scholarly journals αβ T Cell Receptor Transfer to γδ T Cells Generates Functional Effector Cells without Mixed TCR Dimers In Vivo

2008 ◽  
Vol 182 (1) ◽  
pp. 164-170 ◽  
Author(s):  
Lars T. van der Veken ◽  
Miriam Coccoris ◽  
Erwin Swart ◽  
J. H. Frederik Falkenburg ◽  
Ton N. Schumacher ◽  
...  
Blood ◽  
2018 ◽  
Vol 131 (10) ◽  
pp. 1063-1072 ◽  
Author(s):  
Rupert Handgretinger ◽  
Karin Schilbach

Abstract Allogeneic hematopoetic stem cell transplantation (HCT) offers an option for patients with hematologic malignancies, in whom conventional standard therapies failed or are not effective enough to cure the disease. Successful HCT can restore functional hematopoiesis and immune function, and the new donor-derived immune system can exert a graft-versus-leukemia (GVL) effect. However, allogenic HCT can also be associated with serious risks for transplantation-related morbidities or mortalities such as graft-versus-host disease (GVHD) or life-threatening infectious complications. GVHD is caused by alloreactive T lymphocytes, which express the αβ T-cell receptor, whereas lymphocytes expressing the γδ T-cell receptor are not alloreactive and do not induce GVHD but can exhibit potent antileukemia and anti-infectious activities. Therefore, γδ T cells are becoming increasingly interesting in allogeneic HCT, and clinical strategies to exploit the full function of these lymphocytes have been and are being developed. Such strategies comprise the in vivo activation of γδ T cells or subsets after HCT by certain drugs or antibodies or the ex vivo expansion and manipulation of either patient-derived or donor-derived γδ T cells and their subsets and the adoptive transfer of the ex vivo–activated lymphocytes. On the basis of the absence of dysregulated alloreactivity, such approaches could induce potent GVL effects in the absence of GVHD. The introduction of large-scale clinical methods to enrich, isolate, expand, and manipulate γδ T cells will facilitate future clinical studies that aim to exploit the full function of these beneficial nonalloreactive lymphocytes.


2005 ◽  
Vol 79 (15) ◽  
pp. 9388-9396 ◽  
Author(s):  
Ajai A. Dandekar ◽  
Katherine O'Malley ◽  
Stanley Perlman

ABSTRACT γδ T cells mediate demyelination in athymic (nude) mice infected with the neurotropic coronavirus mouse hepatitis virus strain JHM. Now, we show that these cells also mediate the same process in mice lacking αβ T cells (T-cell receptor β-deficient [TCRβ−/−] mice) and demyelination is gamma interferon (IFN-γ) dependent. Most strikingly, our results also show a major role for NKG2D, expressed on γδ T cells, in the demyelinating process with in vivo blockade of NKG2D interactions resulting in a 60% reduction in demyelination. NKG2D may serve as a primary recognition receptor or as a costimulatory molecule. We show that NKG2D+ γδ T cells in the JHM-infected central nervous system express the adaptor molecule DAP12 and an NKG2D isoform (NKG2D short), both required for NKG2D to serve as a primary receptor. These results are consistent with models in which γδ T cells mediate demyelination using the same effector cytokine, IFN-γ, as CD8 T cells and do so without a requirement for signaling through the TCR.


2020 ◽  
Vol 17 (9) ◽  
pp. 925-939 ◽  
Author(s):  
Dieter Kabelitz ◽  
Ruben Serrano ◽  
Léonce Kouakanou ◽  
Christian Peters ◽  
Shirin Kalyan

Abstract γδ T cells play uniquely important roles in stress surveillance and immunity for infections and carcinogenesis. Human γδ T cells recognize and kill transformed cells independently of human leukocyte antigen (HLA) restriction, which is an essential feature of conventional αβ T cells. Vγ9Vδ2 γδ T cells, which prevail in the peripheral blood of healthy adults, are activated by microbial or endogenous tumor-derived pyrophosphates by a mechanism dependent on butyrophilin molecules. γδ T cells expressing other T cell receptor variable genes, notably Vδ1, are more abundant in mucosal tissue. In addition to the T cell receptor, γδ T cells usually express activating natural killer (NK) receptors, such as NKp30, NKp44, or NKG2D which binds to stress-inducible surface molecules that are absent on healthy cells but are frequently expressed on malignant cells. Therefore, γδ T cells are endowed with at least two independent recognition systems to sense tumor cells and to initiate anticancer effector mechanisms, including cytokine production and cytotoxicity. In view of their HLA-independent potent antitumor activity, there has been increasing interest in translating the unique potential of γδ T cells into innovative cellular cancer immunotherapies. Here, we discuss recent developments to enhance the efficacy of γδ T cell-based immunotherapy. This includes strategies for in vivo activation and tumor-targeting of γδ T cells, the optimization of in vitro expansion protocols, and the development of gene-modified γδ T cells. It is equally important to consider potential synergisms with other therapeutic strategies, notably checkpoint inhibitors, chemotherapy, or the (local) activation of innate immunity.


2001 ◽  
Vol 107 (2) ◽  
pp. 359-366 ◽  
Author(s):  
Amy L. Woodward ◽  
Jonathan M. Spergel ◽  
Harri Alenius ◽  
Emiko Mizoguchi ◽  
Atul K. Bhan ◽  
...  

2001 ◽  
Vol 75 (2) ◽  
pp. 1065-1071 ◽  
Author(s):  
Mineki Saito ◽  
Graham P. Taylor ◽  
Akiko Saito ◽  
Yoshitaka Furukawa ◽  
Koichiro Usuku ◽  
...  

