High cereblon expression is associated with better survival in patients with newly diagnosed multiple myeloma treated with thalidomide maintenance

Blood ◽  
2013 ◽  
Vol 121 (4) ◽  
pp. 624-627 ◽  
Author(s):  
Annemiek Broyl ◽  
Rowan Kuiper ◽  
Mark van Duin ◽  
Bronno van der Holt ◽  
Laila el Jarari ◽  
...  

Abstract Recently, cereblon (CRBN) expression was found to be essential for the activity of thalidomide and lenalidomide. In the present study, we investigated whether the clinical efficacy of thalidomide in multiple myeloma is associated with CRBN expression in myeloma cells. Patients with newly diagnosed multiple myeloma were included in the HOVON-65/GMMG-HD4 trial, in which postintensification treatment in 1 arm consisted of daily thalidomide (50 mg) for 2 years. Gene-expression profiling, determined at the start of the trial, was available for 96 patients who started thalidomide maintenance. In this patient set, increase of CRBN gene expression was significantly associated with longerprogression-free survival (P = .005). In contrast, no association between CRBN expression and survival was observed in the arm with bortezomib maintenance. We conclude that CRBN expression may be associated with the clinical efficacy of thalidomide. This trial has been registered at the Nederlands Trial Register (www.trialregister.nl) as NTR213; at the European Union Drug Regulating Authorities Clinical Trials (EudraCT) as 2004-000944-26; and at the International Standard Randomized Controlled Trial Number (ISRCTN) as 64455289.

Blood ◽  
2010 ◽  
Vol 116 (14) ◽  
pp. 2543-2553 ◽  
Author(s):  
Annemiek Broyl ◽  
Dirk Hose ◽  
Henk Lokhorst ◽  
Yvonne de Knegt ◽  
Justine Peeters ◽  
...  

Abstract To identify molecularly defined subgroups in multiple myeloma, gene expression profiling was performed on purified CD138+ plasma cells of 320 newly diagnosed myeloma patients included in the Dutch-Belgian/German HOVON-65/GMMG-HD4 trial. Hierarchical clustering identified 10 subgroups; 6 corresponded to clusters described in the University of Arkansas for Medical Science (UAMS) classification, CD-1 (n = 13, 4.1%), CD-2 (n = 34, 1.6%), MF (n = 32, 1.0%), MS (n = 33, 1.3%), proliferation-associated genes (n = 15, 4.7%), and hyperdiploid (n = 77, 24.1%). Moreover, the UAMS low percentage of bone disease cluster was identified as a subcluster of the MF cluster (n = 15, 4.7%). One subgroup (n = 39, 12.2%) showed a myeloid signature. Three novel subgroups were defined, including a subgroup of 37 patients (11.6%) characterized by high expression of genes involved in the nuclear factor kappa light-chain-enhancer of activated B cells pathway, which include TNFAIP3 and CD40. Another subgroup of 22 patients (6.9%) was characterized by distinct overexpression of cancer testis antigens without overexpression of proliferation genes. The third novel cluster of 9 patients (2.8%) showed up-regulation of protein tyrosine phosphatases PRL-3 and PTPRZ1 as well as SOCS3. To conclude, in addition to 7 clusters described in the UAMS classification, we identified 3 novel subsets of multiple myeloma that may represent unique diagnostic entities.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 73-73 ◽  
Author(s):  
Dirk Hose ◽  
Jean-Francois Rossi ◽  
Carina Ittrich ◽  
John deVos ◽  
Axel Benner ◽  
...  

