scholarly journals Development of Cirmtuzumab Antibody-Drug Conjugates (ADCs) Targeting Receptor Tyrosine Kinase-like Orphan Receptor 1 (ROR1)

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1862-1862 ◽  
Author(s):  
Yousaf A. Mian ◽  
George F. Widhopf II ◽  
Thanh-Trang Vo ◽  
Katti Jessen ◽  
Laura Z. Rassenti ◽  
...  

Abstract ROR1 is an onco-embryonic surface antigen expressed on chronic lymphocytic leukemia (CLL) and a variety of other cancers, but not on most normal adult tissues. We generated a humanized IgG1 monoclonal antibody (mAb) cirmtuzumab (formerly UC-961) that binds with high affinity to a specific extracellular epitope of human ROR1 and that can block Wnt5a-induced ROR1 signaling (Yu, J et al, J Clin Invest126:585, 2016; Yu, J et al, Leukemia31:1333, 2017). Preclinical studies found that cirmtuzumab did not react with normal post-partem cells and had a pharmacokinetic (PK) volume distribution in primates consistent with a lack of off-target binding to normal tissues. We evaluated cirmtuzumab in a phase I clinical trial involving patients with relapsed-refractory CLL (Choi MY, et al, Cell Stem Cell22:951, 2018); the drug was well-tolerated at doses ≤20 mg/kg (highest dose tested) without dose-limiting toxicity. PK studies showed cirmtuzumab had a half-life of 32.4 days with no evidence for development of neutralizing antibodies or off-target sequestration of infused antibody. Furthermore, cirmtuzumab effected partial down-modulation of leukemia-cell ROR1 in patients treated with doses ≥2 mg/kg. In vitro confocal microscopy studies showed that this down-modulation was caused by internalization of cirmtuzumab-ROR1 complexes into lysosomal compartments and concomitant steady-state re-expression of nascent surface ROR1. Because of its high specificity, in vivo stability, long serum half-life, and potential capacity to concentrate conjugated drugs into lysosomal compartments, cirmtuzumab appeared ideally suited to serve as the targeting moiety in anti-ROR1 ADCs. We therefore examined cirmtuzumab-based ADCs in collaboration with VelosBio Inc., evaluating multiple linker/payload chemistries, both as single agents and in combinations. We selected for further testing cirmtuzumab-ADC-7, a cirmtuzumab-linker-monomethyl auristatin E (MMAE) ADC that preserves the high-affinity binding specificity of cirmtuzumab and allows for ROR1-targeted intracellular release of MMAE. We found cirmtuzumab-ADC-7 was selectively cytotoxic for ROR1+ CLL and mantle-cell lymphoma (MCL) cell lines at nM concentrations in vitro. Moreover, cirmtuzumab-ADC-7 caused dramatic and sustained in vivo clearance of adoptively-transferred ROR1+ leukemia cells generated from ROR1xTCL1 transgenic mice (Widhopf G, et al, PNAS111:793, 2014), ROR1+ MCL-xenografts, or ROR1+ cancer patient-derived xenografts (PDX). Further, treatment caused dose-dependent and statistically significant decreases in total cancer burden with complete regressions of tumor in multiple animals; no effect on tumor-clearance was observed in mice treated with a control MMAE-ADC of irrelevant specificity. Recently we identified that miR-15a/16-1, which commonly are deleted/downregulated in CLL, target both BCL2 and ROR1, thereby accounting in part for the direct relationship we observed between the levels of BCL2 and levels of surface ROR1 expressed by CLL of different patients (Rassenti, LZ, et al,PNAS114:10731, 2017). Because high level expression of BCL2/ROR1 may mitigate the cytotoxic activity of the BCL2-antagonist venetoclax, but potentially enhance the cytotoxicity of cirmtuzumab-ADC-7, we treated ROR1+ leukemia/lymphoma cell lines with venetoclax and/or cirmtuzumab-ADC-7. Chou-Talalay combination indices were <0.5 in all ROR1+ cell lines tested, indicating strong antitumor synergy with these two agents. Collectively these data support the rationale for clinical development of a cirmtuzumab-based ADC for treatment of patients with ROR1+ malignancies. Disclosures Vo: VelosBio: Employment. Jessen:VelosBio: Employment. Kipps:Pharmacyclics: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Verastem: Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy; Verastem: Membership on an entity's Board of Directors or advisory committees; Gilead: Consultancy, Honoraria, Research Funding; Genentech Inc: Consultancy, Research Funding; F. Hoffmann-La Roche Ltd: Consultancy, Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; AbbVie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4044-4044
Author(s):  
Blake S Moses ◽  
Jennifer Fox ◽  
Xiaochun Chen ◽  
Samantha McCullough ◽  
Sang Ngoc Tran ◽  
...  

