scholarly journals The Necessary for Long-Term Follow-up of Mutated Genes and Clonal Evolutions in Multiple Myeloma Combined with cfDNA Assay

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5515-5515
Author(s):  
Yuko Mishima ◽  
Yuji Mishima ◽  
Masahiro Yokoyama ◽  
Noriko Nishimura ◽  
Yoshiharu Kusano ◽  
...  

Introduction)Somatic mutations in multiple myeloma (MM) are strongly related to the clinical outcome and clonal evolution over the clinical course, and are a major problem. From a clinical viewpoint, although numerous novel drugs have been utilized, achieving long-lasting and complete remission remains difficult. Recent studies have elucidated the mutated genes using next-generation sequencing, and have examined how clonal change can be acquired in myeloma. In this study, we traced the transition of the somatic mutations of bone marrow tumor cells in patients with MM over a long-term follow-up. Furthermore, we compared the somatic mutations found in serum cell-free DNA (cfDNA) and mutated genes obtained from bone marrow myeloma cells. Material and Methods)Patients diagnosed with multiple myeloma who provided written informed consent to participate in the study were enrolled. Patients were treated by immuno-chemotherapy with or without radiation between 2000 and 2017 at our institute. Bone marrow aspiration and biopsy were performed at the time of diagnosis and upon disease progression. Around the time of bone marrow aspiration, serum was obtained from a peripheral blood sample for cfDNA analysis. Myeloma cells were separated from bone marrow samples with MicroBeads of CD138 antibody and genomic DNA was extracted. The peripheral blood samples derived from myeloma patients. The cfDNA was extracted from the serum using a Maxwell RSC cfDNA Plasma kit. Using genomic DNA derived from cfDNA and bone marrow, multiplex polymerase chain reaction (PCR) was performed, and a sequence library was then constructed with an Ion Custom Amplicon panel. The panel for the sequence library was designed using an Ion AmpliSeq DesignerTM. 126 targeted genes were selected. The genomes were sequenced using the Ion ProtonTM System. This protocol was approved by the institutional review board and the Genomic Review Board of the Japanese Foundation for Cancer Research. Result)We followed 7 patients' long term-clinical course and the transition of mutations (8.5 year average). The expression of myeloma driver genes, such as RAS, BRAF, and MYC, were not critical. We did, however, detect a relationship between an increase in the dominant mutated gene, such as TP53, DIS3, FAM46C, KDM6B, and EGR1 and poor prognosis in patients with myeloma. Next, we calculated the cfDNA concentrations from 34 cases. The cfDNA concentrations were significantly higher than 10 control cases (average 62.0 ng/mL (0-200 ng/mL) and 8.18 ng/mL (4.3-14.1 ng/mL), P=0.0046). The 2.5 year-progression free survival (PFS) during the first treatment of MM were tend to be poorer in the group with cfDNA>50 ng/mL (72.9%) than the group with cfDNA<50 ng/mL(25.9%), however there are no statistical significance (P = 0.15).We caluculated concordance rate of derived mutations from bone marrow MM cells and cfDNA in 7 cases. The somatic mutations found in serum cell-free DNA (cfDNA) and bone marrow MM cells were determined the correlation coefficients. However, there are few difference expression pattern in each source. In cfDNA assay, CREEP, EGR1, HDAC4, HDAC6, and JMJD1C were highly expressed as 57.1% (4/7) - 85.7% (6/7), and these results were almost the same as those for bone marrow MM cells. On the other hand, KDM1A (85.7%), PI3KCD (71.4%), and KDM3B (57.1%) were highly detected in cfDNA, although those were not frequently expressed in bone marrow. Discussion)Our data demonstrate the importance of the long-term follow-up of somatic mutations during the clinical course of myeloma. Serum cfDNA is a useful alternative source for detecting somatic mutations in MM patients during long-term follow-up. Disclosures Mishima: Chugai-Roche Pharmaceuticals Co.,Ltd.: Consultancy. Yokoyama:Chugai-Roche Pharmaceuticals Co.,Ltd.: Consultancy. Nishimura:Chugai-Roche Pharmaceuticals Co.,Ltd.: Consultancy; Celgene K.K.: Honoraria. Hatake:Celgene K.K.: Research Funding; Janssen Pharmaceutical K.K.: Research Funding; Takeda Pharmaceutical Co.,Ltd.: Honoraria. Terui:Bristol-Myers Squibb K.K.: Research Funding; Bristol-Myers Squibb, Celgene, Janssen, Takeda, MSD, Eisai, Ono, and Chugai-Roche Pharmaceuticals Co.,Ltd.: Honoraria.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2288-2288
Author(s):  
Frederic Baron ◽  
Fabio Efficace ◽  
Laura Cannella ◽  
Franco Mandelli ◽  
Roelof Willemze ◽  
...  

