scholarly journals Long-Term Carfilzomib for High-Risk Patients with Newly Diagnosed Multiple Myeloma: A Pooled Analysis of Two Phase 1/2 Studies

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3240-3240
Author(s):  
Roberto Mina ◽  
Alessandra Larocca ◽  
Maria Teresa Petrucci ◽  
Gianluca Gaidano ◽  
Stelvio Ballanti ◽  
...  

Abstract INTRODUCTION: High-risk cytogenetic abnormalities, such as del(17p), t(4;14), and/or t(14;16), are associated to an unfavorable prognosis. Several trials investigating current approved regimens have shown that high-risk multiple myeloma (MM) patients have shorter progression-free survival (PFS) and overall survival (OS) as compared to standard-risk patients. Carfilzomib, a second generation proteasome inhibitor, demonstrated to be able to improve the survival of high-risk MM patients in the relapse setting. Here we present a pooled analysis of two phase 1/2 studies to investigate the role of carfilzomib in high-risk, newly diagnosed (ND) MM patients. METHODS: Transplant ineligible patients with NDMM enrolled in the IST-CAR 561 and IST-CAR 506 studies were pooled together and analyzed. All patients received 9 28-day induction cycles of carfilzomib, either 70 mg/m2 once weekly (IST-CAR 561) or 36 mg/m2 twice weekly (IST-CAR 506), combined with weekly cyclophosphamide (300 mg/m2) and dexamethasone (40 mg) (CCyd). After the induction phase, patients proceeded to maintenance with single-agent carfilzomib until progressive disease or intolerable toxicity. The primary objective was to compare response to treatment, PFS, PFS-2 and OS in standard versus high-risk FISH, defined by the presence of del(17p), t(4;14), and/or t(14;16). A 15% cut-off point was used for detection of translocation [t(4;14) and t(14;16)] and 10% for detection of del(17p). RESULTS: 121 NDMM patients were enrolled in the IST-CAR 561 (n=63) and in the IST-CAR 506 (n=58) study. Cytogenetic data were available in 94 patients: 37 (31%) had high-risk chromosomal abnormalities by FISH, including 10% of patients with t(4;14), 3% with t(14;16) and 18% with del(17p), while 57 patients (47%) were classified as standard-risk. After the induction phase, no difference in terms of overall response rate (ORR; 86% vs. 92%; p=0.52) and at least near complete response (39% vs. 41%; p=1) was observed between standard and high-risk patients. After a median follow-up of 39 months, median PFS from enrollment was NR in standard-risk patients and 27.8 months in high-risk ones (HR: 0.76; p=0.38) (Figure 1); at 3 years, 52% and 43% of patients, respectively, were alive and free from progression. The PFS benefit for the comparison between standard and high-risk patients was more pronounced in patients who received once weekly carfilzomib at 70 mg/m2, (median: NR vs. 39.6 months; HR: 0.78, p=0.63) as compared to those treated with twice weekly carfilzomib at 36 mg/m2 (median: NR vs. 24.2 months; HR: 0.52, p=0.12). Median PFS-2 from enrollment was NR in standard-risk patients and 44.1 months in high-risk ones (HR: 0.66; p=0.26), without significant differences in the once weekly (median, NR vs. 39.6; p=0.27) and the twice weekly group (median; NR vs. 44.1; p=0.63). Median OS from enrollment was NR in standard-risk patients and 47.5 months in high-risk ones (HR:0.71; p=0.36) (Figure 1). In patients who received once weekly carfilzomib, median OS was NR and 47.5 months (HR:0.66, p=0.48) in standard and high-risk patients, respectively, while median OS in the twice weekly group was NR in standard-risk patients and 44.1 months (HR:0.73; p=0.55) in high-risk ones. CONCLUSION: In transplant ineligible patients with NDMM, carfilzomib combined with cyclophosphamide and dexamethasone as initial treatment mitigated the poor prognosis of high-risk FISH in terms of PFS, PFS-2 and OS. The median PFS of high-risk patients treated with CCyd compares favorably with those reported with current standard of care. As compared to twice weekly carfilzomib at 36 mg/m2, once weekly carfilzomib, at the dose of 70 mg/m2, confirmed to be effective in high-risk patients. These data support the use of carfilzomib for the treatment of high-risk NDMM patients. Figure 1. Figure 1. Disclosures Larocca: Janssen-Cilag: Honoraria; Celgene: Honoraria; Bristol-Myers Squibb: Honoraria; Amgen: Honoraria. Petrucci:Amgen: Honoraria, Other: Advisory Board; Takeda: Honoraria, Other: Advisory Board; Bristol-Myers Squibb: Honoraria, Other: Advisory Board; Janssen-Cilag: Honoraria, Other: Advisory Board; Celgene: Honoraria, Other: Advisory Board. Gaidano:AbbVie: Other: Advisory Board; Janssen: Other: Advisory Board, Speakers Bureau. Musto:Amgen: Honoraria; BMS: Honoraria; Takeda: Honoraria; Janssen: Honoraria; Celgene: Honoraria. Offidani:Janssen: Honoraria, Other: Advisory Board; Takeda: Honoraria, Other: Advisory Board; Amgen: Honoraria, Other: Advisory Board; Bristol-Myers Squibb: Honoraria, Other: Advisory Board; Celgene: Honoraria, Other: Advisory Board. Cavo:Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees; GlaxoSmithKline: Honoraria, Membership on an entity's Board of Directors or advisory committees; AbbVie: Honoraria, Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologies: Honoraria, Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees. Caravita di Toritto:Bristol-Myers Squibb: Honoraria, Other: Travel and Accomodation EMN; Amgen: Other: Advisory Board; Johnson & Johnson: Other: Advisory Board, Travel and Accomodation EHA; Celgene: Other: Advisory Board, Travel and Accomodation ASH, Research Funding; Takeda: Other: Advisory Board. Montefusco:Janssen: Other: Advisory Board; Amgen: Other: Advisory Board; Celgene: Other: Advisory Board. Palumbo:Takeda: Employment. Boccadoro:Bristol-Myers Squibb: Honoraria, Research Funding; AbbVie: Honoraria; Novartis: Honoraria, Research Funding; Janssen: Honoraria, Research Funding; Amgen: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Sanofi: Honoraria, Research Funding; Mundipharma: Research Funding. Bringhen:Celgene: Honoraria; Amgen: Honoraria, Other: Advisory Board; Janssen: Honoraria, Other: Advisory Board; Takeda: Consultancy; Bristol-Myers Squibb: Honoraria.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 24-25
Author(s):  
Rowan Kuiper ◽  
Mark van Duin ◽  
Martin H Van Vliet ◽  
Erik H Van Beers ◽  
Berna Berna Beverloo ◽  
...  

