica Cuerquis ◽  
May Griffith ◽  
Mark D. Blostein ◽  
Jacques Galipeau

Abstract Hemophilia B is considered an appropriate disease target for gene therapy because it is a well characterized monogenic disease with a large therapeutic index. Despite promising preclinical and clinical trials in the last decade, safety and efficacy concerns associated with the in vivo administration of viral vectors still need to be addressed before gene therapy becomes part of the standard arsenal for clinicians. Our laboratory has developed a cell therapy approach using gene-enhanced autologous Mesenchymal Stromal Cells (MSCs) to deliver a therapeutic plasmatic protein which addresses these safety concerns. In this study, we tested whether MSCs engineered to express human Factor IX (hFIX) can be used to reverse the bleeding phenotype of R333Q hemophilia B mice developed by Stafford et al. We retrovirally engineered MSCs harvested from normal C57Bl/6 to express hFIX. A gene enhanced polyclonal population of MSCs was capable of producing carboxylated and fully active hFIX by in vitro clotting assays. By ELISA, the cells were shown to produce approximately 250ng of hFIX per million cells per 24h. Ten million of these cells were embedded in a collagen I gel matrix and implanted subcutaneously in R333Q hemophilia B mice (n=10). hFIX activity in mouse plasma (test and control groups) were followed weekly by aPTT assays. hFIX activity reached levels as high as 20% normal activity in some animals with an average +/− SEM of 11.2 +/− 2.1 (FIX activity in controls is <1%). The hFIX activity returned to baseline within 4 weeks. In conclusion, we demonstrate that gene-enhanced autologous MSCs can serve as an effective delivery of functional FIX for temporary correction of the hemophilia B phenotype. We hypothesize the presence of GFP co-expression by the implanted MSCs caused their immune rejection and we are currently testing this hypothesis.


2021 ◽  
Vol 5 (5) ◽  
pp. 1324-1332
Author(s):  
Benjamin J. Samelson-Jones ◽  
Jonathan D. Finn ◽  
Leslie J. Raffini ◽  
Elizabeth P. Merricks ◽  
Rodney M. Camire ◽  
...  

Abstract The high-specific-activity factor IX (FIX) variant Padua (R338L) is the most promising transgene for hemophilia B (HB) gene therapy. Although R338 is strongly conserved in mammalian evolution, amino acid substitutions at this position are underrepresented in HB databases. We therefore undertook a complete 20 amino acid scan and determined the specific activity of human (h) and canine (c) FIX variants with every amino acid substituted at position 338. Notably, we observe that hFIX-R338L is the most active variant and cFIX-R338L is sevenfold higher than wild-type (WT) cFIX. This is consistent with the previous identification of hFIX-R338L as a cause of a rare X-linked thrombophilia risk factor. Moreover, WT hFIX and cFIX are some of the least active variants. We confirmed the increased specific activity relative to FIX-WT in vivo of a new variant, cFIX-R338I, after gene therapy in an HB dog. Last, we screened 232 pediatric subjects with thromboembolic disease without identifying F9 R338 variants. Together these observations suggest a surprising evolutionary pressure to limit FIX activity with WT FIX rather than maximize FIX activity.


2021 ◽  
Vol 22 (14) ◽  
pp. 7647
Author(s):  
E. Carlos Rodríguez-Merchán ◽  
Juan Andres De Pablo-Moreno ◽  
Antonio Liras

Hemophilia is a monogenic mutational disease affecting coagulation factor VIII or factor IX genes. The palliative treatment of choice is based on the use of safe and effective recombinant clotting factors. Advanced therapies will be curative, ensuring stable and durable concentrations of the defective circulating factor. Results have so far been encouraging in terms of levels and times of expression using mainly adeno-associated vectors. However, these therapies are associated with immunogenicity and hepatotoxicity. Optimizing the vector serotypes and the transgene (variants) will boost clotting efficacy, thus increasing the viability of these protocols. It is essential that both physicians and patients be informed about the potential benefits and risks of the new therapies, and a register of gene therapy patients be kept with information of the efficacy and long-term adverse events associated with the treatments administered. In the context of hemophilia, gene therapy may result in (particularly indirect) cost savings and in a more equitable allocation of treatments. In the case of hemophilia A, further research is needed into how to effectively package the large factor VIII gene into the vector; and in the case of hemophilia B, the priority should be to optimize both the vector serotype, reducing its immunogenicity and hepatotoxicity, and the transgene, boosting its clotting efficacy so as to minimize the amount of vector administered and decrease the incidence of adverse events without compromising the efficacy of the protein expressed.


2008 ◽  
Vol 99 (11) ◽  
pp. 883-891 ◽  
Author(s):  
Kohei Tatsumi ◽  
Miho Kataoka ◽  
Masaru Shibata ◽  
Hiroyuki Naka ◽  
Midori Shima ◽  
...  