Abstract *The 2 first authors contributed equally to the work. Background. The best post-remission treatment for younger acute myeloid leukemia (AML) patients has remained controversial (Cornelissen JJ &Blaise D, Blood 2016, 127, 62-70) and there is paucity of studies comparing intensive chemotherapy to autologous (auto) or allogeneic (allo) bone marrow transplantation (BMT). Aim. The main objective of this study was to provide a long-term follow-up evaluation of patients previously enrolled in the pivotal EORTC/GIMEMA AML-8A (Zittoun et al., New England Journal of Medicine 1995, 332, 217-223). Methods. The EORTC/GIMEMA AML-8A prospectively assessed the impact of 3 post-remission treatments on disease-free survival (DFS) and overall survival (OS) in younger (<60 years of age) AML patients who reached a complete remission (CR) after induction with cytarabine and daunorubicin. All patients received a consolidation chemotherapy course (ICT1) including intermediate-dose cytarabine and amsacrine. Patients who had an HLA-identical sibling donor were then allocated to allo-BMT while remaining patients, at the start of ICT1, were randomized to receive auto-BMT or a second course of intensive chemotherapy consisting of high-dose cytarabine and daunorubicin (ICT2 group) after recovery of ICT1. At the time of the publication of the results (Zittoun et al., New England Journal of Medicine 1995, 332, 217-223), the median follow-up from inclusion was 3.3 years. Results. In the current report, median follow-up was 11.1 (range, 0-28) years. For the whole population (n=422), the 5-, 10 and 15-year OS rates from inclusion were 35%, 32% and 31%, respectively. After the completion of ICT1, 168 patients were allocated to theallo-BMT arm, while 254 patients were randomized to auto-BMT (n=128) or ICT2 (n=126). DFS from CR was longer afterallo-BMT than auto-BMT and DFS from CR was longer after auto-BMT than ICT2, due to a lower relapse incidence (P<0.001). Details are provided in table 1. Patients randomized to the auto-BMT arm had still a longer DFS from CR than patients in the ICT2 group (P=0.11) due to a lower incidence of relapse (P=0.047). Regarding OS, the differences between the 3 groups was no longer significant. In the ICT2, the improved outcome regarding OS as compared to DFS was due to a higher proportion of ICT2 patients who received a salvage auto-BMT. Conclusions. This long-term follow-up of the EORTC/GIMEMA AML-8A study confirms a better DFS with allo-BMT or auto-BMT when compared to ICT2 for AML patients in first CR. Further, this long-term follow-up study revealed that the vast majority of patients alive in first CR at 5-year remains disease-free survivors 5 years later. Although indications of allogeneic hematopoietic stem cell transplantation (allo-HCT) are nowadays largely driven by cytogenetic/molecular AML profile, long-term results of AML8A study demonstrate that auto-BMT remained superior to ICT2 in younger AML patients not candidate for an allo-HSCT. Disclosures Efficace: TEVA: Consultancy, Research Funding; Seattle Genetics: Consultancy; Bristol Myers Squibb: Consultancy; Lundbeck: Research Funding. Martinelli:Celgene: Consultancy, Speakers Bureau; BMS: Speakers Bureau; Novartis: Speakers Bureau; Amgen: Consultancy, Speakers Bureau; Genentech: Consultancy; Roche: Consultancy, Speakers Bureau; Ariad: Consultancy, Speakers Bureau; MSD: Consultancy; Pfizer: Consultancy, Speakers Bureau.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 27-27 ◽  
Author(s):  
Pieter Sonneveld ◽  
Hans-Juergen Salwender ◽  
Bronno Van Der Holt ◽  
Laila el Jarari ◽  
Uta Bertsch ◽  
...  