Abstract Antimalarial artemisinins have broad antineoplastic activity in vitro, are well tolerated and inexpensive, and can be parenterally or orally administered in humans. Artemisinin-derived trioxane diphenylphosphate dimer 838 (ART838; a potent artemisinin-derivative) inhibited acute leukemia growth in vivo and in vitro, at doses where normal human CD34+ hematopoietic stem-progenitor cell clonogenicity was essentially unaffected (Fox et al, Oncotarget 2016, PMID: 26771236). In our focused drug combination screen for drugs that synergize with ART838, the only BCL2 inhibitors in the screen library of 111 emerging antineoplastic compounds, navitoclax (ABT737) and venetoclax (ABT199; FDA-approved), were identified as 2 of the top 3 candidates. Synergies between ART838 and BCL2 inhibitors were validated in multiple acute leukemia cell lines and primary cases. This ART838-BCL2 inhibitor synergy may be due to reduced levels of MCL1 protein that we and others have observed in multiple acute leukemia cell lines and primary cases treated with artemisinins (Budhraja et al, Clin Cancer Res 2017, PMID: 28974549). Treatment of acute leukemia xenografts with the ART838 plus ABT199 combination reduced leukemia growth rates and prolonged survivals, compared to vehicle or either ART838 or ABT199 alone. To add to the efficacy of this ART838 plus ABT199 treatment regimen, we sought to rationally add a third low-toxicity active antileukemic agent. Sorafenib (SOR; FDA-approved) inhibits multiple kinases which may mediate its antileukemic activity, with the importance of the targets varying from case to case; e.g. FLT3 is an important target in many AMLs. In addition, several reports have found that SOR reduces MCL1 protein stability and translation through inhibition of the ERK and PI3K pathways (Wang et al, Clin Cancer Res 2016, PMID: 26459180; Huber et al, Leukemia 2011, PMID: 21293487). In all acute leukemia cell lines tested, we observed large reductions in MCL1 protein levels with SOR treatment, which may further rationalize the addition of SOR to our ART838 plus ABT199 antileukemic regimen. We had previously observed strong in vitro synergy between ART838 and SOR (PMID: 26771236). Treatment of acute leukemia xenografts with the ART838 plus SOR combination reduced leukemia xenograft growth rates and prolonged survivals, compared to single drugs. Mice bearing luciferase-labelled acute leukemia xenografts were treated (PO daily x5) with single drug or 2-drug or 3-drug combinations of ART838, ABT199, and SOR, each at their individual maximally tolerated doses. Treatment with this 3-drug combination caused rapid regression of luciferase-labelled MV4;11 AML xenografts (Fig 1A). The 5-day treatment cycles were repeated every other week, and mice receiving this 3-drug combination survived >4 times longer than vehicle-treated mice (Fig 1B). Mouse body weights were stable during treatment. Although myelosuppression is the human clinical dose-limiting toxicity of each of these 3 drugs, mouse blood cell counts during 3-drug combination treatment were in the normal range. Treatment of a luciferase-labelled primary AML leukemia xenograft with this 3-drug combination reduced leukemia growth more than the single drugs or 2-drug combinations (Fig 1C). Assessment of efficacy and pharmacokinetics-pharmacodynamics against diverse acute leukemia xenografts will test this combination of ART838, ABT199 plus SOR as a rational low-toxicity drug triad for treatment of acute leukemias and potentially other cancers. Disclosures Fox: Intrexon Corporation: Employment. Tyner:Genentech: Research Funding; Janssen: Research Funding; AstraZeneca: Research Funding; Gilead: Research Funding; Incyte: Research Funding; Constellation: Research Funding; Array: Research Funding; Takeda: Research Funding; Vivid Biosciences: Membership on an entity's Board of Directors or advisory committees; Aptose: Research Funding. Civin:ConverGene LLC: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding; GPB Scientific LLC: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; 3DBioWorks Inc: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; BD (Becton Dickinson): Honoraria.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1442-1442
Author(s):  
Xiangmeng Wang ◽  
Po Yee Mak ◽  
Wencai Ma ◽  
Xiaoping Su ◽  
Hong Mu ◽  
...  

Abstract Wnt/β-catenin signaling regulates self-renewal and proliferation of AML cells and is critical in AML initiation and progression. Overexpression of β-catenin is associated with poor prognosis. We previously reported that inhibition of Wnt/β-catenin signaling by C-82, a selective inhibitor of β-catenin/CBP, exerts anti-leukemia activity and synergistically potentiates FLT3 inhibitors in FLT3-mutated AML cells and stem/progenitor cells in vitro and in vivo (Jiang X et al., Clin Cancer Res, 2018, 24:2417). BCL-2 is a critical survival factor for AML cells and stem/progenitor cells and ABT-199 (Venetoclax), a selective BCL-2 inhibitor, has shown clinical activity in various hematological malignancies. However, when used alone, its efficacy in AML is limited. We and others have reported that ABT-199 can induce drug resistance by upregulating MCL-1, another key survival protein for AML stem/progenitor cells (Pan R et al., Cancer Cell 2017, 32:748; Lin KH et al, Sci Rep. 2016, 6:27696). We performed RNA Microarrays in OCI-AML3 cells treated with C-82, ABT-199, or the combination and found that both C-82 and the combination downregulated multiple genes, including Rac1. It was recently reported that inhibition of Rac1 by the pharmacological Rac1 inhibitor ZINC69391 decreased MCL-1 expression in AML cell line HL-60 cells (Cabrera M et al, Oncotarget. 2017, 8:98509). We therefore hypothesized that inhibiting β-catenin by C-82 may potentiate BCL-2 inhibitor ABT-199 via downregulating Rac1/MCL-1. To investigate the effects of simultaneously targeting β-catenin and BCL-2, we treated AML cell lines and primary patient samples with C-82 and ABT-199 and found that inhibition of Wnt/β-catenin signaling significantly enhanced the potency of ABT-199 in AML cell lines, even when AML cells were co-cultured with mesenchymal stromal cells (MSCs). The combination of C-82 and ABT-199 also synergistically killed primary AML cells (P<0.001 vs control, C-82, and ABT-199) in 10 out of 11 samples (CI=0.394±0.063, n=10). This synergy was also shown when AML cells were co-cultured with MSCs (P<0.001 vs control, C-82, and ABT-199) in all 11 samples (CI=0.390±0.065, n=11). Importantly, the combination also synergistically killed CD34+ AML stem/progenitor cells cultured alone or co-cultured with MSCs. To examine the effect of C-82 and ABT-199 combination in vivo, we generated a patient-derived xenograft (PDX) model from an AML patient who had mutations in NPM1, FLT3 (FLT3-ITD), TET2, DNMT3A, and WT1 genes and a complex karyotype. The combination synergistically killed the PDX cells in vitro even under MSC co-culture conditions. After PDX cells had engrafted in NSG (NOD-SCID IL2Rgnull) mice, the mice were randomized into 4 groups (n=10/group) and treated with vehicle, C-82 (80 mg/kg, daily i.p injection), ABT-199 (100 mg/kg, daily oral gavage), or the combination for 30 days. Results showed that all treatments decreased circulating blasts (P=0.009 for C-82, P<0.0001 for ABT-199 and the combination) and that the combination was more effective than each single agent (P<0.001 vs C-82 or ABT-199) at 2 weeks of therapy. The combination also significantly decreased the leukemia burden in mouse spleens compared with controls (P=0.0046) and single agent treated groups (P=0.032 or P=0.020 vs C-82 or ABT-199, respectively) at the end of the treatment. However, the combination did not prolong survival time, likely in part due to toxicity. Dose modifications are ongoing. These results suggest that targeting Wnt/β-catenin and BCL-2, both essential for AML cell and stem cell survival, has synergistic activity via Rac1-mediated MCL-1 inhibition and could be developed into a novel combinatorial therapy for AML. Disclosures Andreeff: SentiBio: Equity Ownership; Oncolyze: Equity Ownership; Oncoceutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Jazz Pharma: Consultancy; Amgen: Consultancy, Research Funding; Eutropics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Daiichi-Sankyo: Consultancy, Patents & Royalties: MDM2 inhibitor activity patent, Research Funding; Aptose: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Reata: Equity Ownership; Astra Zeneca: Research Funding; Celgene: Consultancy; United Therapeutics: Patents & Royalties: GD2 inhibition in breast cancer . Carter:novartis: Research Funding; AstraZeneca: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3100-3100 ◽  
Author(s):  
Ken Flanagan ◽  
Muntasir M Majumder ◽  
Romika Kumari ◽  
Juho Miettinen ◽  
Ana Slipicevic ◽  
...  