Background Updating prognostic models for multiple myeloma is important in the context of changing treatment options. Previously we have described the value of the prognostic marker SKY92, which identifies high-risk multiple myeloma patients, as well as the value of the combined SKY92-ISS marker. With the introduction of revised ISS, it is of interest to evaluate the value of the updated combination of SKY92 with R-ISS. Within the HOVON87/NMSG18 trial, stratification into 3 groups was described: high-risk: 11% SKY92 high-risk (HR) + R-ISS II-III, low-risk: 15% SKY92 standard risk (SR) + R-ISS I and intermediate risk (74%, other). The 3-year PFS rates were 54% (95%CI: 38-77%), 27% (95%CI: 21-37%) and 7% (95%CI: 1-46%) for SKY-RISS I, II and III, respectively (p < 0.001). The 3-yr OS rates for SKY-RISS I to III were 88%, 66% and 26% (p=6×10-7). Here we describe the validation of SKY92-RISS in the CoMMpass dataset. Methods SKY92 was determined using RNA-seq data available from the CoMMpass dataset. Briefly, the SKY92 score was obtained as a weighted summation of the expression given by the available Ensembl gene IDs, corresponding to the probe sets of the SKY92 classifier. Renormalization of the original SKY92 discovery data (HOVON65/GMMG-HD4) allowing a direct remodeling between the Affymetrix probe-set expressions (i.e. SKY92) and RNAseq Ensembl gene IDs. Only Ensembl gene IDs with an average log2 expression >8 were used. Revised ISS status was determined as described. For optimal comparison to the discovery cohort of the HOVON87/NMSG18 trial, the analysis was limited to 93 patients older than 65 years in the CoMMpass data set, that did not receive transplant, and for whom RNA-Seq at diagnosis, R-ISS and follow-up data were available. Results The median follow-up is 41 months. SKY92 identified 24 high-risk patients (24/93: 26%). The 3-yr PFS and OS rates of standard-risk patients were 49% and 80% respectively, compared to 23% and 44% for high-risk, resulting in a significant log rank test (p < 0.005). The R-ISS classified patients into the low-risk R-ISS I (24% of patients), intermediate-risk R-ISS II (63%) and high-risk R-ISS III (13%). The 3-yr PFS rates were 76% (RISS I), 33% (RISS II) and 33% (RISS III); for OS: 100% (RISS I), 68% (RISS II) and 33% (RISS III; PFS, p = 0.07; OS, p < 0.001). SKY92 and R-ISS were independent prognostic factors in terms of OS and PFS. The SKY-RISS classification resulted in 20% low-, 61% intermediate- and 18% high-risk patients (Figure 1). The 3-yr PFS rates were 81% (95%CI: 64-100%), 42% (95%CI: 30-59%) and 12% (95%CI: 3-44%; p < 0.001) and 3-yr OS rates were 100% (95%CI: 100-100%), 77% (95%CI: 66-89%) and 32% (95%CI: 16-61%; p <0.001). Out of 69 patients classed as standard risk using the SKY92 classifier (80% 3-yr OS rate), 17 and 52 were classified as SKY-RISS I and II, respectively, resulting in a 3-yr survival rate of 100% and 74%, respectively. In contrast, out of 24 SKY92 HR patients (44% 3 yr OS rate), 5 were classified as SKY-RISS II (100% alive at 3 years) with the remainder true high-risk patients (32% alive at 3 years). Out of 12 RISS III patients (3-yr OS, 33%), 5 were classified as SKY-RISS II (3-yr OS: 60%) and 7 as SKY-RISS III (3-yr OS: 14%). Conclusion This study demonstrates the value of gene expression profiling - SKY92 - alongside revised ISS. They form a solid combination, improving on either marker separately. Both models combined clearly identified more high-risk patients correctly, whilst also placing low risk patients into a more appropriate risk category. This was shown in the discovery set and was subsequently applied to an independent set, confirming the validity and usability of the SKY-RISS. Disclosures Kuiper: SkylineDx: Current Employment, Current equity holder in private company. Van Vliet:SkylineDx: Current Employment, Current equity holder in private company. Van Beers:SkylineDx: Ended employment in the past 24 months. Zweegman:Celgene: Membership on an entity's Board of Directors or advisory committees; Oncopeptides: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding. Broijl:Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene/BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees. Sonneveld:Sanofi: Consultancy; Bristol-Myers Squibb: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria, Research Funding; Skyline Dx: Honoraria, Research Funding; Karyopharm: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1565-1565 ◽  
Author(s):  
Patrizia Mondello ◽  
Irene Dogliotti ◽  
Jan-Paul Bohn ◽  
Federica Cavallo ◽  
Simone Ferrero ◽  
...  

Purpose: Hodgkin's lymphoma (HL) is a highly curable disease even in advanced-stage, with >90% of long-term survivors. Currently, the standard of care is ABVD (doxorubicin, etoposide, vinblastine and dacarbazine), as it is less toxic and as effective as other more intensive chemotherapy regimens. Alternatively, BEACOPP (bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine and prednisone) has been proposed as front-line intensified regimen with a better initial disease control and prolonged time to relapse when compared to ABVD. However, this advantage is associated with higher rates of severe hematologic toxicity, treatment-related deaths, secondary neoplasms and infertility. To date, the debate regarding which regimen should be preferred as first line for advanced-stage HL is still ongoing. To shed some light on this open question we compared efficacy and safety of both regimens in clinical practice. Patients and Methods: From October 2009 to October 2018, patients with HL stage III-IV treated with either ABVD or BEACOPP escalated (BEACOPPesc) were retrospectively assessed in 7 European cancer centers. Results: A total of 372 consecutive patients were included in the study. One-hundred and ten patients were treated with BEACOPPesc and 262 with ABVD. The baseline characteristics of the two groups did not differ significantly, except for a higher rate of high-risk patients in the BEACOPPesc group in contrast to the ABVD one (47% vs 18%; p= 0.003). Complete response rate (CR) assessed by PET imaging at the end of the second cycle was 67% and 78% for the ABVD and BEACOPPesc group (p= 0.003), respectively. Thirteen patients of the ABVD group achieved stable disease (SD) and 6 had a progression disease (PD). On the other hand, 4 of the patients in the BEACOPPesc group progressed, another 2 interrupted therapy because life-threatening toxicity. At the end of the therapy, CR was 76% in the ABVD group and 85% in the BEACOPPesc group (p= 0.01). A total of 20% patients in the ABVD group and 14% patients in the BEACOPPesc group received consolidation radiotherapy on the mediastinal mass at the dose of 30Gy. After radiotherapy, the number of patients with CR increased to 79% and 87% in the two groups (p= 0.041), respectively. Thirty-nine patients (35%) in the BEACOPPesc group required dose reduction of chemotherapy due to toxicity compared to 12 patients (5%; p= <0.001) in the ABVD group. Overall, the rate of severe toxicities was higher in the BEACOPPesc group in comparison with the ABVD cohort. In particular, there was a significant increased frequency of acute grade 3-4 hematologic adverse events (neutropenia 61% vs 24%; anemia 29% vs 4%; thrombocytopenia 29% vs 3%), febrile neutropenia (29% vs 3%), severe infections (18% vs 3%). Myeloid growth factors were administered to 85% and 59% of patients in the BEACOPPesc group compared to the ABVD group. Blood transfusions were required in 51% and 6% of patients in the BEACOPPesc group compared to the ABVD cohort. Progression during or shortly after treatment occurred in 5 patients in the BEACOPPesc group (4%) and in 16 patients in the ABVD group (6%; p= 0.62). Among the 96 patients who achieved a CR after BEACOPPesc and radiotherapy, 8 relapsed (8%), compared to 29 of 208 patients in the ABVD group (14%; p= 