Abstract Background: We reported better PFS and OS in transplant eligible patients with newly diagnosed Multiple Myeloma (MM) who were treated with bortezomib during induction and maintenance, when compared with standard treatment in the HOVON-65/GMMG-HD4 trial. (P. Sonneveld et al., J Clin Oncol 30:2946-2955, 2012). Here the long-term follow up data are presented. Methods: 827 eligible patients were randomized to induction therapy with VAD (vincristine, doxorubicin, dexamethasone) or PAD (bortezomib, doxorubicin, dexamethasone) followed by high-dose melphalan (once or twice) and autologous stem cell transplant. Maintenance consisted of daily thalidomide (T) 50 mg (VAD arm) or 2-weekly bortezomib (B) 1.3 mg/m2 (PAD arm) for 2 years. The primary endpoint was progression-free survival (PFS) adjusted for ISS stage. Results: After a median follow up of 91.4 months (maximum 119) 410 patients are alive. Response rates were VAD/HDM/T: CR 25%, ≥VGPR 56%, ≥PR 83%; PAD/HDM/B: CR 37%, ≥VGPR 76%%, ≥PR 91%, The median duration of maintenance therapy was 14 months (thalidomide) and 23 months (bortezomib), respectively. Main reasons for discontinuation were toxicity (T: 31%; B: 11%), disease progression (T: 33%; B: 36%) or normal completion (T: 28%; B: 48%). Of 827 patients in the analysis, 206 are alive without progression/relapse. PFS was significantly better in the bortezomib arm, i.e. median 34 versus 28 months (HR=0.77, 95% CI=0.65-0.90, p=0.001). Median overall survival (OS) was 90 months in the bortezomib arm vs 83 months in the control arm, but 42% at 9 years in both arms. We used the restricted mean survival time (RMST) method to compare OS between the two treatment arms In univariate analysis. The difference in RMST8y was 4.8 months (95% CI 0.2-9.5, p=0.04) in favor of the bortezomib arm. A landmark analysis in patients who had received HDM starting at 12 months showed a significant PFS advantage of bortezomib in all patients (p=0.02), in patients in VGPR/PR (p=0.02) but not in CR (p=0.19). For OS there was no advantage for bortezomib in either group. PFS at 60 months in bortezomib treated patients was not different when single vs double HDM/ASCT was administered, i.e. 28% vs 27%. However, OS at 60 months was 71% vs 60% in favor of double HDM/ASCT (p=0.04). Subgroup analysis was performed based on presence/absence of adverse FISH (CA) in 395 patients treated with double HDM/ASCT. PFS at 60 months for each abnormality (CA or no CA) in bortezomib vs standard arm is given in Table 1 Table 1.PFS at 60 months, %OS at 60 months, %FISHnBortezomib armpStandard armBortezomib armpStandard Armt(4;14) yes/no50/29516% vs 27%0.048% vs 24%52% vs 75%0.0133% vs 64%add(1q) yes/no113/23116% vs 32%0.00510% vs 28%57% vs 79%0.00143% vs 70%del(17p) yes/no39/31222% vs 27%0.475% vs 24%65% vs 72%0.4818% vs 66% These data show that bortezomib treatment combined with double HDM/ASCT significantly improves PFS and OS in patients with del(17p) and almost abrogates the negative impact of this CA. In t(4;14) and add(1q) some improvement is observed, however the negative impact remains significant. In high-risk patients presenting with elevated creatinine >2 mg/dL bortezomib significantly improved PFS at 60 months (32% vs 5%) (p=0.001) and OS at 60 months (66% vs 21% months (p<0.001)). OS at 8 years was 46% vs 12%. Finally, OS from progression/relapse was not different between patients treated in the bortezomib vs standard arm (OS at 72 months: 33% vs 35%, p=0.73) Conclusions: We conclude that bortezomib leads to a significant and lasting improvement of PFS and OS. Bortezomib significantly reduces the high-risk impact of del(17p) and renal impairment on survival. This trial was registered as NTR213; EudraCT no. 2004-000944-26.and supported by the Dutch Cancer Foundation, the German Federal Ministry of Education and Research and an unrestricted grant from Janssen. The GMMG group received grants for this trial by Novartis, AMGEN, Chugai and Roche. Disclosures Sonneveld: SkylineDx: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Research Funding; Amgen: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Janssen: Honoraria, Research Funding. Salwender:Celgene: Honoraria; Janssen Cilag: Honoraria; Bristol Meyer Sqibb: Honoraria; Amgen: Honoraria; Novartis: Honoraria. Blau:MSD: Honoraria; Celgene: Honoraria, Research Funding; AMGEN: Honoraria; JAZZ pharm: Honoraria; BMS: Honoraria; Shire: Honoraria; Baxalta: Honoraria; Janssen: Honoraria, Research Funding. Zweegman:celgene: Honoraria, Research Funding; takeda millennium: Honoraria, Research Funding; onyx: Honoraria. Weisel:Noxxon: Consultancy; Janssen Pharmaceuticals: Consultancy, Honoraria, Other: Travel Support, Research Funding; Novartis: Other: Travel Support; Onyx: Consultancy, Honoraria; Amgen: Consultancy, Honoraria, Other: Travel Support; BMS: Consultancy, Honoraria, Other: Travel Support; Celgene: Consultancy, Honoraria, Other: Travel Support, Research Funding. Broijl:Amgen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees. Scheid:Janssen: Honoraria; Celgene: Honoraria. Potamianou:Janssen: Employment. Hose:Takeda: Other: Travel grant; EngMab AG: Research Funding. Kersten:takeda millennium: Research Funding; janssen: Honoraria, Research Funding; roche: Honoraria, Research Funding. Duehrsen:Alexion: Honoraria; janssen: Honoraria. Lokhorst:Janssen: Honoraria, Research Funding; Genmab: Honoraria, Research Funding; Amgen: Honoraria. Goldschmidt:celgene: Honoraria, Research Funding; janssen: Honoraria, Research Funding; novartis: Honoraria, Research Funding; chugai: Honoraria, Research Funding; onyx: Honoraria, Research Funding; millennium: Honoraria, Research Funding; BMS: Honoraria, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2155-2155
Author(s):  
Nidhi Sharma ◽  
Nita Williams ◽  
Ashley E. Rosko ◽  
Don M. Benson ◽  
Maria Chaudhry ◽  
...  

