scholarly journals Gene Therapy in Hemophilia: Recent Advances

2021 ◽  
Vol 22 (14) ◽  
pp. 7647
Author(s):  
E. Carlos Rodríguez-Merchán ◽  
Juan Andres De Pablo-Moreno ◽  
Antonio Liras

Hemophilia is a monogenic mutational disease affecting coagulation factor VIII or factor IX genes. The palliative treatment of choice is based on the use of safe and effective recombinant clotting factors. Advanced therapies will be curative, ensuring stable and durable concentrations of the defective circulating factor. Results have so far been encouraging in terms of levels and times of expression using mainly adeno-associated vectors. However, these therapies are associated with immunogenicity and hepatotoxicity. Optimizing the vector serotypes and the transgene (variants) will boost clotting efficacy, thus increasing the viability of these protocols. It is essential that both physicians and patients be informed about the potential benefits and risks of the new therapies, and a register of gene therapy patients be kept with information of the efficacy and long-term adverse events associated with the treatments administered. In the context of hemophilia, gene therapy may result in (particularly indirect) cost savings and in a more equitable allocation of treatments. In the case of hemophilia A, further research is needed into how to effectively package the large factor VIII gene into the vector; and in the case of hemophilia B, the priority should be to optimize both the vector serotype, reducing its immunogenicity and hepatotoxicity, and the transgene, boosting its clotting efficacy so as to minimize the amount of vector administered and decrease the incidence of adverse events without compromising the efficacy of the protein expressed.

1999 ◽  
Vol 82 (08) ◽  
pp. 555-561 ◽  
Author(s):  
Douglas Jolly ◽  
Judith Greengard

IntroductionHemophilia A results from the plasma deficiency of factor VIII, a gene carried on the X chromosome. Bleeding results from a lack of coagulation factor VIII, a large and complex protein that circulates in complex with its carrier, von Willebrand factor (vWF).1 Severe hemophilia A (<1% of normal circulating levels) is associated with a high degree of mortality, due to spontaneous and trauma-induced, life-threatening and crippling bleeding episodes.2 Current treatment in the United States consists of infusion of plasma-derived or recombinant factor VIII in response to bleeding episodes.3 Such treatment fails to prevent cumulative joint damage, a major cause of hemophilia-associated morbidity.4 Availability of prophylactic treatment, which would reduce the number and severity of bleeding episodes and, consequently, would limit such joint damage, is limited by cost and the problems associated with repeated venous access. Other problems are associated with frequent replacement treatment, including the dangers of transmission of blood-borne infections derived from plasma used as a source of factor VIII or tissue culture or formulation components. These dangers are reduced, but not eliminated, by current manufacturing techniques. Furthermore, approximately 1 in 5 patients with severe hemophilia treated with recombinant or plasma-derived factor VIII develop inhibitory humoral immune responses. In some cases, new inhibitors have developed, apparently in response to unnatural modifications introduced during manufacture or purification.5 Gene therapy could circumvent most of these difficulties. In theory, a single injection of a vector encoding the factor VIII gene could provide constant plasma levels of factor in the long term. However, long-term expression after gene transfer of a systemically expressed protein in higher mammals has seldom been described. In some cases, a vector that appeared promising in a rodent model has not worked well in larger animals, for example, due to a massive immune response not seen in the rodent.6 An excellent review of early efforts at factor VIII gene therapy appeared in an earlier volume of this series.7 A summary of results from various in vivo experiments is shown in Table 1. This chapter will focus on results pertaining to studies using vectors based on murine retroviruses, including our own work.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 496-496 ◽  
Author(s):  
Junjiang Sun ◽  
Narine Hakobyan ◽  
Leonard A. Valentino ◽  
Paul E. Monahan