Background: Immunoglobulin light-chain (AL) amyloidosis is a rare disease caused by plasma cell secretion of misfolded light chains that assemble as amyloid fibrils and deposit on vital organs including the heart and kidneys, causing organ dysfunction. Plasma cell directed therapeutics, aimed at preferentially eliminating the clonal population of amyloidogenic cells in bone marrow are expected to reduce production of toxic light chain and alleviate deposition of amyloid thereby restoring healthy organ function. Melphalan flufenamide ethyl ester, melflufen, is a peptidase potentiated alkylating agent with potent toxicity in myeloma cells. Melflufen is highly lipophilic, permitting rapid cellular uptake, and is subsequently enzymatically cleaved by aminopeptidases within cells resulting in augmented intracellular concentrations of toxic molecules, providing a more targeted and localized treatment. Previous data demonstrating multiple myeloma plasma cell sensitivity for melflufen suggests that the drug might be useful to directly eliminate amyloidogenic plasma cells, thereby reducing the amyloid load in patients. Furthermore, the increased intracellular concentrations of melflufen in myeloma cells indicates a potential reduction in systemic toxicity in patients, an important factor in the fragile amyloidosis patient population. To assess potential efficacy in amyloidosis patients and to explore the mechanism of action, we examined effects of melflufen on amyloidogenic plasma cells invitro and invivo. Methods: Cellular toxicity and apoptosis were measured in response to either melflufen or melphalan in multiple malignant human plasma cell lines, including the amyloidosis patient derived light chain secreting ALMC-1 and ALMC-2 cells, as well as primary bone marrow cells from AL amyloidosis patients, using annexin V and live/dead cell staining by multicolor flow cytometry, and measurement of cleaved caspases. Lambda light chain was measured in supernatant by ELISA, and intracellular levels were detected by flow cytometry. To assess efficacy of melflufen in vivo, the light chain secreting human myeloma cell line, JJN3, was transduced with luciferase and adoptively transferred into NSG mice. Cell death in response to melflufen or melphalan was measured by in vivo bioluminescence, and serum light chain was monitored. Results: Melflufen demonstrated increased potency against multiple myeloma cell lines compared to melphalan, inducing malignant plasma cell death at lower doses on established light chain secreting plasma cell lines. While ALMC-1 cells were sensitive to both melphalan and melflufen, the IC50 for melphalan at 960 nM was approximately 3-fold higher than melflufen (334 nM). However, ALMC-2 cells were relatively insensitive to melphalan (12600 nM), but maintained a 100-fold increase in sensitivity to melflufen (121 nM). Furthermore, while 40% of primary CD138+ plasma cells from patients with diagnosed AL amyloidosis responded to melflufen treatment in vitro, only 20% responded to melphalan with consistently superior IC50 values for melflufen (Figure 1). Light chain secreting cell lines and AL amyloidosis patient samples were further analyzed by single cell sequencing. We further examined differential effects on apoptosis and the unfolded protein response in vitro in response to either melflufen or melphalan. This is of particular interest in amyloidosis, where malignant antibody producing plasma cells possess an increased requirement for mechanisms to cope with the amplified load of unfolded protein and associated ER stress. As AL amyloidosis is ultimately a disease mediated by secretion of toxic immunoglobulin, we assessed the effects of melflufen on the production of light chain invitro, measuring a decrease in production of light chain in response to melflufen treatment. Finally, we took advantage of a recently described adoptive transfer mouse model of amyloidosis to assess the efficacy of melflufen and melphalan in eliminating amyloidogenic clones and reducing the levels of toxic serum light chain in vivo. Conclusions: These findings provide evidence that melflufen mediated toxicity, previously described in myeloma cells, extends to amyloidogenic plasma cells and further affects the ability of these cells to produce and secrete toxic light chain. This data supports the rationale for the evaluation of melflufen in patients with AL amyloidosis. Figure 1 Disclosures Flanagan: Oncopeptides AB: Employment. Slipicevic:Oncopeptides AB: Employment. Holstein:Celgene: Consultancy; Takeda: Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologies: Membership on an entity's Board of Directors or advisory committees; GSK: Consultancy; Genentech: Membership on an entity's Board of Directors or advisory committees; Sorrento: Consultancy. Lehmann:Oncopeptides AB: Employment. Nupponen:Oncopeptides AB: Employment. Heckman:Celgene: Research Funding; Novartis: Research Funding; Oncopeptides: Research Funding; Orion Pharma: Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3830-3830
Author(s):  
Gullu Gorgun ◽  
Elisabetta Calabrese ◽  
Teru Hideshima ◽  
Jeffrey Ecsedy ◽  
Giada Bianchi ◽  
...  