Abstract AIM was to establish a new molecular classification of Multiple Myeloma (MM) based on changes in global gene expression attributable to cytogenetic aberrations detected by interphase FISH (iFISH) in order to (i) predict event free survival (EFS) and (ii) investigate differentially expressed genes as basis for a group specific and risk adapted therapy. PATIENTS AND METHODS. Bone marrow aspirates of 105 newly diagnosed MM-patients (65 trial (TG) / 40 independent validation group (VG)) and 7 normal donors (ND) were CD138-purified by magnetic activated cell sorting. RNA was in-vitro transcribed and hybridised to Affymetrix HG U133 A+B GeneChip (TG) and HG U133 2.0 plus arrays (VG). CCND1 and CCND2 expression was verified by real time RT-PCR. iFISH was performed on purified MM-cells using probes for chromosomes 11q23, 11q13, 13q14, 17p13 and the IgH-translocations t(4;14) and t(11;14). Expression data were normalised (Bioconductor package gcrma) and nearest shrunken centroids (NSC) applied to calculate and cross validate a predictor on 40 patients of the TG with a comprehensive iFISH panel available combined with CCND overexpression. Differentially expressed genes were identified using empirical Bayes statistics for pairwise comparison. RESULTS. Overexpression of a D-type cyclin (D1 or D2) was found in 61/65 patients with MM compared to ND. CCND3 overexpression only appeared concomitantly with CCND2 overexpression. Four groups could be distinguished: (1.1) CCND1 (11q13) overexpression and trisomy 11q13, (1.2) CCND1 overexpression and translocations involving 11q13 i.e. t(11;14), (2.1) CCND2 overexpression without 11q13+, t(11;14), t(4;14), (2.2) CCND2 overexpression with t(4;14) and FGFR3 upregulation. A predictor of 6 to 566 genes correctly classifies all 40 patients of the TG (estimated cross validated error rate 0%). An independent VG of 40 patients was used. Genes with highest scores in NSC are: (1.1) CCND1, ribosomal proteins (e.g. RPL 28, 29), GPX1, CCRL2, (1.2) CCND1, TGIF, and NCAM (non-overexpression), (2.1) CCND2, (2.2) FGFR3, WHSC1, CCND2, IRTA2, SELL, and MAGED4. Distribution of clinical parameters (i.e. β2M, Durie Salmon stages, ISS) was not significantly different between the groups. The distribution of del(13)(q14q14) was (1.1) 31.5%, (1.2) 37.5%, (2.1) 37.5% and (2.2) 100%. (p<0.01). I.e. HGF, DKK1, VCAM, CD163 are differentially expressed between all 4 groups and ND (adjusted p<0.001). The groups defined by the predictor show a significantly different EFS after autologous stem cell transplantation according to the GMMG-HD3 protocol (median: (1.1) 18 / (1.2) not reached (no event) / (2.1) 22 / (2.2) 6 months; log-rank-test: p=0.004). CONCLUSION. CCND1 or CCND2 overexpression is nearly ubiquitous in MM and attributable to defined cytogenetic aberrations. Gene expression and iFISH allow a molecular classification of MM which can be predicted by gene expression profiling alone. Groups in the classification show a distinctive pattern in gene expression as well as a different EFS interpretable as risk stratification and indicator of therapeutic targets.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 114-114
Author(s):  
Guido Tricot ◽  
Fenghuang Zhan ◽  
Bart Barlogie ◽  
Yongsheng Huang ◽  
Jeffrey Sawyer ◽  
...  

Abstract The International Staging System (ISS), based on B2-microglobulin and albumin levels at the time of diagnosis, has now generally been adopted as a new prognostic classification system for multiple myeloma (MM). While readily and widely applicable, ISS does not account for genetic disease features, such as metaphase (CA) and interphase fluorescence in situ hybridization (FISH) cytogenetic abnormalities, which when examined in the context of standard prognostic variables, confer higher hazards of relapse and disease-related death. Recently, gene expression profiling (GEP) uncovered the major prognostic significance for outcome of high expression of CKS1B, a gene mapping to an amplicon at chromosome 1q21. We have performed a comprehensive study of CA, FISH, GEP and ISS staging in 351 newly diagnosed MM patients, treated uniformly on Total Therapy 2. We have analyzed outcome based on a combination of high CKS1B by GEP and CA. GEP-based t(11;14) was prognostically favorable, irrespective of expression of CKS1B and, therefore, was removed from the group of patients with high CKS1B expression. After this adjustment, with the combination of both CA and high CKS1B (approximately 10% of all patients) conferred a very poor outcome with only 24% and 40% of such patients being event-free and/surviving at 3 years, compared with 72% and 84% for the others (p values : &lt;.0001). Such patients fared poorly, irrespective of their ISS stage. Similar prognostic information could be gained by combining CA with FISH-defined amplification of 1q21 and t(11;14). Because of their major prognostic impact, all newly diagnosed patients should be tested for these genetic markers. Novel treatment modalities are justified in the small subgroup of such poor prognosis patients, since they derive only a minor benefit from advances in MM therapy. CKS1B Q4 + CA (with no CCND1) vs. Others CKS1B Q4 + CA (with no CCND1) vs. Others


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3401-3401
Author(s):  
Maud Condomines ◽  
Dirk Hose ◽  
Thierry Reme ◽  
Michael Hundemer ◽  
John De Vos ◽  
...  