0.04). At a median follow-up period of 5 years, no statistical difference in progression free survival (PFS; p=0.11) and event-free survival (EFS; p=0.22) was observed between the BEACOPPesc and ABVD cohorts. Similarly, overall survival (OS) did not differ between the two groups (p=0.14). The baseline international prognostic score (IPS <3 vs ≥ 3) significantly influenced the EFS with an advantage for the high-risk group treated with BEACOPPesc (Figure 1A; p=0.03), but not the PFS (Figure 1B; p=0.06) and OS (Figure 1C; p=0.14). During the follow-up period, in the BEACOPPesc group one patient developed myelodysplasia and one acute leukemia. Second solid tumors developed in one patient in the ABVD group (lung cancer) and one in BEACOPPesc group (breast cancer). Conclusion: We confirm that the ABVD regimen is an effective and less toxic therapeutic option for advanced-stage HL. Although BEACOPP results in better initial tumor control especially in high-risk patients, the long-term outcome remains similar between the two regimens. Disclosures Ferrero: EUSA Pharma: Membership on an entity's Board of Directors or advisory committees; Servier: Speakers Bureau; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Gilead: Speakers Bureau. Martinelli:BMS: Consultancy; Pfizer: Consultancy; ARIAD: Consultancy; Roche: Consultancy; Novartis: Consultancy. Willenbacher:European Commission: Research Funding; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Myelom- und Lymphomselbsthilfe Österreich: Consultancy, Honoraria; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead Science: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; IQVIA: Membership on an entity's Board of Directors or advisory committees; Merck: Consultancy, Membership on an entity's Board of Directors or advisory committees; oncotyrol: Employment, Research Funding; Bristol-Myers Squibb: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Fujimoto: Consultancy, Honoraria; Pfizer: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Tirol Program: Research Funding; Abbvie: Consultancy, Honoraria; Sandoz: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4010-4010
Author(s):  
Juan Pablo Alderuccio ◽  
Isildinha M Reis ◽  
Thomas M. Habermann ◽  
Brian K. Link ◽  
Catherine Thieblemont ◽  
...  

INTRODUCTION: EMZL is a heterogeneous disease with variable risk for relapse and progression. Based on age ≥70 years, stage III-IV and elevated LDH, Thieblemont et al (Blood. 2017) developed the MALT-IPI to identify high-risk patients. In this index, disease characteristics (stage and LDH) account for 66% while a disease nonspecific characteristic (age) for 33% of the index score. We reported (Am J Hematol. 2019) that EMZL with multiple mucosal sites (MMS) at diagnosis is characterized by shorter survival and increased incidence of higher grade transformation. To better recognize disease-attributable high-risk patients, we developed a new EMZL prognosis score chiefly based on patient's disease characteristics. METHODS: The revised (R)-MALT-IPI was developed using a retrospective data set of 405 EMZL patients treated at the University of Miami (UM) from 1995 to 2017. Cox proportional hazards regression analysis was conducted to evaluate the effect of the potential prognostic variables on progression-free survival (PFS) and overall survival (OS) and to develop the new index R-MALTI-IPI based on PFS. Model validation was performed in two independent cohorts of EMZL patients from the University of Iowa/Mayo Clinic Molecular Epidemiology Resource (MER) database (n=297) and the IELSG-19 study (n=400) used for the development of MALT-IPI. Performance of various prognostic indices was compared using AIC statistics, and concordance c-statistics by Harrell (CH) and by Gonen and Heller (CGH). RESULTS: Among the candidate variables tested in univariable analysis, the following were statistically significant predictors of shorter PFS: age >60, age ≥70, anemia (Hb<12g/dL), stage III-IV, ECOG PS ≥2, elevated serum LDH, number of extranodal sites >1, number of nodal sites >4, and presence of MMS at diagnosis, defined as EMZL with ≥2 different extranodal sites excluding spleen and bone marrow. A stepwise Cox regression analysis yielded a multivariable model with four independent predictors of shorter PFS: age >60 (HR=1.53, p=0.010), elevated LDH (HR=1.73, p=0.004), stage III-IV (HR=2.03, p=0.0003) and presence of MMS (HR=2.78, p<0.0001). Based on this, a new index R-MALT-IPI was developed with scores ranging from 0 to 5, calculated as a sum of 1 point for age >60, elevated LDH, stage III-IV, and 2 points for MMS. The R-MALT-IPI defined 4 risk groups: low-risk (score 0 (35%), reference group), low-medium risk (score 1 (39%), HR=1.91, p=0.005), medium-high risk (score 2 (13%), HR=3.77, p<0.0001), and high-risk (score 3+ (13%), HR=8.54, p<0.0001). When compared with MALT-IPI, R-MALT-IPI better stratifies and separates high risk patients (26%) into medium-high risk and high-risk patients with a median PFS of 5.8 years (2.9-9.1) and 1.8 years (1.3-2.6) respectively, compared to 2.6 years (1.8-4.7) in the high-risk MALT-IPI patients (16.8%). The R-MALT-IPI index also distinguished patients with different OS. For validation, we analyzed R-MALT-IPI index performance in independent Iowa/Mayo Clinic MER and IELSG-19 cohorts. Both R-MALT-IPI and MALT-IPI were useful in distinguishing PFS and OS in all the cohorts. In the UM training cohort, the concordance c-statistics' values for the two indices were similar: for PFS, CH=0.6893 and CGH=0.6611 for R-MALT-IPI, and CH=0.6551 and CGH=0.6367 for MALT-IPI; for OS, CH=0.7017 and CGH=0.6813 for R-MALT-IPI, and CH=0.7029 and CGH=0.67715 for MALT-IPI. In the validation cohorts, the concordance c-statistics' values for the two indices were also similar, but slightly lower than in the UM cohort for PFS. When comparing medium-high to high-risk R-MALT-IPI groups, there was a reduction of 4 years in median PFS in the UM cohort, and reduction in median EFS of 5.6 years in the MER cohort, an important difference between these risk groups identified by the R-MALT-IPI index. CONCLUSIONS: R-MALT-IPI is a new index for EMZL centered principally on disease characteristics. Overall, there is a similar prediction of PFS (EFS) by R-MALT-IPI and MALT-IPI indexes; however, R-MALT-IPI better recognizes a high-risk group accounting for 13% of EMZL patients with short median PFS and thus obviates the waiting period needed to recognize patients with shorter EFS24. Collaborative studies addressing best treatment approach for these high-risk EMZL patients are eagerly needed. Disclosures Alderuccio: Agios: Other: Immediate family member; Foundation Medicine: Other: Immediate family member; OncLive: Consultancy; Targeted Oncology: Honoraria; Puma Biotechnology: Other: Immediate family member; Inovio Pharmaceuticals: Other: Immediate family member. Thieblemont:Cellectis: Membership on an entity's Board of Directors or advisory committees; Kyte: Honoraria; Janssen: Honoraria; Celgene: Honoraria; Roche: Honoraria, Research Funding; Gilead: Honoraria; Novartis: Honoraria. Cerhan:Celgene: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees; NanoString: Research Funding. Zucca:Kite, A Gilead Company: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees, Other: Travel Grant, Research Funding; AstraZenaca: Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Research Funding; Merck: Research Funding; Celltrion Helathcare: Membership on an entity's Board of Directors or advisory committees; Abbvie: Other: Travel Grant. Lossos:NIH: Research Funding; Seattle Genetics: Membership on an entity's Board of Directors or advisory committees; Janssen Scientific: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 580-580 ◽  
Author(s):  
Mark Bustoros, MD ◽  
Omar Nadeem ◽  
Adam S Sperling ◽  
Giada Bianchi ◽  
Lily Ardente ◽  
...  