Abstract Abstract 3830 Poster Board III-766 Multiple myeloma (MM) is an incurable bone marrow derived plasma cell malignancy. Despite significant improvements in treating patients suffering from this disease, MM remains uniformly fatal due to intrinsic or acquired drug resistance. Thus, additional modalities for treating MM are required. Targeting cell cycle progression proteins provides such a novel treatment strategy. Here we assess the in vivo and in vitro anti-MM activity of MLN8237, a small molecule Aurora A kinase (AURKA) inhibitor. AURKA is a mitotic kinase that localizes to centrosomes and the proximal mitotic spindle, where it functions in mitotic spindle formation and in regulating chromatid congression and segregation. In MM, increased AURKA gene expression has been correlated with centrosome amplification and a worse prognosis; thus, inhibition of AURKA in MM may prove to be therapeutically beneficial. Here we show that AURKA protein is highly expressed in eight MM cell lines and primary patient MM cells. The affect of AURKA inhibition was examined using cytotoxicity (MTT viability) and proliferation (3[H]thymidine incorporation) assays after treatment of these cell lines and primary cells with MLN8237 (0.0001 μM – 4 μM) for 24, 48 and 72h Although there was no significant inhibition of cell viability and proliferation at 24h, a marked effect on both viability and proliferation occurred after 48 and 72h treatment at concentrations as low as 0.01 μM. Moreover, MLN8237 inhibits cell growth and proliferation of primary MM cells and cell lines even in the presence of bone marrow stromal cells (BMSCs) or cytokines IL-6 and IGF1. Similar experiments revealed that MLN8237 did not induce cytotoxicity in normal peripheral blood mononuclear cells (PBMCs) as measured by MTT assay, but did inhibit proliferation at 48 and 72h, as measured by the 3[H]thymidine incorporation assay. To delineate the mechanisms of cytotoxicity and growth inhibitory activity of MLN8237, apoptotic markers and cell cycle profiles were examined in both MM cell lines and primary MM cells. Annexin V and propidium iodide staining of MM cell lines cultured in the presence or absence of MLN8237 (1 μM) for 24, 48 and 72h demonstrated apoptosis, which was further confirmed by increased cleavage of PARP, capase-9, and caspase-3 by immunoblotting. In addition, MLN8237 upregulated p53-phospho (Ser 15) and tumor suppressor genes p21 and p27. Cell cycle analysis demonstrated that MLN8237 treatment induces an accumulation of tetraploid cells by abrogating G2/M progression. We next determined whether combining MLN8237 with conventional (melphalan, doxorubucin, dexamethasone) and other novel (VELCADE®) therapeutic agents elicited synergistic/additive anti-MM activity by isobologram analysis using CalcuSyn software. Combining MLN8237 with melphalan, dexamethasone, or VELCADE® induces synergistic/additive anti-MM activity against MM cell lines in vitro (p≤0.05, CI<1). To confirm in vivo anti-MM effects of MLN8237, MM.1S cells were injected s.c. into g-irradiated CB-17 SCID mice (n=40, 10 mice EA group). When tumors were measurable (>100 mm3), mice were treated with daily oral doses of vehicle alone or 7.5mg/kg, 15mg/kg, 30mg/kg MLN8237 for 21 days. Overall survival (defined as time between initiation of treatment and sacrifice or death) was compared in vehicle versus- MLN8237- treated mice by Kaplan-Meier method. Tumor burden was significantly reduced (p=0.02) and overall survival was significantly increased (p=0.02, log-rank test) in animals treated with 30mg/kg MLN8237. In vivo anti-MM effects of MLN8237 were further validated by performing TUNEL apoptosis-cell death assay in tumor tissues excised from control or treated animals. Importantly, a significant dose-related increase in apoptotic cells was observed in tumors from animals that received MLN8237 versus controls. These results suggest that MLN8237 represents a promising novel targeted therapy in MM. Disclosures: Ecsedy: Millennium Pharmaceutical: Employment. Munshi:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Richardson:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees. Anderson:Millennium: Research Funding; Novartis: Research Funding; Celgene: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3341-3341
Author(s):  
George S. Laszlo ◽  
Johnnie J. Orozco ◽  
Allie R. Kehret ◽  
Margaret C. Lunn ◽  
Donald K. Hamlin ◽  
...  

Abstract Background: Radioimmunotherapy (RIT) has long been pursued to improve outcomes in acute leukemia. Of current interest are alpha-particle emitting radionuclides as they deliver a very large amount of radiation over just a few cell diameters, enabling efficient and selective target cell kill. So far, alpha-emitters including astatine-211 (211At) have been primarily explored with monoclonal antibodies (mAbs) targeting CD45 or CD33 but their broad display on non-malignant target-expressing cells can lead to marked "on-target, off tumor cell" toxicities. To overcome this limitation, we developed a novel form of 211At-based RIT targeting CD123. CD123 is displayed widely on acute leukemia cells, including underlying leukemic stem cells, but is expressed only on a discrete subset of normal hematopoietic cells and is virtually absent on non-blood cells. Methods: We immunized BALB/c mice with peptides consisting of the extracellular domain of human CD123 to generate anti-CD123 mAbs. Flow cytometry-based assays with human acute leukemia cell lines were used to characterize binding of hybridoma supernatants and mAbs to CD123. mAbs were conjugated with isothiocyantophenethyl-ureido-closo-decaborate(2-) (B10), a boron cage molecule for subsequent astatination, and were then labeled with 211At. In vivo leukemia cell targeting ("biodistribution") and efficacy studies were conducted in immunodeficient NOD-Rag1 null IL2rɣ null/J (NRG) mice xenografted with MOLM-13 cells, a CD123+ human acute myeloid leukemia cell line. Results: Based on initial hybridoma screening studies, we selected 4 mAbs (10C4, 5G4, 11F11, and 1H8) for further characterization. Phenotyping studies with CD123+ and CD123- human acute leukemia cell lines (including CD123+ cell lines in which CD123 was deleted via CRISPR/Cas9) confirmed specific binding of all mAbs to human CD123 (binding intensity: 10C4&gt;5G4=11F11=1H8), with 10C4 yielding a higher median fluorescence intensity than the widely used commercial anti-CD123 mAb clones, 7G3 and 6H6 (Figure 1). In vitro internalization with a panel of human acute leukemia cell lines studies demonstrated uptake of all mAbs by CD123+ target cells with a kinetic slower than that for anti-CD33 antibodies (typically, 30-50% of the anti-CD123 mAb internalized over 2-4 hours). All 4 anti-CD123 mAbs could be conjugated to B10 and subsequently labeled with 211At. Unlike a non-binding 211At-labeled control mAb, 211At-labeled anti-CD123 mAbs showed uptake at MOLM-13 flank tumors in NRG mice carrying MOLM-13 xenografts. After additional leukemia cell targeting studies to optimize the dosing of 10C4, we conducted proof-of-concept efficacy studies in NRG mice injected intravenously with luciferase-transduced MOLM-13 cells (disseminated leukemia model). Animals were either untreated or treated with 10 µCi, 20 µCi, or 40 µCi of 211At-labeled 10C4-B10 mAb (9-11 animals/group). This was followed by the infusion of bone marrow cells from donor mice as stem cell support 3 days later. As shown in Figure 2 and Figure 3, 211At-10C4-B10 led to a dose dependent decrease in tumor burden. Further, the treatment significantly prolonged survival compared to untreated animals (median survival: 49 days [40 µCi of 211At] vs. 31 days [10 µCi of 211At] vs. 21 days [Ctrl]; P&lt;0.0001 for Ctrl vs. 10 µCi, P&lt;0.004 for 10 µCi vs. 40 µCi), demonstrating potent in vivo anti-leukemia efficacy of a single dose of 211At-CD123 RIT. Conclusion: Our data support the further development of 211At-CD123 RIT for the treatment of patients with acute leukemia and other CD123+ hematologic malignancies. Figure 1 Figure 1. Disclosures Green: Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding; Cellectar Biosciences: Research Funding; GSK: Membership on an entity's Board of Directors or advisory committees; JANSSEN Biotech: Membership on an entity's Board of Directors or advisory committees, Research Funding; Juno Therapeutics: Patents & Royalties, Research Funding; Legend Biotech: Consultancy; Neoleukin Therapeutics: Membership on an entity's Board of Directors or advisory committees; Seattle Genetics: Membership on an entity's Board of Directors or advisory committees, Research Funding; SpringWorks Therapeutics: Research Funding. Walter: Kite: Consultancy; Janssen: Consultancy; Genentech: Consultancy; BMS: Consultancy; Astellas: Consultancy; Agios: Consultancy; Amphivena: Consultancy, Other: ownership interests; Selvita: Research Funding; Pfizer: Consultancy, Research Funding; Jazz: Research Funding; Macrogenics: Consultancy, Research Funding; Immunogen: Research Funding; Celgene: Consultancy, Research Funding; Aptevo: Consultancy, Research Funding; Amgen: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1206-1206
Author(s):  
Ryan T Bishop ◽  
Tao Li ◽  
Raghunandan R Alugubelli ◽  
Oliver Hampton ◽  
Ariosto Siqueira Silva ◽  
...  