Abstract Hemophilic arthropathy is the major morbidity of congenital factor VIII and IX deficiency. Therapies localized to hemophilic joints could provide adjunctive protection, in addition to that provided by systemic factor replacement. However, the ability of extravascular clotting factors to contribute to hemostatic protection within joint tissue is unknown. We hypothesized that replacing deficient factor VIII or IX within the injured joint capsule of mice with hemophilia A (FVIII −/ −) or hemophilia B (FIX −/ −), respectively, would decrease the progression of synovitis. We developed a bleeding model consisting of a unilateral knee joint capsule needle puncture to induce hemorrhage in hemophilic mice. Pathology of the joint at two weeks after the injury is graded 0 to 10 using a murine hemophilic synovitis grading system (Valentino, Hakobyan. Haemophilia, 2006). Hemostatically normal mice do not develop synovitis following this injury, but > 95% of FIX −/ − mice develop bleeding and synovitis with a mean grade of 3–4 or greater. Coincident with needle puncture, recombinant human coagulation factor doses ranging from 0 to 20 IU/kg body weight of factor IX or 0 to 25 IU/kg of factor VIII were instilled intraarticularly (I.A.). Comparison groups received the same injury and intravenous (I.V.) factor IX or VIII doses of 25 IU/kg to 100 IU/kg (n= 4–7 mice per study group). Joint bleeding phenotype of the two strains of mice was similar. Mice receiving only saline injection at the time of needle puncture developed mean synovitis scores of 5 ±0.5 in the FVIII −/ − mice and 6 ±0.5 in the FIX −/ − mice. Protection by human clotting factor in the mouse coagulation system was incomplete; mice receiving 100 IU/kg I.V. of factor VIII or factor IX developed synovitis scores of 2.6 ± 1.7 and 2.1 ± 0.2, respectively. In contrast, pathology grade of FVIII −/ − mice dosed with 25 IU/kg I.A. was 0.67 ± 0.3 (p = 0.05 for comparison of 25 IU/kg I.A. with 100 IU/kg IV); FIX−/ − mice receiving 20 IU/kg I.A. had synovitis scores of 0.45 ± 0.58 (p < 0.01 for comparison of 25 IU/kg I.A. with 100 IU/kg I.V.). We next ruled out the possibility that I.A. factor was entering the circulation, and via that route resulting in joint protection, either through technical error at the time of injection, or from a depot effect in the joint with late equilibration into the circulation. Additional groups of mice received factor VIII or IX intravenously at 100 IU/kg, or intraarticularly at 4 times the doses used in the hemarthrosis challenge (80 IU/kg FIX or 100 IU/kg FVIII), and factor activity assays were performed at 1, 4, 12, 24, and 48 hours. Expected circulation kinetics were seen following I.V. dosing; no increase in circulating factor VIII or IX activity were seen in the intraarticular dosing groups at any timepoint. In considering the potential immunogenicity of an intraarticular therapy approach for hemophilic joint therapy, factor VIII −/ − mice were treated with three doses of human factor VIII 100 IU/kg at five day intervals either I.V. or I.A. At two weeks after exposure, 5/5 I.V.-treated mice developed inhibitor antibodies with titers ranging 0.8–7.2 BU; 2/5 I.A.-treated mice had detectable low-titer antibodies (1.3 BU), indicating no greater immunogenicity in the I.A. model. Extravascular factor VIII and factor IX can contribute to protection against blood-induced joint deterioration; enhancing local tissue hemostasis with protein or gene therapy may prove a useful adjunct to systemic replacement.


Blood ◽  
2002 ◽  
Vol 99 (8) ◽  
pp. 2670-2676 ◽  
Author(s):  
Jane D. Mount ◽  
Roland W. Herzog ◽  
D. Michael Tillson ◽  
Susan A. Goodman ◽  
Nancy Robinson ◽  
...  

Abstract Hemophilia B is an X-linked coagulopathy caused by absence of functional coagulation factor IX (FIX). Using adeno-associated virus (AAV)–mediated, liver-directed gene therapy, we achieved long-term (&gt; 17 months) substantial correction of canine hemophilia B in 3 of 4 animals, including 2 dogs with an FIX null mutation. This was accomplished with a comparatively low dose of 1 × 1012 vector genomes/kg. Canine FIX (cFIX) levels rose to 5% to 12% of normal, high enough to result in nearly complete phenotypic correction of the disease. Activated clotting times and whole blood clotting times were normalized, activated partial thromboplastin times were substantially reduced, and anti-cFIX was not detected. The fourth animal, also a null mutation dog, showed transient expression (4 weeks), but subsequently developed neutralizing anti-cFIX (inhibitor). Previous work in the canine null mutation model has invariably resulted in inhibitor formation following treatment by either gene or protein replacement therapies. This study demonstrates that hepatic AAV gene transfer can result in sustained therapeutic expression in a large animal model characterized by increased risk of a neutralizing anti-FIX response.


Hematology ◽  
2015 ◽  
Vol 2015 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Paul E. Monahan

Abstract For more than 3 decades, the scientific community has pursued gene correction of hemophilia, with the goal that an individual with congenitally deficient factor VIII or factor IX might synthesize adequate endogenous clotting factor to be relieved of burdensome repeated clotting factor infusions, as well as the emotional weight of continuous hemorrhage risk. Recent reports of successful factor IX gene therapy and partial correction of the bleeding phenotype have raised the bar for success for a robust crop of new clinical gene therapy efforts for both hemophilia A and B. At the same time that gene therapy is gaining momentum, suggesting the possibility of relief from regular intravenous coagulation protein replacement, a number of innovative technologies that enhance hemostatic potential independently of replacement factor administration are demonstrating success in human clinical application. Human clinical trial progress is reviewed regarding a recombinant bispecific IgG antibody to factors IXa and X that mimics factor VIII cofactor activity, as well as monoclonal antibody and short interfering RNA strategies that demonstrate hemostatic efficacy via opposing inhibitors of coagulation. These strategies, associated with prolonged hemostatic potential following subcutaneous (ACE910, ALN-AT3, Concizumab) or single administration (eg, gene therapy) make it possible to imagine a day when recombinant clotting factor administration, rather than being a daily preoccupation, is relegated to an adjunctive role in supporting more novel standard of care therapies.


