scholarly journals The Splicing Modulator GEX1A Exhibits Potent Anti-Leukemic Activity Both in Vitro and In Vivo through Inducing an MCL1 Splice-Switch in Pre-Clinical Models of Acute Myeloid Leukemia

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2666-2666
Author(s):  
Mark Sellin ◽  
Ryan Mack ◽  
Matthew C. Rhodes ◽  
Lei Zhang ◽  
Wei Wei ◽  
...  

Background: Overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-xL and Mcl1 is commonly detected in acute myeloid leukemia (AML) and is correlated with poor patient prognosis. Fortunately, in most AML samples, the expression of pro-apoptotic proteins, including Bax, Bak and Bim, is also increased. This is likely due to a feedback mechanism, which results in AML cells that are particularly vulnerable to treatment with targeted inhibition of anti-apoptotic proteins. However, challenges arise when the important pro-survival proteins named above are either poorly targeted by specific inhibitors (such as BH3-mimetics), as in the case of Mcl1, or when the use of these inhibitors results in severe thrombocytopenia, as in the case of Bcl-xL. Therefore, the development of novel medications to target such molecules with high specificity and low toxicity is of crucial importance. GEX1A, a splicing modulator, induces a large shift in the pattern of exon skipping and intron retention events by inhibiting the SF3B1-PHF5A complex of the U2 snRNP. While GEX1A has shown pre-clinical efficacy in some carcinoma cell lines containing various spiceosomal mutations, the in vitro and in vivo effects of GEX1A in leukemic cells which lack spiceosomal mutations are largely unknown. Experimental procedures: The IC50 of 18 established AML cell lines was determined by treating the cells with GEX1A in vitro using a series of 10-fold dilutions; cell viability was then examined using quantitative colorimetric assays. The in vivo anti-leukemic efficacy of GEX1A was evaluated using xenograft models generated in NSG mice injected with the GEX1A-sensitive human AML cell lines KOPN8, Molm-13, and MV4:11. The molecular mechanism by which GEX1A kills AML cells was then studied. Results: Based on their IC50, 18 established leukemic cell lines can be divided into high (LD50 < 100 nM), moderate (LD50 = 100-500 nM), and low sensitivity (LD50 > 500 nM) groups. We next determined the tolerable dose of GEX1A for in vivo mouse treatment. Intraperitoneal injection of GEX1A significantly improved the survival of leukemic mice compared to the vehicle control group (see Figure). Mechanistically, we found that GEX1A kills leukemic cells by inducing the production of pro-apoptotic Mcl1-S protein at the expense of the pro-survival Mcl1-L protein due to the alternative splicing of the Mcl1 gene. In addition, we found that high levels of Bcl-xL protein predict resistance of leukemic cells to GEX1A treatment. Furthermore, synergistic activity was observed in 2/6 cell lines treated with GEX1A and ABT-263, an inhibitor of Bcl-2/Bcl-xL/Bcl-w, and 6/6 cell lines treated with GEX1A and A-1155463, a highly potent Bcl-xL inhibitor. Conclusion: GEX1A is a novel splicing modulator that shows potent anti-leukemic activity. GEX1A kills leukemic cells by inducing a splicing isoform switch of the Mcl1 gene to produce a pro-apoptotic Mcl1-S protein at the expense of the pro-survival Mcl1-L protein in such cells. GEX1A and a Bcl-xL-specific inhibitor were also combined to show synergistic effects on leukemic cells. Our results indicate that GEX1A may be an effective treatment for leukemic patients when combined with a specific Bcl-xL inhibitor. We are actively evaluating our combination treatment using primary patient samples in in vivo xenograft models. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2737-2737
Author(s):  
Jean-Emmanuel Sarry ◽  
Christian Recher ◽  
Nesrine Aroua

Abstract Relapses in acute myeloid leukemia (AML) are caused by chemoresistant leukemic populations and new therapeutic approaches that specifically target these cells are urgently needed. Based on transcriptomic analyses of relevant PDX preclinical model of the resistance to cytarabine (AraC) and of the residual disease in patients, we identified ecto-nucleoside triphosphate diphosphohydrolase-1 CD39 (ENTPD1) overexpressed in the residual leukemic cells in vivo after chemotherapy. By flow cytometry, we confirmed that AraC increased cell surface CD39 expression in AML cell lines in vitro and in vivo as well as in 24 diverse patient-derived xenograft models. We further observed this increase in 100 patients at 35-days post-intensive chemotherapy compared to their respective diagnosis. Interestingly, high CD39 expression on AML patients was associated with a worse response to AraC in vivo. Furthermore, we showed that FACS-sorted CD39high AML cells had increased mitochondrial mass and activity, and were resistant to AraC in vitro and in vivo. We demonstrated that CD39 downstream signaling pathway was dependent on cAMP-PKA-PGC1a-TFAM axis and its inhibition by H89 sensitized AML cells to AraC through the inhibition of mitochondrial OxPHOS biogenesis and function. Finally, pharmacological inhibition of CD39 ATP hydrolase activity or genetic invalidation of CD39 protein using two inhibitors or shRNA markedly enhanced AraC cytotoxicity in AML cell lines and primary patient samples in vitro and in vivo. Together, these results indicate CD39 as a new player of the intrinsic chemoresistance pathway and a new therapeutic target to specifically overcome AraC resistance and eradicate these leukemic cells responsible for relapses in AML. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Yudi Miao ◽  
Behnam Mahdavi ◽  
Mohammad Zangeneh