Abstract INTRODUCTION: Despite proteasome inhibitors (PIs) improving multiple MM (MM) outcomes, patients often become resistant. Identifying mechanisms of resistance with translational potential are an urgent unmet clinical need. Preliminary studies from our group have identified that the therapeutically targetable acid ceramidase, ASAH1, is a key mediator of PI resistance and its presence in extracellular vesicles (EVs) derived from resistant MM cells, confers PI resistance on drug naïve MM cells. METHODS: Nanosight technology, transmission electron microscopy and immunoblot were used to define EVs. Viability and apoptosis assays were used to determine the effects of EVs and inhibitors on resistance acquisition/sensitization to PIs. LC-MS was used to interrogate EV cargo contents. Clinical relevance of ASAH1 was determined in multiple human data cohorts (M2GEN and MMRF CoMMpass). Genetic (shRNA) and pharmacological (ceranib-2) approaches were used to assess the role of ASAH1 mechanistically in vitro and in vivo using multiple isogenic naïve and PI resistant cell lines, patient derived CD138+ MM cells and NSG mouse models. RESULTS: Co-culture of sensitive MM cells with resistant MM-EVs alone significantly protected against PI cytotoxicity. Proteomic profiling revealed high levels of ASAH1 in EVs derived from PI resistant MM cells. Further, we observed ASAH1 is abundant in lysates of multiple PI resistant cell lines compared to their isogenic drug sensitive counterparts. In human datasets, high ASAH1 expression was noted in PI resistant MM patients compared to those newly diagnosed and correlated with significantly shorter survival times. Mechanistically, knockdown of ASAH1 led to reduced conversion of ceramide to sphingosine 1-phosphate (S1-P) and decreased expression/activity of the anti-apoptotic proteins MCL-1, BCL2 and BCL-xL and increases in pro-apoptotic BIM and NOXA. Notably, ASAH1 knockdown also significantly sensitized the cells to PI treatment and this effect was rescued by addition of exogenous S1-P. Pharmacological inhibition of ASAH1 with ceranib-2 also sensitized resistant cells to PI treatment and prevented EV mediated resistance transfer in vitro. This was recapitulated ex vivo with human clinical samples. Our orthotopic in vivo model using PI-resistant U266-PSR cells show that ceranib-2 is highly effective in limiting the growth of PI-resistant disease, protecting against MM induced bone disease, and increasing overall survival compared to both bortezomib and vehicle controls. CONCLUSION: We define the ceramidase ASAH1 as a novel, druggable target for the treatment of PI resistant MM. Disclosures Hampton: M2Gen: Current Employment. Siqueira Silva: AbbVie Inc.: Research Funding; Karyopharm Therapeutics Inc.: Research Funding. Shain: Janssen oncology: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Sanofi Genzyme: Consultancy, Speakers Bureau; Karyopharm Therapeutics Inc.: Honoraria, Research Funding; Novartis Pharmaceuticals Corporation: Consultancy; GlaxoSmithLine, LLC: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; BMS: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Amgen Inc: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Adaptive Biotechnologies Corporation: Consultancy, Speakers Bureau; AbbVie: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 30-31
Author(s):  
Reona Sakemura ◽  
Elizabeth C. Eckert ◽  
Sydney B. Crotts ◽  
Linh Pham ◽  
Elizabeth L. Siegler ◽  
...  