Abstract Cancer-testis (CT) antigens are expressed in testis and malignant tumors, but rarely in non-gametogenic tissues. Due to this pattern, they represent attractive targets for cancer vaccination approaches. The aims of the present study were (1) to assess for the first time the expression of CT genes on a pangenomic basis in multiple myeloma (MM), (2) to provide selection strategies of CT antigens for clinical vaccination trials and (3) to assess the impact of CT gene expression on event-free survival. We report here the expression pattern of CT genes in purified MM cells (MMC) of 64 patients with newly-diagnosed MM, 12 patients with monoclonal gammopathy of unknown significance (MGUS), in normal plasma cell and B cell samples and in 20 MMC lines, using gene expression profiling (GEP). Out of 46 CT genes interrogated by the Affymetrix HG U133 Set arrays, 35 were expressed in MMC of at least one patient, according to the Affymetrix “present” call (frequency range: 2% – 66%). Of these, 24 CT genes were expressed in more than 5% of the MMC samples and 25 are located on chromosome X. MMC of 98% of the patients expressed at least one CT gene, 86% at least two, and 70% at least three CT genes. By using a set of 10 CT genes including KM-HN-1, MAGE-C1, MAGE-A3/6/12, MAGE-A5, MORC, DDX43, SPACA3, SSX-4, GAGE-1–8 and MAGE-C2, a combination of at least three CT genes - desirable to circumvent tumor escape mechanisms and immune tolerance - could be obtained in MMC of 67% of the patients. Thus, gene expression profiling can be used to select CT antigens as vaccination targets in individual patients. In a series of MMC from 111 patients treated with the same high-dose chemotherapy and autologous peripheral blood stem cell transplantation protocol and having a median two-year follow-up, we found that the expression of six CT genes, i.e. CTAG-1B, CTAG-2, MAGE-A1, MAGE-A2, MAGE-A3 and MAGE-A6 was associated with a shorter event-free survival (EFS). Furthermore, considering only the 25 CT genes encoded by chromosome X, a CT-Xhigh cluster comprising MMC of one third of the patients (35 of 111) could be defined using a binary hierarchical clustering based on Affymetrix call. Patients in the CT-Xhigh cluster had a shorter EFS (median 13 months) compared to patients in the CT-Xlow cluster (median 18 months, P = .003). The CT-Xhigh clsuter included more patients with a stage III disease (P = .004). These results confirm data from previous studies indicating that patients expressing some CT genes located on chromosome X have a poor outcome.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1494-1494
Author(s):  
Abderrahman Abdelkefi ◽  
John de Vos ◽  
Said Assou ◽  
Tarek Ben Othman ◽  
Jean-Francois Rossi ◽  
...  

Abstract Background: Thalidomide which represents an effective treatment strategy for relapsed/refractory multiple myeloma, actually represents a standard of care also for newly diagnosed multiple myeloma patients. Methods: In the present study, we adopted a gene expression profiling (GEP) strategy in an attempt to predict response (&gt; 50% reduction in serum M protein) to primary therapy with thalidomide-dexamethasone for newly diagnosed multiple myeloma. Plasma cells (CD138+) were purified from bone marrow aspirates from 17 patients at diagnosis, before initiation of treatment with thalidomide-dexamethasone. GEP was performed using the Affymetrix U133 Plus_2 microarray platform. The Affymetrix output (CEL files) was imported into Genespring 7.3 (Agilent technologies) microarray analysis software, where data files were normalized across chips using GCRMA and to the 50th percentile, followed by per gene normalization to median. Criteria of response were those established by Bladè et al. Results: After sufficient follow-up, responders (n=9) and nonresponders (n=8) were identified, and gene expression differences in baselines samples were examined. Of the 11000 genes surveyed, Wilcoxon rank sum test identified 149 genes that distinguished response from non response. A multivariate step-wise discriminant analysis (MSDA) revealed that 14 of the 149 genes could be used in a response predictor model (see table). Of interest, the gene list encompasses WXSC1, known to be involved in the chromosomal translocation t(4;14) (p16.3;q32.3) in multiple myeloma. Conclusion: These results could be the first step to adopt microfluidic cards, in an attempt to select at diagnosis patients who will respond favourably to a particular treatment strategy. List of 14 genes able to predict response to primary therapy with thalidomide-dexamethasone for newly diagnosed multiple myeloma. Gene ID Gene Name Chromosomal location 212771_at C10orf38 10p13 229874_x_at LOC400741 1p36.13 219690_at U2AF1L4 19q13.12 202207_at ARL7 2q37.1 243819_at GNG2 14q21 203753_at TCF4 18q21.1 235400_at FCRLM1 1q23.3 211474_s_at SERPINB6 6p25 226785_at ATP11C Xq27.1 215440_s_at BEXL1 Xq22.1–q22.3 209054_s_at WXSC1 4p16.3 227168_at FLJ25967 22p12.1 213355_at ST3GAL6 3q12.1 223218_s_at NFKBIZ 3p12–q12


Sign in / Sign up

Export Citation Format

Share Document