IntroductionThe present study investigated the anti-acute myeloid leukemia effects of Ziziphora clinopodides Lam leaf aqueous extract conjugated cadmium nanoparticles.Material and methodsTo synthesize CdNPs, Z. clinopodides aqueous extract was mixed with Cd(NO3)2 .4H2O. The characterization of the biosynthesized cadmium nanoparticles was carried out using many various techniques such as UV-Vis. and FT-IR spectroscopy, XRD, FE-SEM, and EDS.ResultsThe uniform spherical morphology of NPs was proved by FE-SEM images with NPs the average size of 26.78cnm. For investigating the antioxidant properties of Cd(NO3)2, Z. clinopodides, CdNPs, and Daunorubicin, the DPPH test was used. The cadmium nanoparticles inhibited half of the DPPH molecules in a concentration of 196 µg/mL. To survey the cytotoxicity and anti-acute myeloid leukemia effects of Cd(NO3)2, Z. clinopodides, CdNPs, and Daunorubicin, MTT assay was used on the human acute myeloid leukemia cell lines i.e., Murine C1498, 32D-FLT3-ITD, and Human HL-60/vcr. The IC50 of the cadmium nanoparticles was 168, 205, and 210 µg/mL against Murine C1498, 32D-FLT3-ITD, and Human HL-60/vcr cell lines, respectively. In the part of in vivo study, DMBA was used for inducing acute myeloid leukemia in mice. CdNPs similar to daunorubicin ameliorated significantly (p≤0.01) the biochemical, inflammatory, RBC, WBC, platelet, stereological, histopathological, and cellular-molecular parameters compared to the other groups.ConclusionsAs mentioned, the cadmium nanoparticles had significant anti-acute myeloid leukemia effects. After approving the above results in the clinical trial studies, these cadmium nanoparticles can be used as a chemotherapeutic drug to treat acute myeloid leukemia in humans.


2019 ◽  
Author(s):  
Yusuke Tarumoto ◽  
Shan Lin ◽  
Jinhua Wang ◽  
Joseph P. Milazzo ◽  
Yali Xu ◽  
...  

AbstractLineage-defining transcription factors (TFs) are compelling targets for leukemia therapy, yet they are among the most challenging proteins to modulate directly with small molecules. We previously used CRISPR screening to identify a Salt-Inducible Kinase 3 (SIK3) requirement for the growth of acute myeloid leukemia (AML) cell lines that overexpress the lineage TF MEF2C. In this context, SIK3 maintains MEF2C function by directly phosphorylating histone deacetylase 4 (HDAC4), a repressive cofactor of MEF2C. Here, we evaluated whether inhibition of SIK3 with the tool compound YKL-05-099 can suppress MEF2C function and attenuate disease progression in animal models of AML. Genetic targeting of SIK3 or MEF2C selectively suppressed the growth of transformed hematopoietic cells underin vitroandin vivoconditions. Similar phenotypes were obtained when exposing cells to YKL-05-099, which caused cell cycle arrest and apoptosis in MEF2C-expressing AML cell lines. An epigenomic analysis revealed that YKL-05-099 rapidly suppressed MEF2C function by altering the phosphorylation state and nuclear localization of HDAC4. Using a gatekeeper allele ofSIK3, we found that the anti-proliferative effects of YKL-05-099 occurred through on-target inhibition of SIK3 kinase activity. Based on these findings, we treated two different mouse models of MLL-AF9 AML with YKL-05-099, which attenuated disease progressionin vivoand extended animal survival at well-tolerated doses. These findings validate SIK3 as a therapeutic target in MEF2C-positive AML and provide a rationale for developing drug-like inhibitors of SIK3 for definitive pre-clinical investigation and for studies in human patients with leukemia.Key PointsAML cells are uniquely sensitive to genetic or chemical inhibition of Salt-Inducible Kinase 3in vitroandin vivo.A SIK inhibitor YKL-05-099 suppresses MEF2C function and AMLin vivo.