Although CD19-directed chimeric antigen receptor T cell (CART19) therapy is highly effective and was FDA approved for certain B-cell malignancies, most patients relapse after CART infusion within the first 1-2 years due to inadequate CART expansion in vivo. Vesicular stomatitis virus (VSV) has the ability to infect and lyse cancer cells. Clinical trials of VSV oncolytic therapy indicate that VSV efficiently infects cancer cells as well as innate immune cells. Therefore, we hypothesized that in patients who achieve suboptimal response to CART19, VSV engineered to express CD19 will augment anti-tumor activity through 1) direct lysis of cancer cells and 2) infecting cancer cells and innate immune cells with CD19 to further stimulate CART19. To test our hypothesis, human CD19 or GFP (control) was engineered between the glycoprotein and large-protein (Fig.1A) in a modified VSV backbone. A matrix inactivating mutation (M51R) rendered it incapable of suppressing anti-viral reactions of infected targets, potentially promoting its immunogenicity. First, we tested the anti-tumor activity of VSV-CD19 and VSV-GFP against the luciferase (luc)+CD19+ acute lymphoblastic leukemia cell line NALM6 and the luc+CD19- acute myeloid leukemia cell line MOLM13. VSV-CD19 and VSV-GFP successfully lysed NALM6 (Fig.1B) or MOLM13, both in vitro and in vivo (data not shown). Next, we investigated the efficiency of VSV-CD19 in infecting tumor and immune cells. 24 hours after exposure to VSV-CD19 or VSV-GFP, we analyzed the surface expression of CD19 on MOLM13 and revealed efficient CD19 delivery (Fig.1C). Next, we assessed VSV infection of peripheral blood mononuclear cells (PBMCs) from healthy donors (HDs). Freshly isolated HD PBMCs were infected with VSV-CD19 for 6 hours and subsequently assessed for CD19 expression. Consistent with findings from clinical trials, VSV-CD19 selectively infected and induced CD19 expression on monocytes while other cells were not affected (Fig.1D). To exclude potential toxicities against CART19, we co-cultured CART19 with VSV-CD19 or VSV-GFP using second-generation 4-1BB costimulated CART19. Both VSV-CD19 and VSV-GFP did not infect CART19 as evident by preservation of CART19 viability and lack of CD19 or GFP expression (Fig.1E). Having demonstrated that VSV-CD19 specifically delivered CD19 to monocytes, we next tested whether the infected monocytes stimulated CART19. VSV-CD19 infected monocytes induced potent antigen-specific proliferation of CART19 (Fig.1F) and resulted in enhanced anti-tumor activity against luc+NALM6 in vitro (Fig.1G). Next, we aimed to confirm these findings in vivo. We generated luc+CART19 to track CART19 expansion in vivo. Freshly isolated HD monocytes were infected with VSV-CD19 ex vivo. After 4 hours, VSV-CD19 was washed away and immunocompromised NSG mice were intravenously injected with VSV-CD19 infectedmonocytes. After 24 hours, 3.5x106 of luc+untransduced T cells (UTD) or luc+CART19 were injected intravenously. The T cell expansion was assessed by bioluminescence imaging (BLI). VSV-CD19 infected monocytes specifically stimulated and expanded CART19 (Fig.1H). Finally, we tested whether VSV-CD19 can stimulate and rescue suboptimal anti-tumor effects of CART19 in vivo using a NALM6 relapsed model. Here, 1x106 luc+NALM6 were injected intravenously into NSG mice on day -6. At day -1, mice were imaged and randomized according to tumor burden to receive 1x106 UTD or CART19 on day 0. Subsequently, at day 4, mice were re-imaged and randomized. At day 5, HD monocytes were injected intravenously. Three hours after administering monocytes, mice received 1x107 VSV-CD19 or VSV-GFP (Fig.1I). BLI revealed that CART19 plusVSV-CD19 showed better tumor control than CART19 monotherapy or CART19 plus VSV-GFP (Fig.1J-K). Furthermore, CART19 plus VSV-CD19 exhibited long-term survival (Fig.1L). In summary, VSV-CD19 not only demonstrated direct anti-tumor effects but also specifically delivered CD19 to monocytes and tumor cells, thereby re-stimulating and enhancing the anti-tumor activity of CART19. This work provides a rationale to study VSV-CD19 in patients who demonstrate only suboptimal response to CART19. This approach could also be applied to augment CART therapy in other tumors. Figure 1 Disclosures Sakemura: Humanigen: Patents & Royalties. Eckert:Genentech: Current Employment. Cox:Humanigen: Patents & Royalties. Parikh:Ascentage Pharma: Research Funding; GlaxoSmithKline: Honoraria; Verastem Oncology: Honoraria; MorphoSys: Research Funding; Genentech: Honoraria; Pharmacyclics: Honoraria, Research Funding; AbbVie: Honoraria, Research Funding; Merck: Research Funding; Janssen: Honoraria, Research Funding; TG Therapeutics: Research Funding; AstraZeneca: Honoraria, Research Funding. Kay:Dava Oncology: Membership on an entity's Board of Directors or advisory committees; Oncotracker: Membership on an entity's Board of Directors or advisory committees; Bristol Meyer Squib: Membership on an entity's Board of Directors or advisory committees, Research Funding; Agios Pharma: Membership on an entity's Board of Directors or advisory committees; Cytomx: Membership on an entity's Board of Directors or advisory committees; MEI Pharma: Research Funding; Rigel: Membership on an entity's Board of Directors or advisory committees; Tolero Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Acerta Pharma: Research Funding; Astra Zeneca: Membership on an entity's Board of Directors or advisory committees; Morpho-sys: Membership on an entity's Board of Directors or advisory committees; Abbvie: Research Funding; Juno Theraputics: Membership on an entity's Board of Directors or advisory committees; Sunesis: Research Funding. Peng:Imanis: Other: Equity Ownership. Russell:Imanis: Other: Equity Ownership. Kenderian:Mettaforge: Patents & Royalties; Humanigen: Consultancy, Patents & Royalties, Research Funding; Lentigen: Research Funding; Torque: Consultancy; Novartis: Patents & Royalties, Research Funding; Kite: Research Funding; Gilead: Research Funding; Juno: Research Funding; BMS: Research Funding; Tolero: Research Funding; Sunesis: Research Funding; MorphoSys: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4467-4467 ◽  
Author(s):  
Jayeeta Ghose ◽  
Luke Russell ◽  
Enrico Caserta ◽  
Ramasamy Santhanam ◽  
Alena Cristina Jaime-Ramirez ◽  
...  