ABSTRACT Using HLA-peptide tetrameric complexes, we isolated human T-cell lymphotrophic virus type 1 Tax peptide-specific CD8+ T cells ex vivo. Antigen-specific amino acid motifs were identified in the T-cell receptor Vβ CDR3 region of clonally expanded CD8+ T cells. This result directly confirms the importance of the CDR3 region in determining the antigen specificity in vivo.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A185-A185
Author(s):  
Michelle Fleury ◽  
Derrick McCarthy ◽  
Holly Horton ◽  
Courtney Anderson ◽  
Amy Watt ◽  
...  

BackgroundAdoptive cell therapies have shown great promise in hematological malignancies but have yielded little progress in the context of solid tumors. We have developed T cell receptor fusion construct (TRuC®) T cells, which are equipped with an engineered T cell receptor that utilizes the full complement of TCR signaling subunits and recognizes tumor-associated antigens independent of HLA. In clinical trials, mesothelin (MSLN)-targeting TRuC-T cells (TC-210 or gavo-cel) have shown unprecedented results in patients suffering from advanced mesothelioma and ovarian cancer. To potentially increase the depth of response, we evaluated strategies that can promote intra-tumoral T cell persistence and function. Among the common ??-chain cytokines, IL-15 uniquely supports the differentiation and maintenance of memory T cell subsets by limiting terminal differentiation and conferring resistance to IL-2 mediated activation-induced cell death (AICD). In the studies described here, we evaluated the potential of IL-15 as an enhancement to TRuC-T cell phenotype, persistence and function against MSLN+ targets.MethodsPrimary human T cells were activated and transduced with a lentiviral vector encoding an anti-MSLN binder fused to CD3ε alone or co-expressed with a membrane-tethered IL-15rα/IL-15 fusion protein (IL-15fu). Transduced T cells were expanded for 9 days and characterized for expression of the TRuC, IL-15rα and memory phenotype before subjecting them to in vitro functional assays to evaluate cytotoxicity, cytokine production, and persistence. In vivo efficacy was evaluated in MHC class I/II deficient NSG mice bearing human mesothelioma xenografts.ResultsIn vitro, co-expression of the IL-15fu led to similar cytotoxicity and cytokine production as TC-210, but notably enhanced T-cell expansion and persistence upon repeated stimulation with MSLN+ cell lines. Furthermore, the IL-15fu-enhanced TRuC-T cells sustained a significantly higher TCF-1+ population and retained a stem-like phenotype following activation. Moreover, the IL-15fu-enhanced TRuCs demonstrated robust in vivo expansion and intra-tumoral accumulation as measured by ex vivo analysis of TRuC+ cells in the tumor and blood, with a preferential expansion of CD8+ T cells. Finally, IL-15fu-enhanced TRuC-T cells could be observed in the blood long after the tumors were cleared.ConclusionsThese pre-clinical studies suggest that the IL-15fu can synergize with TC-210 to increase the potency and durability of response in patients with MSLN+ tumors.Ethics ApprovalAll animal studies were approved by the respective Institutional Animal Care and Use Committees.


1999 ◽  
Vol 189 (10) ◽  
pp. 1531-1544 ◽  
Author(s):  
Calvin B. Williams ◽  
Deborah L. Engle ◽  
Gilbert J. Kersh ◽  
J. Michael White ◽  
Paul M. Allen

We have developed a unique in vivo system to determine the relationship between endogenous altered peptide ligands and the development of major histocompatibility complex class II– restricted T cells. Our studies use the 3.L2 T cell receptor (TCR) transgenic mouse, in which T cells are specific for Hb(64–76)/I-Ek and positively selected on I-Ek plus self-peptides. To this endogenous peptide repertoire, we have individually added one of six well-characterized 3.L2 ligands. This transgenic approach expands rather than constrains the repertoire of self-peptides. We find that a broad range of ligands produce negative selection of thymocytes in vivo. When compared with the in vitro TCR–ligand binding kinetics, we find that these negatively selecting ligands all have a half-life of 2 s or greater. Additionally, one of two ligands examined with no detectable binding to the 3.L2 TCR and no activity on mature 3.L2 T cells (Q72) enhances the positive selection of transgenic thymocytes in vivo. Together, these data establish a kinetic threshold between negative and positive selection based on the longevity of TCR–ligand complexes.


Blood ◽  
2010 ◽  
Vol 116 (25) ◽  
pp. 5560-5570 ◽  
Author(s):  
Karla R. Wiehagen ◽  
Evann Corbo ◽  
Michelle Schmidt ◽  
Haina Shin ◽  
E. John Wherry ◽  
...  

Abstract The requirements for tonic T-cell receptor (TCR) signaling in CD8+ memory T-cell generation and homeostasis are poorly defined. The SRC homology 2 (SH2)-domain–containing leukocyte protein of 76 kDa (SLP-76) is critical for proximal TCR-generated signaling. We used temporally mediated deletion of SLP-76 to interrupt tonic and activating TCR signals after clearance of the lymphocytic choriomeningitis virus (LCMV). SLP-76–dependent signals are required during the contraction phase of the immune response for the normal generation of CD8 memory precursor cells. Conversely, LCMV-specific memory CD8 T cells generated in the presence of SLP-76 and then acutely deprived of TCR-mediated signals persist in vivo in normal numbers for more than 40 weeks. Tonic TCR signals are not required for the transition of the memory pool toward a central memory phenotype, but the absence of SLP-76 during memory homeostasis substantially alters the kinetics. Our data are consistent with a model in which tonic TCR signals are required at multiple stages of differentiation, but are dispensable for memory CD8 T-cell persistence.


Sign in / Sign up

Export Citation Format

Share Document