Background.This study aimed to determine the progression-free survival and response rate using early therapeutic intervention in patients with high-risk smoldering multiple myeloma (SMM) using the combination of ixazomib, lenalidomide, and dexamethasone. Methods.Patients enrolled on study met eligibility for high-risk SMM based on the newly defined criteria proposed by Rajkumar et al. (Blood 2014). The treatment plan was designed to be administered on an outpatient basis where patients receive 9 cycles of induction therapy of ixazomib (4mg) at days 1, 8, and 15, in combination with lenalidomide (25mg) at days 1-21 and dexamethasone at days 1, 8, 15, and 22. The induction phase was followed by ixazomib (4mg) and lenalidomide (15mg) maintenance for another 15 cycles. A treatment cycle was defined as 28 consecutive days for a total of 24 months period. Bone marrow samples of all patients were obtained before starting therapy for baseline assessment for minimal residual disease (MRD) testing, whole-exome sequencing (WES), and RNA sequencing of plasma and bone marrow microenvironment cells. Moreover, blood samples were obtained at screening and before each cycle for isolating cell-free DNA (cfDNA) and circulating tumor cells (CTCs). Results.In total, 53 of the planned 62 patients have been enrolled in this study from February 2017 to May 2019. The median age of the patients enrolled was 61 years (range, 41 to 84) with 22 male (41.5%). The analysis was conducted on patients who have completed at least 1 cycle of therapy (n=45). The median follow-up for the trial is 14.4 months (range: 2- 27.6). Interphase fluorescence in situ hybridization (iFISH) was successful in 37 patients (82.2%). High-risk cytogenetics (defined as the presence of t(4;14), 17p deletion, and 1q gain) were found in 20 patients (54%). The median number of cycles completed was 14 cycles (range: 1-24). According to the study's inclusion criteria, baseline markers showed that 15, 14, and 13 patients had 3, 4, and 5 high-risk features, respectively. Moreover, 24 patients (53.3%) met the criteria of high-risk SMM, according to the Mayo 2018 model. The most common grade 3 adverse events were hypertension (6.3%), hypophosphatemia (4.2%), and rash (4.2%). Grade 4 thrombocytopenia and neutropenia were each reported in 4.4% of patients, and hyperglycemia was reported in 2.2%. Stem cells were collected in all eligible patients by the end of the induction phase. As of the abstract date, the overall response rate (partial response or better) in participants who completed at least 1 cycle of treatment was 91.1% (41/45), with 14 Complete Responses (CR, 31.1%), 9 very good partial responses (VGPR, 20%), 18 partial responses (40%), and 4 minimal Responses (MR, 10%). ORR in patients who completed the induction phase (≥9 cycles) was 97% (n= 32/33), with 14(42.4%) and 9 (27.2%) having CR and VGPR, respectively. All patients who had a CR have also achieved a stringent CR. Six patients have completed the treatment protocol and are currently on follow-up. As of July 2019, none of the patients have progressed to overt MM. MRD testing by next-generation sequencing is ongoing for patients who achieved CR or VGPR and will be presented at the meeting. Conclusion.The combination of ixazomib, lenalidomide, and dexamethasone is an effective and well-tolerated intervention in high-risk smoldering myeloma with 91% ORR and 54.7% CR and VGPR to date. The high response rate, convenient schedule and manageable toxicity build on prior studies which have shown efficacy of lenalidomide and dexamethasone in high risk smoldering myeloma. Longer follow-up for disease outcome is ongoing. Disclosures Bustoros, MD: Takeda: Honoraria. Nadeem:Celgene: Consultancy; Janssen: Consultancy; Amgen: Consultancy; Sanofi: Consultancy. Prescott:Janssen: Equity Ownership. Munshi:Takeda: Consultancy; Janssen: Consultancy; Celgene: Consultancy; Adaptive: Consultancy; Abbvie: Consultancy; Abbvie: Consultancy; Adaptive: Consultancy; Amgen: Consultancy; Celgene: Consultancy; Takeda: Consultancy; Oncopep: Consultancy; Oncopep: Consultancy; Amgen: Consultancy; Janssen: Consultancy. Anderson:OncoPep: Other: Scientific founder ; C4 Therapeutics: Other: Scientific founder ; Gilead Sciences: Other: Advisory Board; Janssen: Other: Advisory Board; Sanofi-Aventis: Other: Advisory Board. Richardson:Oncopeptides: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Sanofi: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees. Ghobrial:Amgen: Consultancy; Celgene: Consultancy; BMS: Consultancy; Sanofi: Consultancy; Janssen: Consultancy; Takeda: Consultancy. OffLabel Disclosure: Ixazomib, Lenalidomide and Dexamethasone is an investigational combination in high-risk smoldering multiple myeloma and has not been approved by the US Food and Drug Administration or any other regulatory agency worldwide for the use under investigation.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1763-1763
Author(s):  
Lucia Masarova ◽  
Prithviraj Bose ◽  
Naveen Pemmaraju ◽  
Zeev E. Estrov ◽  
Lingsha Zhou ◽  
...  