Blood ◽  
1991 ◽  
Vol 77 (11) ◽  
pp. 2404-2412 ◽  
Author(s):  
DC Roy ◽  
JD Griffin ◽  
M Belvin ◽  
WA Blattler ◽  
JM Lambert ◽  
...  

Abstract The use of immunotoxins (IT) to selectively destroy acute myeloid leukemia (AML) cells in vivo or in vitro is complicated by both the antigenic similarity of AML cells to normal progenitor cells and the difficulty of producing a sufficiently toxic conjugate. The monoclonal antibody (MoAb) anti-MY9 is potentially ideal for selective recognition of AML cells because it reacts with an antigen (CD33) found on clonogenic AML cells from greater than 80% of cases and does not react with normal pluripotent stem cells. In this study, we describe an immunotoxin that is selectively active against CD33+ AML cells: Anti- MY9-blocked-Ricin (Anti-MY9-bR), comprised of anti-MY9 conjugated to a modified whole ricin that has its nonspecific binding eliminated by chemical blockage of the galactose binding domains of the B-chain. A limiting dilution assay was used to measure elimination of HL-60 leukemic cells from a 20-fold excess of normal bone marrow cells. Depletion of CD33+ HL-60 cells was found to be dependent on the concentration of Anti-MY9-bR and on the duration of incubation with IT at 37 degrees C. More than 4 logs of these leukemic cells were specifically depleted following short exposure to high concentrations (10(-8) mol/L) of Anti-MY9-bR. Incubation with much lower concentrations of Anti-MY9-bR (10(-10) mol/L), as compatible with in vivo administration, resulted in 2 logs of depletion of HL-60 cells, but 48 to 72 hours of continuous exposure were required. Anti-MY9-bR was also shown to be toxic to primary AML cells, with depletion of greater than 2 logs of clonogenic cells following incubation with Anti- MY9-bR 10(-8) mol/L at 37 degrees C for 5 hours. Activity of Anti-MY9- bR could be blocked by unconjugated Anti-MY9 but not by galactose. As expected, Anti-MY9-bR was toxic to normal colony-forming unit granulocyte-monocyte (CFU-GM), which expresses CD33, in a concentration- and time-dependent manner, and also to burst-forming unit-erythroid and CFU-granulocyte, erythroid, monocyte, megakaryocyte, although to a lesser extent. When compared with anti-MY9 and complement (C′), Anti- MY9-bR could be used in conditions that provided more effective depletion of AML cells with substantially less depletion of normal CFU- GM. Therefore, Anti-MY9-bR may have clinical utility for in vitro purging of AML cells from autologous marrow when used at high IT concentrations for short incubation periods. Much lower concentrations of Anti-MY9-bR that can be maintained for longer periods may be useful for elimination of AML cells in vivo.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 915-915
Author(s):  
Stuart A Rushworth ◽  
Lyubov Zaitseva ◽  
Megan Y Murray ◽  
Matthew J Lawes ◽  
David J MacEwan ◽  
...  

Abstract Introduction Despite recent significant progress in the understanding of the biology of acute myeloid leukemia (AML) the clinical outcomes for the majority of patients diagnosed with AML presently remain poor. Consequently, there is an urgent need to identify pharmacological strategies in AML, which are not only effective but can be tolerated by the older, less well patient. Recently our group and others have shown that there is high Bruton’s Tyrosine Kinase (BTK) phosphorylation and RNA expression in AML. Moreover, our recent study described for the first time that ibrutinib and BTK-targeted RNA interference reduced factor-induced proliferation of both AML cell lines and primary AML blasts, as well as reducing AML blast adhesion to bone marrow stromal cells. Inhibition of BTK has been shown to regulate chronic lymphocytic leukemia, mantle cell lymphoma and multiple myeloma cell migration by inhibiting SDF1 (stromal derived factor 1) induced CXCR4 regulated cell trafficking. Here we report that in human AML ibrutinib in addition functions in a similar way to inhibit SDF1/CXCR4-mediated AML migration at concentrations achievable in vivo. Methods To investigate the role of BTK in regulating AML migration we used both pharmacological inhibitor ibrutinib and genetic knockdown using a lentivirus mediated BTK targeted miRNA in primary AML blasts and AML cell lines. We examined migration of AML blasts and AML cells to SDF-1 using Transwell permeable plates with 8.0µM pores. Western blotting was used to examine the role of SDF-1 in regulating BTK, AKT and MAPK activation in primary AML blasts. Results We initially examined the expression of CXCR4 in human AML cell lines and found that 4/4 cell lines were positive for CXCR4 expression. Next we examined the effects of ibrutinib on the migration of the AML cell lines U937, MV4-11, HL60 and THP-1 in response to SDF1. We found that ibrutinib can inhibit the migration of all AML cell lines tested. We tested the in-vitro activity of ibrutinib on SDF-1 induced migration in a spectrum of primary AML blasts from a wide age spectrum of adult patients and across a range of WHO AML subclasses and found that ibrutinib significantly inhibits primary AML blast migration (n=12). Next we found that ibrutinib can inhibit SDF-1 induced BTK phosphorylation and downstream MAPK and AKT signalling in primary AML blast. Finally to eliminate the problems associated with off target ibrutinib activity we evaluated migration of AML cells lines using genetic inhibition of BTK. The introduction of BTK-specific miRNA dramatically inhibited the expression of BTK in THP-1 and HL60 and reduced SDF1 mediated migration confirming that BTK is involved in regulating AML migration in response to SDF1. Conclusions These results reported here provide a molecular mechanistic rationale for clinically evaluating BTK inhibition in AML patients and suggests that in some AML patients the blasts count may initially rise in response to ibrutinib therapy, analgous to similar clinical observations in CLL. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (5) ◽  
pp. 1107-1117 ◽  
Author(s):  
Satomi Tanaka ◽  
Satoru Miyagi ◽  
Goro Sashida ◽  
Tetsuhiro Chiba ◽  
Jin Yuan ◽  
...  