Abstract Introduction: Multiple myeloma (MM) is the second most prevalent hematologic malignancy. Approximately, 80,000 people have died of the disease in the United States and 25,000 new cases are registered every year. Majority of patients develop resistance to current therapeutic treatments and die within 5-10 years of diagnosis. Thus, need of novel therapeutic intervention is extremely urgent. Although the field of oncolytic virotherapy (OV) based on using viruses with natural or engineered tumor selective replication to intentionally infect and kill tumor cells has been extensively explored for the treatment of solid tumors, only few data are available for the treatment of hematopoietic malignancies. Our laboratory was one of the first to show that OV using Reovirus can be an effective therapeutic strategy for the treatment of MM in vitro and in MM patients. In this work we aim at exploring the possibility of using genetically engineered HSV1 (Herpes Simplex Virus) for the treatment of MM. HSV1 is an enveloped, double stranded DNA virus. Engineered HSV1 (HSVQ) has both copies of viral gene important in viral replication in normal cells viz., ICP 34.5 gene deleted and has one copy of GFP inserted into viral ICP6 gene. Such engineered virus has been used for cancer cell selective killing in preclinical and clinical studies for the treatment of several types of solid tumors including melanoma and glioblastoma multiforme. In this study, we investigated the biological and preclinical impact of HSVQ on MM cell in vitro and in vivo. Method: Recombinant HSVQ was amplified in African green monkey kidney epithelial Vero cells, purified by sucrose density gradient centrifugation and titrated by plaque assay on Vero cells. Several MM cell lines (MM1.S, U266, RPMI8226, L363, NIH-H929) were infected with HSVQ at Multiplicity of Infection (MOI) 0.01 to 5. Fluorescence microscopy and flow cytometry analysis were used to assess MM cell infectivity with the virus. RT-PCR was performed to detect presence of viral genome in MM cell lines. Viral replication assays were also performed. Cell proliferation and apoptotic assays including MTT Assay, Tryphan Blue exclusion test, LIVE/DEAD cell viability staining and Annexin/7-AAD assays were done to determine viability of virus infected MM cells. Western Blot analysis was carried out to determine endoplasmic reticulum (ER) stress response mediated by ERK, Hsp90, Bip/GRP78, Hsp40 and apoptosis in HSVQ treated MM cells. Total bone marrow (BM) cells obtained from MM patients were infected with HSVQ and multi parametric flow analysis was performed to determine infectivity and specific killing of CD138+ MM cells by the virus. To study in vivo anti-tumorigenic properties of HSVQ, 12.5 x106 GFP/Luc + MM1.S or NIH-H929 cells were subcutaneously injected into the right flank of 20 NOD-SCID mice. Two weeks after injection, mice with comparable size tumors were randomly divided (5 animal for each treatment group) and treated twice with 1x107PFU (Plaque Forming Unit) HSVQ for 2 weeks or with saline. Tumor growth was measured to determine anti tumorigenic effect of HSVQ on MM tumors. Results and Conclusion: Fluorescence microscopy and flow cytometry revealed that MM cell lines can be effectively infected with and killed by HSVQ even at MOI as low as 0.1. Under such conditions, Western Blot analysis revealed increased BAX expression, decreased BCL2 expression and cleavage of Caspase 3 and PARP indicating apoptosis of virus infected cells. Interestingly, multi parametric flow analysis revealed that HSVQ specifically infects and kills CD138+ MM plasma cells in a total population of BM cellular fraction isolated from MM patients. Moreover in vivo preclinical data show that HSVQ dramatically reduces tumor volume (p<0.001) in both MM.1S and NIH-H929 xenograft mouse models. Thus, from the preliminary observations, it can be concluded that HSVQ can selectively infect and induce apoptosis in myeloma cells. Mechanisms of HSVQ replication in MM cells and induced MM cell killing are being currently investigated. Here for the first time we are providing clear evidences that HSVQ can infect and specifically kill MM cells supporting the idea of the use of HSV for the treatment of MM. Moreover, since the backbone of HSVQ can be further engineered, it can be used to specifically deliver anti-angiogenic and anti-inflammatory genes to MM cells for the treatment of MM. Disclosures Hofmeister: Arno Therapeutics, Inc.: Research Funding; Celgene: Research Funding; Karyopharm Therapeutics: Research Funding; Incyte, Corp: Membership on an entity's Board of Directors or advisory committees; Janssen: Pharmaceutical Companies of Johnson & Johnson: Research Funding; Signal Genetics, Inc.: Membership on an entity's Board of Directors or advisory committees; Takeda Pharmaceutical Company: Research Funding; Teva: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 18-19
Author(s):  
Ricardo De Matos Simoes ◽  
Ryosuke Shirasaki ◽  
Huihui Tang ◽  
Shizuka Yamano ◽  
Benjamin G Barwick ◽  
...  

Background: Functional genomics studies based on CRISPR and shRNA have documented that multiple myeloma (MM) cells are preferentially dependent (compared to other neoplasias) on a series of TFs, including IKZF1 and IKZF3 (which are targeted by thalidomide derivatives) and others that are not amenable to degradation or small molecule inhibition. Transcriptional co-factors have been therapeutically targeted, for example, inhibitors of BRD4, a co-factor for pTEFB, can be used to down-regulate c-myc. Aim: To identify new transcriptional vulnerabilities in MM with an emphasis on transcriptional co-factors Methods: We integrated results from genome-scale studies using the AVANA library for loss-of-function by gene editing (in 19 MM lines) and the Calabrese library for CRISPR-mediated gene activation (in 5 MM lines) to identify critical transcriptional co-factors (co-TFs). RNA-Seq analysis was used to identify critical pathways affected by POU2AF1 activation and existing ChIP-Seq tracks in MM cells were reanalyzed. Results: POU2AF1 (OCA-B) was the most preferentially essential TF co-factor in MM cell lines vs. non-MM and one of top genes which, upon CRISPR activation in genome-scale studies, increased MM cell fitness in vitro. We further confirmed the role of this gene using focused libraries of sgRNAs against POU2AF1 in vitro and in an in vivo model of MM cell growth in bone marrow-like scaffolds "functionalized" with humanized mesenchymal bone marrow stromal cells to simulate the human BM. CRISPR activation of POU2AF1 is associated with increased MM cell growth. RNA-Seq of POU2AF1 activation in LP1 cells a transcriptional program characterized by upregulation of other genes that are preferentially essential for MM including PRDM1, SUPT7L, UBE2G2 and TSC1; broad-spectrum oncogenic dependencies (e.g KRAS) and genes known or proposed to be involved in the pathophysiology of MM or other neoplasias (e.g. RUNX2, FGFR3, SMO, CREB5, TNFRSF13B, MEF2D, PCGF2). POU2AF1 overexpression was also associated with down-regulation of CDKN1C; of MHC class II molecules and their transcriptional activator CIITA, suggesting that POU2AF1 activation could also contribute to increased MM growth in vivo by allowing escape from immune surveillance. ATAC-Seq data and genome-wide ChIPseq for H3K27Ac in MM cell lines indicate that chromatin surrounding the POU2AF1 locus was highly accessible, concordant with the consistent expression of this TF in MM cell lines and patient-derived cells. CoMMpass data showed that POU2AF1 expression was enhanced in a subset of MM patients at relapse compared to diagnosis. Motif analysis of ChIP-seq data for POU2AF1 identified significant overlap with motifs for TFs relevant to the POU family (e.g. Oct11, Oct2, Oct4); members of the ETS family (e.g. ELF1, Elf4, GABPA); and other TFs with roles in MM including c-myc; IRF4; NF-kappaB, PRDM1, RUNX2 and the POU2AF1 target CREB5. These data suggest a functional interaction between POU2AF1 and other MM-relevant TFs. The transcriptional signature of POU2AF1 activation is enriched for genes downregulated by suppression/inhibition of MM-preferential TFs or epigenetic regulators including IRF4, PRDM1, IKZF1/3 and DOT1L. POU2AF1 binding motifs are also enriched in the promoter regions of MM-preferential dependencies including several MM-preferential TFs. Conclusions: POU2AF1 is essential for MM cells in vitro and in vivo; has a significantly more pronounced and recurrent role as a dependency in MM compared to most other neoplasias; and can further drive MM cell growth, through its ability to interact with several TFs critical for MM, forming multi-protein functional complexes. These results establish POU2AF1 as a central component in the regulatory network of oncogenic TFs in MM and highlight the value of further exploring POU2AF1 as a therapeutic target in MM. Disclosures Downey-Kopyscinski: Rancho BioSciences, LLC: Current Employment. Tsherniak:Cedilla Therapeutics: Consultancy; Tango Therapeutics: Consultancy. Boise:AstraZeneca: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Genetech: Membership on an entity's Board of Directors or advisory committees. Mitsiades:FIMECS: Consultancy, Honoraria; Ionis Pharmaceuticals, Inc.: Consultancy, Honoraria; Arch Oncology: Research Funding; Janssen/Johnson & Johnson: Research Funding; Karyopharm: Research Funding; TEVA: Research Funding; Takeda: Other: employment of a relative; Fate Therapeutics: Consultancy, Honoraria; Sanofi: Research Funding; Abbvie: Research Funding; EMD Serono: Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1574-1574
Author(s):  
Efstathios Kastritis ◽  
Jana Jakubikova ◽  
Jake Delmore ◽  
Steffen Klippel ◽  
Douglas W. McMillin ◽  
...  