Abstract Introduction: The revised cytogenetic risk stratification of patients with primary myelofibrosis (PMF) divided patients into 3 prognostic categories, with additional new category of very high risk patients (VHR). This score should enhance traditional classification incorporated in the Dynamic International Prognostic Scoring System-Plus (DIPPS-Plus). Objective: To evaluate the prognostic utility of cytogenetic stratifications (DIPSS-Plus and the revised cytogenetic model) in patients with PMF referred to our institution between 1984 and 2016. Methods: We retrospectively reviewed the charts of 883 patients with PMF with available cytogenetic analysis at the time of referral to our institution (> 10 metaphases). Cytogenetic was reported according to the International System for Human Cytogenetic Nomenclature. Patients were classified into cytogenetic risks based on DIPSS-Plus (Gangat, JCO, 2011), and the revised cytogenetic model (Tefferi, Leukemia, 2017). Overall survival (OS) was estimated using the Kaplan-Meier method, and groups were compared by the log rank test. Impact of cytogenetic abnormalities on OS was also evaluated by comparing them against patients with diploid karyotype using stepwise Cox regression. Results: Median age was 66 years (range, 27-88), and 64% of patients were male. The distribution of DIPSS scores was as follows: 8% low, 48% intermediate 1, 44% intermediate 2 and 14% high. OS in each DIPSS category was 53, 46, 26, 15 months (p<0.001). The JAK2, MPL and CALR mutation was present in 55% (n=486), 6% (n=50), and 7% (n=64). Overall, 563 (64%) patients had diploid karyotype. The most frequent abnormal karyotypes were single 20q- (n=68, 8%), single 13q- (n=40, 4.5%), and ≥3 abnormalities (Abn; complex karyotype, CK, n=52, 6%). Among patients with CK, 27 (52%) pts had VHR Abn. After a median follow-up of 22.4 months (range, 0.5-251); 708 (80%) of patients died. Eighty five patients (10%) developed acute leukemia, 39% of these patients had CK. According to DIPSS-plus, patients were stratified into favorable (FAV, n=758, 86%) and unfavorable (UNF, n=126, 14%) category with distinct median OS of 35 months (range, 31-39), and 17 months (range, 11.6-22), p < 0.001 (HR 1.37, [95% CI 1.11-1.7]). Three year OS was 49% and 32%, respectively (Figure 1a). The revised cytogenetic stratification classified patients into favorable (n=687, 78%), unfavorable (n=151, 17%), and VHR (n=47, 5%) with respective OS of 35, 32 and 10 months (overall p<0.001, FAV vs UNF p= 0.8; Figure 1b); similar between patients in favorable and unfavorable groups. Three year OS for each group was 49%, 46% and 12%, respectively. OS of patients with individual cytogenetics (as used in the revised classification) is depicted in Table. Patients with single deletion 13q have significantly inferior OS than the remaining patients in FAV group. Patients with sole abnormality of chromosome 1 and trisomy 9 had the longest OS within the FAV group, but without reaching a statistical significance. Similarly, patients with sole trisomy 8, sole deletion 7q/5q, and other sole Abn not included elsewhere, had inferior OS when compared to the remaining patients in UNF group (Table 1). After re-grouping patients with different OS from FAV and UNF groups, we have noticed an intermediate group of patients containing the above mentioned Abn with distinctly different OS from FAV and UNF group of 24 months (range, 14.5-33; Figure 1c). Conclusions: Results from our cohort of 883 PMF patients did not confirm better discriminatory power of revised cytogenetic stratification model when compared to the DIPSS-Plus, as it failed to differentiate different OS between favorable and unfavorable groups. In our cohort, patients with single deletion 13q, single trisomy 8, and abnormalities of 5q/7q have superior OS to very high risk patients, but inferior to all remaining patients. Because the revised cytogenetic stratification has been already incorporated into newer complex molecular prognostic models of patients with PMF (MIPSSversion2.0, GIPSS), its further validation is warranted. Table Abbr.: Chr, chromosome, del, deletion, DUP, duplication, transl, translocation, excl, excluding; ¥OTHER solo: INV(9) in [3], Abn chr. 11, 12, 16, 17, 18 (mostly deletion of p/q arms, or addition) [7]; VHR = very high risk (-7; inv(3)/3q21; i(17q); 12p-/12p11.2; 11q-/11q23; autosomal trisomies excl. +8/+9). Disclosures Bose: Incyte Corporation: Honoraria, Research Funding; CTI BioPharma: Research Funding; Astellas Pharmaceuticals: Research Funding; Constellation Pharmaceuticals: Research Funding; Pfizer, Inc.: Research Funding; Celgene Corporation: Honoraria, Research Funding; Blueprint Medicines Corporation: Research Funding. Pemmaraju:plexxikon: Research Funding; cellectis: Research Funding; Affymetrix: Research Funding; daiichi sankyo: Research Funding; stemline: Consultancy, Honoraria, Research Funding; novartis: Research Funding; samus: Research Funding; celgene: Consultancy, Honoraria; abbvie: Research Funding; SagerStrong Foundation: Research Funding. Cortes:novartis: Research Funding. Verstovsek:Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees; Incyte: Consultancy; Italfarmaco: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3851-3851
Author(s):  
Jorge Cortes ◽  
Hagop M. Kantarjian ◽  
Tapan M. Kadia ◽  
Guillermo Garcia-Manero ◽  
Elias Jabbour ◽  
...  

Background: The combination of all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO) is superior to ATRA plus chemotherapy in the treatment of standard risk patients (pts) with newly diagnosed APL. MRD monitoring has been successfully utilized for the early identification of relapse. Qualitative PCR has been superseded with the more accurate real-time quantitative PCR (RQ-PCR) for MRD detection in APL. Methods: We reviewed pts with newly diagnosed APL treated at our institution on 3 consecutive prospective clinical trials, using the combination of ATRA and ATO, with or without gemtuzumab ozogamicin (GO). GO was given to High risk pts (WBC >10 × 109/L) and pts with rising WBC. Real-time quantitative RT-PCR (RQ-PCR) was used to measure PML-RARα in bone marrow (BM) and peripheral blood (PB) specimens. We sought to determine the value of MRD monitoring in patients with APL treated with this regimen. Results: A total of 223 pts with APL have been followed from July 2002 to March 2019 with a total of 2007 samples (1622 BM, 385 PB) analyzed with a median number of samples of 8 per pt (range, 1-43). Median follow up is 55.6 months (range, 1-198). MRD positivity decreased over time on therapy; 218 pts (98%) were MRD positive after induction, while only 2 pts (1%) were positive after the first cycle of consolidation. Eight pts (3.5%) had positive MRD (all ≤0.1) during consolidation or after completing treatment but became negative after repeated MRD testing and none of them relapsed. Overall, seven pts relapsed (5 with high risk disease and 2 with low risk) and The median time to relapse after achieving CR was 9.4 months (range, 7.9-79.5).The time to the first relapse was between 7.9-12.4 months except for the pt who relapsed after 79.5 months (low risk pt), Among the high risk pts, molecular relapse preceded hematological relapse by 3.7 weeks (range, 2.1-4.1). There was a correlation between quantitative PCR values on PB and BM samples obtained concomitantly (r2=0.67, p=0.048). Conclusions: MRD monitoring may be useful for early detection of relapse in pts with high risk APL within first year after completion of therapy. Late molecular relapse is very rare and does not justify universal monitoring especially in standard risk patients. These data support the lack of need for MRD monitoring after completion of consolidation in pts with standard risk