Blood ◽  
1996 ◽  
Vol 87 (11) ◽  
pp. 4671-4677 ◽  
Author(s):  
S Connelly ◽  
JM Gardner ◽  
RM Lyons ◽  
A McClelland ◽  
M Kaleko

Deficiency of coagulation factor VIII (FVIII) results in hemophilia A, a common hereditary bleeding disorder. Using a human FVIII-encoding adenoviral vector, Av1ALAPH81, we have demonstrated expression of therapeutic levels of human FVIII in mice sustained for more than 5 months after vector administration. Administration of a high dose (4 x 10(9) plaque-forming units [pfu]) of Av1ALAPH81 to mice resulted in a peak expression of 2,063 ng/mL of human FVIII in the mouse plasma, with levels decreasing to background by weeks 15 to 17. Normal FVIII levels in humans range from 100 to 200 ng/mL and therapeutic levels are as low as 10 ng/mL. Alternatively, administration of 8- to 80-fold lower vector doses (5 x 10(8) pfu to 5 x 10(7) pfu) to normal adult mice resulted in expression of FVIII at therapeutic levels sustained for at least 22 weeks. Detailed analysis of vector toxicity indicated that the high vector dose caused a dramatic elevation of liver-specific enzyme levels, whereas an eight-fold lower vector dose was significantly less hepatotoxic. The data presented here demonstrate that administration of lower, less toxic vector doses allow long-term persistence of FVIII expression.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3287-3287
Author(s):  
Ellen F. Cohn ◽  
Meagan E. Kelly ◽  
Jiacai Zhuo ◽  
Hengjun Chao

Abstract Hemophilia B is an X-linked recessive genetic disease resulting from deficiency in coagulation factor IX (FIX). The current therapy for hemophilia B is life-long replacement of FIX through recombinant FIX or purified blood products in response to bleeding events. However, this replacement therapy is non-prophylactic, costly, and can be complicated by formation of inhibitory anti-FIX antibodies in up to 5% of patients. While somatic gene therapy is expected to provide a final cure for hemophilia B, it may also cause high incidence of FIX antibodies formation and other adverse immune responses following gene delivery. Direct intramuscular injection of adeno-associated virus (AAV) is a safe and promising procedure for hemophilia B gene therapy. This treatment, however, elicits anti-FIX antibodies in immune competent animal models. We have previously reported that intramuscular injection of AAV1 expressed high levels of canine FIX and induced FIX tolerance in a mouse model of hemophilia B, but AAV2 elicited anti-FIX antibodies. Here, we report efficient induction of human FIX (hFIX) tolerance in naive as well as FIX-pre-immunized animals by direct intramuscular injection of AAV1 vectors. Following injection of 1×1011 of AAV1 expressing hFIX per mouse in hemostatically-normal and FIX knock out mice, we detected close to 1000ng/ml of hFIX antigen by ELISA 8 weeks post AAV injection (n=5). No significant level of anti-FIX antibodies could be detected in these mice, by either ELISA or modified Bethesda inhibitor assay. In addition, subsequent challenge with recombinant hFIX in complete Freund’s adjuvant did not cause anti-FIX antibodies to be produced and the level of hFIX in the blood remained constant. However, anti-FIX antibodies, but not hFIX antigen, were measured in the mice injected with the same dose of AAV2 (n=7). Subsequent injection of AAV1 vector into the skeletal muscle of these AAV2-injected mice resulted in the disappearance of anti-FIX antibodies and emergence of FIX antigen at similar levels to AAV1-injected naive mice in the circulation of these mice. In addition, direct intramuscular injection of AAV1 also induced FIX tolerance in mice that developed anti-FIX antibodies after exposure to recombinant FIX proteins (n=6). Similar experiments in mice with different genetic and MHC backgrounds have also demonstrated efficient induction of tolerance to FIX, implying that AAV1-hFIX can induce tolerance regardless of MHC haplotype. We hypothesize that the immediate expression of high levels of FIX from the non-pathogenic AAV1 induces FIX tolerance. To elucidate the mechanism of different immune responses to FIX following intramuscular injection of AAV1 and AAV2, we are examining variations in antigen presentation, interaction between antigen presenting cells and antigen-specific T cells, and fate of antigen-specific T cells following intramuscular injection of AAV1 and AAV2 vectors. In summary, our results demonstrate efficient induction of FIX following direct intramuscular injection of AAV1 vectors. Investigations to elucidate the underlying mechanism are ongoing in our lab.


Sign in / Sign up

Export Citation Format

Share Document