scholarly journals The potential role of γδ T cells after allogeneic HCT for leukemia

Blood ◽  
2018 ◽  
Vol 131 (10) ◽  
pp. 1063-1072 ◽  
Author(s):  
Rupert Handgretinger ◽  
Karin Schilbach

Abstract Allogeneic hematopoetic stem cell transplantation (HCT) offers an option for patients with hematologic malignancies, in whom conventional standard therapies failed or are not effective enough to cure the disease. Successful HCT can restore functional hematopoiesis and immune function, and the new donor-derived immune system can exert a graft-versus-leukemia (GVL) effect. However, allogenic HCT can also be associated with serious risks for transplantation-related morbidities or mortalities such as graft-versus-host disease (GVHD) or life-threatening infectious complications. GVHD is caused by alloreactive T lymphocytes, which express the αβ T-cell receptor, whereas lymphocytes expressing the γδ T-cell receptor are not alloreactive and do not induce GVHD but can exhibit potent antileukemia and anti-infectious activities. Therefore, γδ T cells are becoming increasingly interesting in allogeneic HCT, and clinical strategies to exploit the full function of these lymphocytes have been and are being developed. Such strategies comprise the in vivo activation of γδ T cells or subsets after HCT by certain drugs or antibodies or the ex vivo expansion and manipulation of either patient-derived or donor-derived γδ T cells and their subsets and the adoptive transfer of the ex vivo–activated lymphocytes. On the basis of the absence of dysregulated alloreactivity, such approaches could induce potent GVL effects in the absence of GVHD. The introduction of large-scale clinical methods to enrich, isolate, expand, and manipulate γδ T cells will facilitate future clinical studies that aim to exploit the full function of these beneficial nonalloreactive lymphocytes.

2021 ◽  
Vol 2 (4) ◽  
pp. 100961
Author(s):  
Clémence Grosjean ◽  
Julie Quessada ◽  
Mathis Nozais ◽  
Marie Loosveld ◽  
Dominique Payet-Bornet ◽  
...  

2008 ◽  
Vol 182 (1) ◽  
pp. 164-170 ◽  
Author(s):  
Lars T. van der Veken ◽  
Miriam Coccoris ◽  
Erwin Swart ◽  
J. H. Frederik Falkenburg ◽  
Ton N. Schumacher ◽  
...  

2005 ◽  
Vol 79 (15) ◽  
pp. 9388-9396 ◽  
Author(s):  
Ajai A. Dandekar ◽  
Katherine O'Malley ◽  
Stanley Perlman

ABSTRACT γδ T cells mediate demyelination in athymic (nude) mice infected with the neurotropic coronavirus mouse hepatitis virus strain JHM. Now, we show that these cells also mediate the same process in mice lacking αβ T cells (T-cell receptor β-deficient [TCRβ−/−] mice) and demyelination is gamma interferon (IFN-γ) dependent. Most strikingly, our results also show a major role for NKG2D, expressed on γδ T cells, in the demyelinating process with in vivo blockade of NKG2D interactions resulting in a 60% reduction in demyelination. NKG2D may serve as a primary recognition receptor or as a costimulatory molecule. We show that NKG2D+ γδ T cells in the JHM-infected central nervous system express the adaptor molecule DAP12 and an NKG2D isoform (NKG2D short), both required for NKG2D to serve as a primary receptor. These results are consistent with models in which γδ T cells mediate demyelination using the same effector cytokine, IFN-γ, as CD8 T cells and do so without a requirement for signaling through the TCR.


2020 ◽  
Vol 17 (9) ◽  
pp. 925-939 ◽  
Author(s):  
Dieter Kabelitz ◽  
Ruben Serrano ◽  
Léonce Kouakanou ◽  
Christian Peters ◽  
Shirin Kalyan

Abstract γδ T cells play uniquely important roles in stress surveillance and immunity for infections and carcinogenesis. Human γδ T cells recognize and kill transformed cells independently of human leukocyte antigen (HLA) restriction, which is an essential feature of conventional αβ T cells. Vγ9Vδ2 γδ T cells, which prevail in the peripheral blood of healthy adults, are activated by microbial or endogenous tumor-derived pyrophosphates by a mechanism dependent on butyrophilin molecules. γδ T cells expressing other T cell receptor variable genes, notably Vδ1, are more abundant in mucosal tissue. In addition to the T cell receptor, γδ T cells usually express activating natural killer (NK) receptors, such as NKp30, NKp44, or NKG2D which binds to stress-inducible surface molecules that are absent on healthy cells but are frequently expressed on malignant cells. Therefore, γδ T cells are endowed with at least two independent recognition systems to sense tumor cells and to initiate anticancer effector mechanisms, including cytokine production and cytotoxicity. In view of their HLA-independent potent antitumor activity, there has been increasing interest in translating the unique potential of γδ T cells into innovative cellular cancer immunotherapies. Here, we discuss recent developments to enhance the efficacy of γδ T cell-based immunotherapy. This includes strategies for in vivo activation and tumor-targeting of γδ T cells, the optimization of in vitro expansion protocols, and the development of gene-modified γδ T cells. It is equally important to consider potential synergisms with other therapeutic strategies, notably checkpoint inhibitors, chemotherapy, or the (local) activation of innate immunity.