SummaryCell-based therapies using isolated hepatocytes have been proposed to be an attractive application in the treatment of haemophilia B due to the normal production of coagulation factor IX (FIX) in these particular cells. Current cell culture technologies have largely failed to provide adequate isolated hepatocytes, so the present studies were designed to examine a new approach to efficiently proliferate hepatocytes that can retain normal biological function, including the ability to synthesize coagulation factors like FIX. Canine or human primary hepatocytes were transplanted into urokinase-type plasminogen activatorsevere combined immunodeficiency (uPA/SCID) transgenic mice. Both donor hepatocytes from canines and humans were found to progressively proliferate in the recipient mouse livers as evidenced by a sharp increase in the circulating blood levels of species-specific albumin, which was correlated with the production and release of canine and human FIX antigen levels into the plasma. Histological examination confirmed that the transplanted canine and human hepatocytes were able to proliferate and occupy >80% of the host livers. In addition, the transplanted hepatocytes demonstrated strong cytoplasmic staining for human FIX, and the secreted coagulation factor IX was found to be haemostatically competent using specific procoagulant assays. In all, the results from the present study indicated that developments based on this technology could provide sufficient FIX-producing hepatocytes for cell-based therapy for haemophilia B.


2021 ◽  
Author(s):  
Emilia A. Zin ◽  
Daisy Han ◽  
Jennifer Tran ◽  
Nikolas Morisson-Welch ◽  
Meike Visel ◽  
...  

AbstractNeuronal ceroid lipofuscinosis (NCL) is a family of neurodegenerative diseases caused by mutations to genes related to lysosomal function. One variant, CNL11, is caused by mutations to the gene encoding the protein progranulin. Primarily secreted by microglia, progranulin regulates neuronal lysosomal function once endocytosed. Absence of progranulin causes cerebellar atrophy, seizures, ataxia, dementia and vision loss. As progranulin gene therapies targeting the brain are developed, it is also advantageous to focus on the retina, as its characteristics are beneficial for gene therapy development: the retina is easily visible through direct imaging, can be assessed through quantitative methods in vivo, requires smaller amounts of AAV and AAV can be administered via a less invasive surgery. In this study we characterize the retinal degeneration in a progranulin knockout mouse model of CLN11 and study the effects of gene replacement at different time points. All mice heterologously expressing progranulin showed reduction in lipofuscin deposits and microglia infiltration. While mice that receive systemic AAV9.2YF-scCAG-PGRN at post-natal day 3 or 4 show a reduction in retina thinning, mice injected intravitreally at months 1 and 6 with 7m8-scCAG-PGRN show no improvement, and mice injected at 12 months of age show increased retinal thinning in comparison to their controls. Thus, delivery of progranulin proves to be time-sensitive, requiring early administration for optimal therapeutic benefit.


Blood ◽  
1985 ◽  
Vol 66 (6) ◽  
pp. 1302-1308 ◽  
Author(s):  
W Kisiel ◽  
KJ Smith ◽  
BA McMullen

Coagulation factor IX is a vitamin K-dependent glycoprotein that circulates in blood as a precursor of a serine protease. Incubation of human factor IX with human alpha-thrombin resulted in a time and enzyme concentration-dependent cleavage of factor IX yielding a molecule composed of a heavy chain (mol wt 50,000) and a doublet light chain (mol wt 10,000). The proteolysis of factor IX by thrombin was significantly inhibited by physiological levels of calcium ions. Under nondenaturing conditions, the heavy and light chains of thrombin- cleaved factor IX remained strongly associated, but these chains were readily separated by gel filtration in the presence of denaturants. Amino-terminal sequence analyses of the isolated heavy and light chains of thrombin-cleaved human factor IX indicated that thrombin cleaved peptide bonds at Arg327-Val328 and Arg338-Ser339 in this molecule. Comparable cleavages were observed in bovine factor IX by bovine thrombin and occurred at Arg319-Ser320 and Arg339-Ser340. Essentially, a complete loss of factor IX procoagulant activity was associated with its cleavage by thrombin. Furthermore, thrombin-cleaved factor IX neither developed coagulant activity after treatment with factor XIa nor inhibited the coagulant activity of native factor IX. These data indicate that thrombin cleaves factor IX near its active site serine residue, rendering it incapable of activating factor X. Whether or not this reaction occurs in vivo is unknown.


Blood ◽  
2007 ◽  
Vol 110 (4) ◽  
pp. 1132-1140 ◽  
Author(s):  
Ou Cao ◽  
Eric Dobrzynski ◽  
Lixin Wang ◽  
Sushrusha Nayak ◽  
Bethany Mingle ◽  
...  

Abstract Gene replacement therapy is complicated by the risk of an immune response against the therapeutic transgene product, which in part is determined by the route of vector administration. Our previous studies demonstrated induction of immune tolerance to coagulation factor IX (FIX) by hepatic adeno-associated viral (AAV) gene transfer. Using a regulatory T-cell (Treg)–deficient model (Rag-2−/− mice transgenic for ovalbumin-specific T-cell receptor DO11.10), we provide first definitive evidence for induction of transgene product-specific CD4+CD25+ Tregs by in vivo gene transfer. Hepatic gene transfer–induced Tregs express FoxP3, GITR, and CTLA4, and suppress CD4+CD25− T cells. Tregs are detected as early as 2 weeks after gene transfer, and increase in frequency in thymus and secondary lymphoid organs during the following 2 months. Similarly, adoptive lymphocyte transfers from mice tolerized to human FIX by hepatic AAV gene transfer indicate induction of CD4+CD25+GITR+ that suppresses antibody formation to FIX. Moreover, in vivo depletion of CD4+CD25+ Tregs leads to antibody formation to the FIX transgene product after hepatic gene transfer, which strongly suggests that these regulatory cells are required for tolerance induction. Our study reveals a crucial role of CD4+CD25+ Tregs in preventing immune responses to the transgene product in gene transfer.


Sign in / Sign up

Export Citation Format

Share Document