APL treated with ATRA plus ATO. Table Disclosures Kantarjian: Novartis: Research Funding; Takeda: Honoraria; Agios: Honoraria, Research Funding; Ariad: Research Funding; Daiichi-Sankyo: Research Funding; Cyclacel: Research Funding; Actinium: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria, Research Funding; Immunogen: Research Funding; BMS: Research Funding; Astex: Research Funding; AbbVie: Honoraria, Research Funding; Amgen: Honoraria, Research Funding; Jazz Pharma: Research Funding. Kadia:Celgene: Research Funding; Jazz: Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Research Funding; Bioline RX: Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees, Research Funding; AbbVie: Consultancy, Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding; Genentech: Membership on an entity's Board of Directors or advisory committees. Garcia-Manero:Merck: Research Funding; Amphivena: Consultancy, Research Funding; Helsinn: Research Funding; Novartis: Research Funding; AbbVie: Research Funding; Celgene: Consultancy, Research Funding; Astex: Consultancy, Research Funding; Onconova: Research Funding; H3 Biomedicine: Research Funding. Jabbour:BMS: Consultancy, Research Funding; Adaptive: Consultancy, Research Funding; Amgen: Consultancy, Research Funding; AbbVie: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; Cyclacel LTD: Research Funding; Takeda: Consultancy, Research Funding. Borthakur:Incyte: Research Funding; Merck: Research Funding; Strategia Therapeutics: Research Funding; Janssen: Research Funding; GSK: Research Funding; Agensys: Research Funding; Oncoceutics, Inc.: Research Funding; Argenx: Membership on an entity's Board of Directors or advisory committees; Novartis: Research Funding; BioTheryX: Membership on an entity's Board of Directors or advisory committees; AbbVie: Research Funding; Eli Lilly and Co.: Research Funding; BMS: Research Funding; Polaris: Research Funding; NKarta: Consultancy; FTC Therapeutics: Membership on an entity's Board of Directors or advisory committees; Xbiotech USA: Research Funding; Arvinas: Research Funding; PTC Therapeutics: Consultancy; Cantargia AB: Research Funding; Tetralogic Pharmaceuticals: Research Funding; Eisai: Research Funding; AstraZeneca: Research Funding; Cyclacel: Research Funding; BioLine Rx: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bayer Healthcare AG: Research Funding; Oncoceutics: Research Funding. Short:Takeda Oncology: Consultancy, Research Funding; AstraZeneca: Consultancy; Amgen: Honoraria. Alvarado:Jazz Pharmaceuticals: Research Funding; Abbott: Honoraria. Daver:Karyopharm: Consultancy, Research Funding; Abbvie: Consultancy, Research Funding; Genentech: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; Servier: Research Funding; Daiichi Sankyo: Consultancy, Research Funding; Astellas: Consultancy; BMS: Consultancy, Research Funding; Immunogen: Consultancy, Research Funding; Forty-Seven: Consultancy; Agios: Consultancy; Hanmi Pharm Co., Ltd.: Research Funding; Celgene: Consultancy; Glycomimetics: Research Funding; Otsuka: Consultancy; NOHLA: Research Funding; Sunesis: Consultancy, Research Funding; Incyte: Consultancy, Research Funding; Jazz: Consultancy; Novartis: Consultancy, Research Funding. Cortes:Novartis: Consultancy, Honoraria, Research Funding; Merus: Consultancy, Honoraria, Research Funding; Forma Therapeutics: Consultancy, Honoraria, Research Funding; Jazz Pharmaceuticals: Consultancy, Research Funding; BiolineRx: Consultancy; Immunogen: Consultancy, Honoraria, Research Funding; Daiichi Sankyo: Consultancy, Honoraria, Research Funding; Pfizer: Consultancy, Honoraria, Research Funding; Sun Pharma: Research Funding; Biopath Holdings: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Astellas Pharma: Consultancy, Honoraria, Research Funding. Ravandi:Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Selvita: Research Funding; Xencor: Consultancy, Research Funding; Macrogenix: Consultancy, Research Funding; Menarini Ricerche: Research Funding; Cyclacel LTD: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3294-3294 ◽  
Author(s):  
Nisha Joseph ◽  
Vikas A. Gupta ◽  
Craig C Hofmeister ◽  
Charise Gleason ◽  
Leonard Heffner ◽  
...  

Abstract Background : Lenalidomide, bortezomib and dexamethasone (RVD) has been shown to be a well-tolerated and efficacious induction regimen in newly diagnosed myeloma patients. Two large randomized phase III trials show an overall response rate (ORR) >95% (Durie et al, Attal et al) supporting this combination regimen. We have conducted a retrospective analysis utilizing our institutional data of 1000 patients treated with RVD induction therapy at the Winship Cancer Institute of Emory University. Methods: 1000 newly diagnosed MM patients were treated with RVD induction therapy [R - 25 mg/day (days 1-14), V - 1.3 mg/m2 (days 1, 4 8, 11) and D - 40 mg once/twice weekly as tolerated every 21 days] from January 1st 2005 until August 31st 2016. Dose-adjustments were made based on the treating physician's discretion and patient tolerability. Demographic and outcomes data for the patients were obtained from our IRB approved myeloma database and responses were evaluated per IMWG Uniform Response Criteria. Results: The median age of this cohort was 61 years (range 16-83). Other notable patient characteristics include: M/F 54.3%/45.6%; W/AA 56.4%/34%; ISS I and II/III 54%/17%; Isotype IgG/IgA/FLC 59.1%/19%/15.8%; standard risk/high risk 72%/28%. High risk disease was defined as the presence of t(4;14), t(14;16), del(17p), and/or complex karyotype. A total of 835 patients (83.5%) underwent autologous stem cell transplant (ASCT) upfront after attaining at least a partial response with induction therapy, and 165 patients (16.5%) were offered deferred transplant. Among the patients that opted for deferred transplant, 56 of these patients (33.9%) underwent ASCT at first relapse with a median time to transplant of 30 months (3-96). 755 (75.5%) of patients received risk-stratified maintenance therapy following transplant. Evaluation of responses to induction therapy for the entire cohort show an ORR 97.3% with ≥VGPR of 68% post-induction therapy. Response rates 100 days post-transplant show an ORR 98% with 30.7% of patients achieving a sCR. Response rates are summarized in table 1. Median PFS was 63 months for the entire cohort, and 72 months for standard risk patients (61.75-82.25) versus 37 months for the high-risk patients (30.84-43.16), p<0.001. Median OS has not been reached at median of 38 months follow up (Figure 1). Conclusions: This is the largest reported cohort of myeloma patients treated with RVD induction. These results illustrate both the activity of this induction regimen with impressive response rates and long-term outcomes in both standard and high risk patients. Disclosures Hofmeister: Adaptive biotechnologies: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Oncopeptides: Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees. Heffner:ADC Therapeutics: Research Funding; Kite Pharma: Research Funding; Genentech: Research Funding; Pharmacyclics: Research Funding. Boise:AstraZeneca: Honoraria; Abbvie: Consultancy. Kaufman:BMS: Consultancy; Karyopharm: Other: data monitoring committee; Abbvie: Consultancy; Janssen: Consultancy; Roche: Consultancy. Lonial:Amgen: Research Funding. Nooka:GSK: Consultancy, Membership on an entity's Board of Directors or advisory committees; Adaptive technologies: Consultancy, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees; Spectrum Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees; BMS: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4323-4323
Author(s):  
Alba Redondo ◽  
Mercedes Sánchez Barba ◽  
Guillermo Sanz ◽  
Teresa Bernal ◽  
Montserrat Arnan Sangerman ◽  
...  