Blood ◽  
2021 ◽  
Author(s):  
Christian Augsberger ◽  
Gerulf Hänel ◽  
Wei Xu ◽  
Vesna Pulko ◽  
Lydia Jasmin Hanisch ◽  
...  

Antibody-based immunotherapy is a promising strategy for targeting chemo-resistant leukemic cells. However, classical antibody-based approaches are restricted to targeting lineage-specific cell-surface antigens. By targeting intracellular antigens, a large number of other leukemia-associated targets would become accessible. In this study, we evaluated a novel T-cell bispecific (TCB) antibody, generated using CrossMab and knob-into-holes technology, containing a bivalent T-cell receptor-like binding domain that recognizes the RMFPNAPYL peptide derived from the intracellular tumor antigen Wilms' tumor 1 (WT1) in the context of human leukocyte antigen (HLA) A*02. Binding to CD3ε recruits T cells irrespective of their T-cell receptor specificity. WT1-TCB elicited antibody-mediated T-cell cytotoxicity against AML cell lines in a WT1- and HLA-restricted manner. Specific lysis of primary AML cells was mediated in ex vivo long-term co-cultures utilizing allogenic (mean specific lysis: 67±6% after 13-14 days; ±SEM; n=18) or autologous, patient-derived T cells (mean specific lysis: 54±12% after 11-14 days; ±SEM; n=8). WT1-TCB-treated T cells exhibited higher cytotoxicity against primary AML cells than an HLA-A*02 RMF-specific T-cell clone. Combining WT1-TCB with the immunomodulatory drug lenalidomide further enhanced antibody-mediated T-cell cytotoxicity against primary AML cells (mean specific lysis on day 3-4: 45.4±9.0% vs 70.8±8.3%; p=0.015; ±SEM; n=9-10). In vivo, WT1-TCB-treated humanized mice bearing SKM-1 tumors showed a significant and dose-dependent reduction in tumor growth. In summary, we show that WT1-TCB facilitates potent in vitro, ex vivo and in vivo killing of AML cell lines and primary AML cells; these results led to the initiation of a phase I trial in patients with r/r AML (NCT04580121).


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Koen Debackere ◽  
Lukas Marcelis ◽  
Sofie Demeyer ◽  
Marlies Vanden Bempt ◽  
Nicole Mentens ◽  
...  

AbstractPeripheral T-cell lymphoma (PTCL) is a heterogeneous group of non-Hodgkin lymphomas with poor prognosis. Up to 30% of PTCL lack distinctive features and are classified as PTCL, not otherwise specified (PTCL-NOS). To further improve our understanding of the genetic landscape and biology of PTCL-NOS, we perform RNA-sequencing of 18 cases and validate results in an independent cohort of 37 PTCL cases. We identify FYN-TRAF3IP2, KHDRBS1-LCK and SIN3A-FOXO1 as new in-frame fusion transcripts, with FYN-TRAF3IP2 as a recurrent fusion detected in 8 of 55 cases. Using ex vivo and in vivo experiments, we demonstrate that FYN-TRAF3IP2 and KHDRBS1-LCK activate signaling pathways downstream of the T cell receptor (TCR) complex and confer therapeutic vulnerability to clinically available drugs.


2001 ◽  
Vol 107 (2) ◽  
pp. 359-366 ◽  
Author(s):  
Amy L. Woodward ◽  
Jonathan M. Spergel ◽  
Harri Alenius ◽  
Emiko Mizoguchi ◽  
Atul K. Bhan ◽  
...  

2001 ◽  
Vol 75 (2) ◽  
pp. 1065-1071 ◽  
Author(s):  
Mineki Saito ◽  
Graham P. Taylor ◽  
Akiko Saito ◽  
Yoshitaka Furukawa ◽  
Koichiro Usuku ◽  
...  

ABSTRACT Using HLA-peptide tetrameric complexes, we isolated human T-cell lymphotrophic virus type 1 Tax peptide-specific CD8+ T cells ex vivo. Antigen-specific amino acid motifs were identified in the T-cell receptor Vβ CDR3 region of clonally expanded CD8+ T cells. This result directly confirms the importance of the CDR3 region in determining the antigen specificity in vivo.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A185-A185
Author(s):  
Michelle Fleury ◽  
Derrick McCarthy ◽  
Holly Horton ◽  
Courtney Anderson ◽  
Amy Watt ◽  
...  