Abstract Introduction: Post autologous transplant maintenance therapy with lenalidomide for patients with multiple myeloma (MM) is standard of care (McCarthy et al, NEJM, 2012). Vorinostat (SAHA, Zolinza) is a HDAC inhibitor and preclinical data suggested that HDAC-I's increase MHC class I and class II expression, rendering tumor cells more susceptible to host innate immune killing. Lenalidomide activates NK cells via PP2A inhibition and induces CD56 expression in CD16+CD56- cells thereby enhancing NK cell-mediated ADCC. Initiating lenalidomide to enhance NK cell activity against tumor cells in the early post autologous transplant period may be particularly effective when the NK:myeloma cell ratios favor NK killing, especially if administered after increased MHC class I expression induced by HDAC-I pretreatment. We hypothesized that the combination of vorinostat and lenalidomide would be both tolerable and effective in the post-transplant setting. We have published the initial report of this combination (Sborov, BJH, 2015). We now present the long term follow up. Methods: This was a non-randomized, open-label phase I trial for patients with myeloma who have received high dose IV melphalan followed by autologous peripheral blood stem cell transplant (ASCT) following the three-and-three up-and-down phase I design. Vorinostat was administered beginning at 200 mg starting day +90 after HSCT for days 1-7 and 15-21 of a 28-day cycle combined with lenalidomide 10 mg days 1-21 of a 28-day cycle until progression or clinically significant toxicity. The initial dose of lenalidomide could be increased from 10 mg after cycle 1 and escalated as tolerated up to 25 mg. Results: Sixteen patients were enrolled after autologous transplant with a median age 58 y.o. (range 41-67), with a median number of prior therapies at enrollment of 2 (range 1-8) and mean ISS stage 1.5 (range 1-3). Twelve patients had trisomies on CD138-selected FISH, one patient had normal cytogenetics, and three patients had high risk features [complicated karyotype, t(4;14), or abnormal chromosome 1]. All patients started with 10 mg of lenalidomide and 14 patients received more than one cycle of therapy. 11/14 (78%) were able to escalate the lenalidomide dose. 4/11 (36%) were able to escalate to 25 mg of lenalidomide. The tolerability, toxicities and adverse events have been previously reported (Sborov, BJH, 2015). With a median follow up of 84 months (range 17 - 88), 9 patients (56%) have progressed and 5(31%) have died due to disease progression. Seven patients (44%) remain in complete remission with 5 currently on continued maintenance more than 72 months from ASCT. The median progression-free survival (PFS) is 46.5 months (range 2 - 88) and the median overall survival (OS) has not been reached (17 to NR) (Figure 1). Conclusions: The combination of lenalidomide and vorinostat is well tolerated, with prolonged PFS and OS. Details on the current seven patients still in remission and on continued maintenance will be presented at the meeting. Disclosures Hofmeister: Adaptive biotechnologies: Membership on an entity's Board of Directors or advisory committees; Oncopeptides: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees.


Heart ◽  
2001 ◽  
Vol 86 (1) ◽  
pp. 88-90
Author(s):  
D Boshoff ◽  
L Mertens ◽  
M Gewillig

A 14 year old girl presented with severe tricuspid regurgitation after she was diagnosed with “transient tricuspid regurgitation of the newborn”. In the neonatal period she had presented with severe tricuspid regurgitation without an obvious underlying anatomical cause. This spontaneously regressed during the first months of life. She was dismissed from follow up at the age of 5 years after complete normalisation of the clinical and echocardiographic examination. The subsequent evolution and management of the patient, as well as the possible pathogenesis responsible for the unusual clinical course, is discussed. This case stresses the importance of long term follow up of patients with transient tricuspid regurgitation.


2011 ◽  
Vol 60 (2) ◽  
pp. 231-238 ◽  
Author(s):  
Margitta Retz ◽  
Jens Rotering ◽  
Roman Nawroth ◽  
Alexander Buchner ◽  
Michael Stöckle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document