Abstract INTRODUCTION MDS are a heterogeneous group, and it is necessary an adequate prognostic stratification in order to the best management. The new revised international prognostic scoring system (IPSS-R) has improved prognostic ability for survival and AML evolution comparing with the previous prognostic indexes. But, it is not clear the prognosis of patients included in the intermediate group, 20% of MDS, patients with a median OS of 3 years according to Greenberg et al, are they in the high or in the low risk category? The aims of the present study were to describe characteristics of patients included in this intermediate group of the IPSS-R in the Spanish MDS cohort and to identify which factors could have an impact on survival. A new score prognostic system (GESMDi score) in order to a better stratification should be proposed in this subset of patients that will be useful for determine the best therapeutic approach for them. METHODS: All patients were included in the GESMD, diagnosed of Primary MSD and Intermediate IPSS-R. The Statistical analyzes were performed using SPSS version 21, Cox models and Kaplan-Meier curves were used to demonstrate clinical outcomes. Regarding the new score proposed, GESMDi score, modeling of prognostic risk was based on multivariate analysis of survival time. Cox model for survival was built to derive the relative weights within the score. RESULTS: Data from 957 patients of 69 centers of GESMD were evaluated. Their median age was 73.9 years (p25/p75 66-80), 61.6% males (N=590), and median follow-up 21,4 months (p25-p75 de 11-41). Regarding WHO 2001 classification: 31% were RAEB-1, 21% CMML, 18% RCMD, 14% RAEB-2, 3% RCMD-RS, 3.1% RARS, 2.5% RA, 2% 5q-syndrome, 2% AML, 1% unclassified. Median hemoglobin at diagnosis was 9.8 g/dL (p25/p75:8.3-11.6), median bone marrow (BM) blasts 6% (p25/p75:3-8) and median platelet count 99x109/L (p25/p75:66-180). According to IPSS, 5% of patients were classified as low risk, 78% as intermediate-1, 16% as intermediate-2 and 1% as high risk. Cytogenetic were very good in 2% of patients, good in 76%, intermediate in 17%, poor in 5% and in 1% very poor. IPSS-R score classified patients in 3 different groups, with a punctuation of≤ 3.5 (35.6%), >3.5 and ≤ 4 (35.8%) and> 4 and ≤ 4.5 (28.5%). Median OS was 30.1 months, the estimated 1-year and 2-y OS were 79.2% and 57.8%, respectively. In the univariate analysis for OS older age (>74y, p<0.001), lower Hb level (≤9.5 g/dL, p<0.001), WHO 2001 with excess of blasts classification (p=0.035), lower platelets level (≤30 x 109/L, p=0.01), PB blasts (yes, p=0.001), ferritine level (>500 ng/ml, p=0.002), and higher IPSS-R score (>3.5 and ≤ 4 and >4 and ≤ 4.5, p=0.023 and p=0.004, figure 1) had a deleterious impact on survival. In the multivariate analysis, only age, Hb level, PB blast, ferritine level and IPSS-R value retained statistical significant impact on OS (table 1a). In the multivariate analysis, Hazard ratio, a new score system (GESMDi score) was established for all patients. Patients with adverse features were added points in order to stratify the risk of death: age<74y and/or PB blasts (2 points) and Hb level ≤9.5 g/dL and/or ferritine level >500 ng/ml and/or IPSS-R of >3.5 (1 point), table 1a. The GESMDi score was performed in 685 patients with all data available and 7 groups of patients were defined with different median OS (p<0.0001, table 1b). Two final categories were established according to the definition of risk from the Spanish MDS group, low risk patients (estimated OS >30 months) and high risk patients (<30 months). Patients with scores between 0-3 (70.6% patients, me OS 41.1, 95CI 34.4-47.7) were in the low risk definition while patients with scores between 4-6 (29.3% patients, me OS 17.5 mo, 95CI 13.4-21.5) were classified as high risk patients (p< 0.0001, Figure 2). CONCLUSIONS: GESMDi score, a proposed prognostic score system from patients with intermediate IPSS-R, allow us to establish a better prognosis stratification in this heterogeneous MDS population. Treatment and management should be better established for those patients nowadays according to this novel stratification. Table 1 a) Univariate and multivariate analysis for OS among patients with Intermediate IPSS-R b) OS according to the GESMDi score proposed Table 1. a) Univariate and multivariate analysis for OS among patients with Intermediate IPSS-R b) OS according to the GESMDi score proposed Figure 1 OS according to IPSS-R value in the intermediate group (≤3.5, ≤4 and ≤4.5) Figure 1. OS according to IPSS-R value in the intermediate group (≤3.5, ≤4 and ≤4.5) Figure 2 OS according the GESMDi score proposed in the intermediate IPSS-R group: low and high risk patients (n=685) Figure 2. OS according the GESMDi score proposed in the intermediate IPSS-R group: low and high risk patients (n=685) Disclosures Del Cañizo: Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Astex: Membership on an entity's Board of Directors or advisory committees; janssen: Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Díez Campelo:Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Astex: Membership on an entity's Board of Directors or advisory committees; Janssen: Research Funding; celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3762-3762
Author(s):  
Susanne Saussele ◽  
Michael Lauseker ◽  
Verena Hoffmann ◽  
Ulrike Proetel ◽  
Benjamin Hanfstein ◽  
...  