BackgroundAdoptive cell therapies have shown great promise in hematological malignancies but have yielded little progress in the context of solid tumors. We have developed T cell receptor fusion construct (TRuC®) T cells, which are equipped with an engineered T cell receptor that utilizes the full complement of TCR signaling subunits and recognizes tumor-associated antigens independent of HLA. In clinical trials, mesothelin (MSLN)-targeting TRuC-T cells (TC-210 or gavo-cel) have shown unprecedented results in patients suffering from advanced mesothelioma and ovarian cancer. To potentially increase the depth of response, we evaluated strategies that can promote intra-tumoral T cell persistence and function. Among the common ??-chain cytokines, IL-15 uniquely supports the differentiation and maintenance of memory T cell subsets by limiting terminal differentiation and conferring resistance to IL-2 mediated activation-induced cell death (AICD). In the studies described here, we evaluated the potential of IL-15 as an enhancement to TRuC-T cell phenotype, persistence and function against MSLN+ targets.MethodsPrimary human T cells were activated and transduced with a lentiviral vector encoding an anti-MSLN binder fused to CD3ε alone or co-expressed with a membrane-tethered IL-15rα/IL-15 fusion protein (IL-15fu). Transduced T cells were expanded for 9 days and characterized for expression of the TRuC, IL-15rα and memory phenotype before subjecting them to in vitro functional assays to evaluate cytotoxicity, cytokine production, and persistence. In vivo efficacy was evaluated in MHC class I/II deficient NSG mice bearing human mesothelioma xenografts.ResultsIn vitro, co-expression of the IL-15fu led to similar cytotoxicity and cytokine production as TC-210, but notably enhanced T-cell expansion and persistence upon repeated stimulation with MSLN+ cell lines. Furthermore, the IL-15fu-enhanced TRuC-T cells sustained a significantly higher TCF-1+ population and retained a stem-like phenotype following activation. Moreover, the IL-15fu-enhanced TRuCs demonstrated robust in vivo expansion and intra-tumoral accumulation as measured by ex vivo analysis of TRuC+ cells in the tumor and blood, with a preferential expansion of CD8+ T cells. Finally, IL-15fu-enhanced TRuC-T cells could be observed in the blood long after the tumors were cleared.ConclusionsThese pre-clinical studies suggest that the IL-15fu can synergize with TC-210 to increase the potency and durability of response in patients with MSLN+ tumors.Ethics ApprovalAll animal studies were approved by the respective Institutional Animal Care and Use Committees.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A204-A204
Author(s):  
Jack Reid ◽  
Shihong Zhang ◽  
Ariunaa Munkhbat ◽  
Matyas Ecsedi ◽  
Megan McAfee ◽  
...  

BackgroundT Cell Receptor (TCR)-T cell therapies have shown some promising results in cancer clinical trials, however the efficacy of treatment remains suboptimal. Outcomes could potentially be improved by utilizing highly functional TCRs for future trials. Current TCR discovery methods are relatively low throughput and rely on synthesis and screening of individual TCRs based on tetramer binding and peptide specificity, which is costly and labor intensive. We have developed and validated a pooled approach relying on directly cloned TCRs transduced into a fluorescent Jurkat reporter system (figure 1). This approach provides an unbiased, high-throughput method for TCR discovery.MethodsAs a model for POTS, T cells specific for a peptide derived adenovirus structural protein were sorted on tetramer and subjected to 10x single cell VDJ analysis. Pools of randomly paired TCR alpha and beta chains were cloned from the 10x cDNA into a lentiviral vector and transduced into a Jurkat reporter cells. Consecutive stimulations with cognate antigen followed by cell sorts were performed to enrich for functional TCRs. Full length TCRab pools were sequenced by Oxford Nanopore Technologies (ONT) and compared to a 10x dataset to find naturally paired TCRs.ResultsComparison between the ex vivo single cell VDJ sequencing and ONT sequencing of the transduced antigen specific TCRs showed more than 99% of the TCR pairs found in reporter positive Jurkat cells were naturally paired TCRs. The functionality of 8 TCR clonotypes discovered using POTS were compared and clone #2 showed the strongest response. Of the selected clonotypes, clone #2 showed a low frequency of 0.9% in the ex vivo single cell VDJ sequencing. After the first round of stimulation and sequencing, clone #2 takes up of 5% of all reporter-positive clones. The abundance of clone #2 further increased to 17% after another round of stimulation, sorting and sequencing, suggesting this method can retrieve and enrich for highly functional antigen specific TCRs.Abstract 192 Figure 1Outline of the POTS workflow.ConclusionsPOTS provides a high-throughput method for discovery of naturally paired, high-avidity T cell receptors. This method mitigates bias introduced by T cell differentiation state by screening TCRs in a clonal reporter system. Additionally, POTS allows for screening of low abundance clones when compared with traditional TCR discovery techniques. Pooled TCRs could also be screened in vivo with primary T cells in a mouse model to screen for the most functional and physiologically fit TCR for cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document