Abstract Abstract 1574 Cancer cells with stem cell-like features are a topic of intense research because their resistance to existing drugs is considered a culprit for relapses, even in patients with complete remission defined by clinical, biochemical and imaging parameters or by sensitive molecular techniques. Salinomycin, an antibacterial and coccidiodostatic ionophore, is reported (Cell 2009;138(4):645-59) to be >100-fold more potent against breast cancer cells with stem cell-like phenotype after mesenchymal transdifferentiation due to stable transfection with shRNA against CDH1 than against the parental cells. We evaluated whether salinomycin could also exhibit a similar activity against stem cell-like cells in multiple myeloma (MM). To establish a comparative reference for such potential activity, we first tested salinomycin (0-10 uM for up to 72hrs) against a panel of 15 MM cell lines and observed IC50 values <1 uM in 10/15 cell lines tested, including >80% reduction of tumor cell viability in 6/15 cell lines tested at 0.5 uM, i.e. levels lower than the IC50 values for in vitro activity of salinomycin against breast cancer cells with (HMLE-shCDH1, IC50 ∼1 uM) or without (HMLE-shControl, IC50 >>10 uM) stem cell-like features. CD138+ purified primary tumor cells from 3 MM patients responded to salinomycin with IC50 values (105, 332 and 750 nM, respectively) in the same range as MM cell lines. In vitro combinations with bortezomib, doxorubicin, melphalan, and dexamethasone showed overall no antagonism, while evidence of additive or even synergistic effect could be identified in certain dose ranges. Because MM cell lines and primary tumor cells responded concordantly to salinomycin and with higher sensitivity than breast cancer stem cell-like cells, we hypothesized that MM cells may in general be more responsive to salinomycin than other tumors. Since tumor-stromal interactions can increase the expression of transcriptional signatures of “stemness” in MM cells, we embarked on characterizing the anti-MM properties of salinomycin using compartment-specific bioluminescence imaging (CSBLI) assays. These showed that co-culture with stromal cells did not confer resistance to salinomycin in 5 MM cell lines (MM.1S, OCI-My5, KMS-11, KMS-18, NCI-H929) and in fact enhanced its activity against 4 of them. Side population (SP) cells, defined by their ability to efflux Hoechst stain, represent a stem cell-like population which was identified in MM cell lines and could represent the functional equivalent of the mesenchymally transdifferentiated breast cancer stem cell-like cells. We observed that salinomycin reduces the SP fraction of MM cell lines at doses >20 times lower than those required for in vitro effect against the bulk <<main population>> of the respective cell lines. Interestingly, the anti-SP effect of salinomycin was more pronounced in the presence of stroma, similarly to the CSBLI studies on the entire MM cell population and consistent with our prior observation that tumor-stroma interaction enhances transcriptional signatures of ≪stemness≫ in the tumor compartment. However, when we tested the in vivo anti-MM activity of salinomycin in an orthotopic model of i.v. injected Luc+ MM cells, no anti-MM activity (in terms of tumor burden decrease or overall survival prolongation) was observed at the maximum tolerated dose (1 mg/kg i.p. daily, which is consistent with most studies reported thus far in the literature). Ex vivo treatment of KMS-11 cells with salinomycin doses (100 nM for 72 hrs) selectively targeting SP cells was followed by s.c. injection of these cells or vehicle-treated controls in sublethallly irradiated SCID/NOD mice, but no statistically significant improvement in tumor burden or overall survival was observed. Our in vitro results indicate that salinomycin exhibits intriguing in vitro anti-MM activity, not only against SP cells but also against the bulk ≪main≫ MM cell population, even in the presence of stromal support. In contrast, the in vivo activity of salinomycin is compromised by side effects in the orthotopic model of MM lesions, while short term ex vivo exposure of tumor cells is conceivably insufficient to eradicate clonogenic cells and lead to appreciable delay in tumor growth in vivo. Our studies point to intriguing features as well as notable challenges that have to overcome before salinomycin or other more selective agents of this class can be safely tested in clinical trials in MM. Disclosures: McMillin: Axios Biosciences: Equity Ownership. Richardson:Celgene: Membership on an entity's Board of Directors or advisory committees; Millenium: Membership on an entity's Board of Directors or advisory committees. Anderson:Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Mitsiades:Millennium: Consultancy, Honoraria; Novartis Pharmaceuticals: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria; Merck &Co.: Consultancy, Honoraria; Kosan Pharmaceuticals: Consultancy, Honoraria; Pharmion: Consultancy, Honoraria; Centrocor: Consultancy, Honoraria; PharmaMar: Patents & Royalties; OSI Pharmaceuticals: Research Funding; Amgen Pharmaceuticals: Research Funding; AVEO Pharma: Research Funding; EMD Serono: Research Funding; Sunesis: Research Funding; Gloucester Pharmaceuticals: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document