Abstract Abstract 3762 Introduction: The EUTOS Score was developed and validated as a prognostic tool for the achievement of complete cytogenetic response (CCR) at 18 months for chronic phase (CP) CML patients under imatinib therapy. The score identifies high-risk patients not reaching CCR at 18 months with a positive predictive value of 34% and a specificity of 92% using only two variables, peripheral blood basophils and spleen size at diagnosis (Hasford et al. Blood 2011). We sought to evaluate the clinical impact of the EUTOS score to predict molecular response. Therefore, we analyzed the EUTOS score with patients from the German CML-Study IV, a randomized 5-arm trial (imatinib 400 mg vs. imatinib 800 mg vs. imatinib in combination with interferon alpha vs. imatinib in combination with araC vs. imatinib after interferon failure). Results: From July 2002 to December 2010, 1,502 patients with BCR-ABL positive CML in CP were randomized. 129 patients with imatinib after interferon alpha and 36 other patients had to be excluded (14 due to incorrect randomization or withdrawal of consent, 22 with missing baseline information). 1,337 patients were evaluable for overall and progression-free survival (OS and PFS), 1,252 for molecular responses. 749 of these patients were part of the score development sample. Therefore cytogenetic analyses are not described here. By EURO score, 36% of patients (n=475) were low risk, 51% (n=681) intermediate risk, and 12% (n=167) high risk. The EUTOS score was low risk in 88% (n=1163) and high risk in 12% (n=160). The high-risk patients differed between the two scores: EUTOS high-risk patients were classified according to EURO score in 12% as low (n=19), in 45% as intermediate (n=68) and in 43% as high risk (n=73). Patients with high, intermediate, and low risk EURO score achieved MMR in 22, 16, and 13 months and CMR4 (BCR-ABL <=0.01%) in 59, 41, and 34 months. P-values for low vs. intermediate risk groups were borderline only (0.03 for MMR and 0.04 for CMR4), whereas p-values for high vs. low/intermediate risk groups were for both molecular response levels <0.001. At 12 months the proportion of patients in MMR was 38%, 46%, 54% for high, intermediate, and low risk patients, respectively. Similar results were observed with the Sokal score. Patients with high risk EUTOS score achieved deep molecular responses (MMR and CMR4) significantly later than patients with low risk EUTOS score (MMR: median 21.0 vs. 14.8 months, p<0.001, Fig. 1a; CMR4: median 60.6 vs. 37.2 months, p<0.001, Fig. 1b). The proportions of patients achieving MMR at 12 months were significantly lower in the EUTOS high-risk group than in the EUTOS low-risk group (30.8% vs. 50.6%, p<0.001). OS after 5 years was 85% for high and 91% for low risk patients (p=n.s.), PFS was 85% and 90%, respectively. Conclusions: The EUTOS score clearly separates CML patients also according to MMR and CMR4 (MR4). The new EUTOS score should be used in future trials with tyrosine kinase inhibitors in CML. Disclosures: Neubauer: Novartis: Honoraria, Research Funding; Roche: Research Funding. Kneba:Hoffmann La Roche: Honoraria. Schnittger:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Hochhaus:Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees; Ariad: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding. German CML Study Group:Deutsche Krebshilfe: Research Funding; Novartis: Research Funding; BMBF: Research Funding; EU: Research Funding; Roche: Research Funding; Essex: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2967-2967
Author(s):  
Mark van Duin ◽  
Rowan Kuiper ◽  
Martin van Vliet ◽  
Annemiek Broijl ◽  
Leonie de Best ◽  
...  

Abstract Improved prognostication is required for multiple myeloma (MM). So far, marker development has been based on clinical trials with a study population predominantly younger than 65 years. However, the median age of newly diagnosed MM patients is 66 years old. Based on gene expression profiles of the HOVON-65/GMMG-HD4 dataset, we previously developed the EMC92 prognostic signature, consisting of 92 probe sets for improved prognostication in MM. The EMC92 was validated in the MRC-IX, TT2, TT3 and APEX datasets. These studies were mostly aimed at younger patients with a median age of 57 years. The EMC92 signature was subsequently developed for clinical use as part of the MMprofiler, and termed the SKY92 signature. To assess the validity of the SKY92 signature in older MM patients, we used the HOVON-87/NMSG-18 study, in which induction therapy with melphalan, prednisone and thalidomide, followed by thalidomide maintenance, was compared with melphalan, prednisone and lenalidomide, followed by lenalidomide maintenance (MPT-T vs. MPR-R). The median age of all patients included in this trial was 73 years, with 34% of patients 76 years or older. The median follow up of the patients still alive was 39 months. Of 143 patients both gene expression profiling and clinical data were available (median age 73; 30% ≥76; n=83 MPT-T; n=60 MPR-R). The MMprofiler was used to obtain SKY92 scores, classifying a patient as high risk or standard risk (MMprofiler- CE IVD assay, performed according to the manufacturers' instructions for use at the SkylineDx reference lab, Rotterdam, The Netherlands). The association between survival and the SKY92 signature was evaluated using Cox regression analysis. Kaplan-Meier curves were constructed for visualization. Using the SKY92 signature 22/143 patients were identified as high risk (15.4%). The median overall survival (OS) for high risk patients was 21 months, compared to 53 months for standard risk patients (hazard ratio (HR): 2.9 (95% confidence interval (CI): 1.6-5.4; p=5.6 x 10-4)). The median progression free survival (PFS) in the high risk and standard risk groups were 12 months and 23 months, respectively (HR: 2.2 (95% CI: 1.4-3.7; p=1.2 x 10-3)). In this subset of 143 patients, deletion of 17p (del17p) and gain of 1q (gain1q) were also adversely associated with OS in a univariate analysis. Including SKY92, del(17p) and gain(1q) in a multivariate model demonstrated that SKY92 and del(17p) remained significantly associated with OS (subset of 143 (n=101) with all data known; Table 1). We previously developed the combination of ISS with SKY92: low risk (ISS I-SKY92 standard risk (SR)), intermediate-low (ISS II-SKY92 SR), intermediate-high (ISS III-SKY92 SR) and high risk (ISS I-III, SKY92 high risk; Kuiper et al., ASH 2014, #3358). The Cox model for this combined marker has a p-value for the likelihood ratio test of p=3 x 10-3 for OS (Figure 2) and p=0.016 for PFS. In conclusion, the SKY92 signature (MMprofiler) is a useful prognostic marker to identify a high-risk subgroup in the elderly population. Figure 1. Performance of the SKY92 signature in the HOVON-87/NMSG-18 study. Red line indicates high risk patients (n=22), blue line indicates standard risk patients (n=121). PFS (A); OS (B). Figure 1. Performance of the SKY92 signature in the HOVON-87/NMSG-18 study. Red line indicates high risk patients (n=22), blue line indicates standard risk patients (n=121). PFS (A); OS (B). Table 1. SKY92 in relation to FISH markers in the HOVON-87/NMSG-18 (Hazard ratios (HR), 95% confidence intervals (CI) and p-values (2-sided; p) for Cox proportional hazards analysis). The multivariate analysis (bottom) was performed using the markers significant in the univariate analysis (top). Bold: p<0.05, pos: positive, neg: negative and na: not available. Table 1. SKY92 in relation to FISH markers in the HOVON-87/NMSG-18 (Hazard ratios (HR), 95% confidence intervals (CI) and p-values (2-sided; p) for Cox proportional hazards analysis). The multivariate analysis (bottom) was performed using the markers significant in the univariate analysis (top). Bold: p<0.05, pos: positive, neg: negative and na: not available. Figure 2. Combining ISS with SKY92. Groups are defined in the text. Hazard ratios of the individual groups are given relative to the low risk group. Figure 2. Combining ISS with SKY92. Groups are defined in the text. Hazard ratios of the individual groups are given relative to the low risk group. Disclosures Kuiper: SkylineDx: Employment. van Vliet:SkylineDx: Employment. Broijl:Celgene: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees. de Best:SkylineDx: Employment. van Beers:SkylineDx: Employment. Bosman:SkylineDx: Employment. Dumee:SkylineDx: Employment. van den Bosch:SkylineDx: Employment. Waage:Amgen: Research Funding; Celgene: Research Funding; Janssen: Research Funding. Zweegman:Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding. Sonneveld:Celgene: Honoraria, Research Funding; Amgen: Honoraria, Research Funding; Karyopharm: Research Funding; SkylineDx: Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document