Abstract EZH2, a catalytic component of the polycomb repressive complex 2, trimethylates histone H3 at lysine 27 (H3K27) to repress the transcription of target genes. Although EZH2 is overexpressed in various cancers, including some hematologic malignancies, the role of EZH2 in acute myeloid leukemia (AML) has yet to be examined in vivo. In the present study, we transformed granulocyte macrophage progenitors from Cre-ERT;Ezh2flox/flox mice with the MLL-AF9 leukemic fusion gene to analyze the function of Ezh2 in AML. Deletion of Ezh2 in transformed granulocyte macrophage progenitors compromised growth severely in vitro and attenuated the progression of AML significantly in vivo. Ezh2-deficient leukemic cells developed into a chronic myelomonocytic leukemia–like disease with a lower frequency of leukemia-initiating cells compared with the control. Chromatin immunoprecipitation followed by sequencing revealed a significant reduction in the levels of trimethylation at H3K27 in Ezh2-deficient leukemic cells, not only at Cdkn2a, a known major target of Ezh2, but also at a cohort of genes relevant to the developmental and differentiation processes. Overexpression of Egr1, one of the derepressed genes in Ezh2-deficient leukemic cells, promoted the differentiation of AML cells profoundly. Our findings suggest that Ezh2 inhibits differentiation programs in leukemic stem cells, thereby augmenting their leukemogenic activity.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2083-2083
Author(s):  
Bing Xu ◽  
Yuanfei Shi ◽  
Long Liu ◽  
Bing Z Carter

BCL-2 inhibition exerts effective pro-apoptotic activities in acute myeloid leukemia (AML) but clinical efficacy as a monotherapy was limited in part due to the treatment-induced MCL-1 increase. Triptolide (TPL) exhibits anti-tumor activities in part by upregulating pro-apoptotic BCL-2 proteins and decreasing MCL-1 expression in various malignant cells. We hypothesized that combined BCL-2 inhibition and TPL exert synergistic anti-leukemia activities and prevent the resistance to BCL-2 inhibition in AML. We here report that TPL combined with BCL-2 inhibitor ABT-199 synergistically induced apoptosis in leukemic cells regardless of p53 status through activating the intrinsic mitochondrial apoptotic pathway in vitro. Although ABT-199 or TPL alone inhibited AML growth in vivo, the combination therapy demonstrated a significantly stronger anti-leukemic effect. Mechanistically, TPL significantly upregulated BH3 only proteins including PUMA, NOXA, BID and BIM and decreased MCL-1 but upregulated BCL-2 expression in both p53 wild type and p53 mutant AML cell lines, while the combination decreased both BCL-2 and MCL-1 and further increased BH3 only BCL-2 proteins. MCL-1 and BCL-2 increases associated with respective ABT-199 and TPL treatment and resistance were also observed in vivo. Significantly downregulating MCL-1 and elevating BH3 only proteins by TPL could not only potentially block MCL-1-mediated resistance but also enhance anti-leukemic efficacy of ABT-199. Conversely, BCL-2 inhibition counteracted the potential resistance of TPL mediated by upregulation of BCL-2. The combination further amplified the effect, which likely contributed to the synthetic lethality. This mutual blockade of potential resistance provides a rational basis for the promising clinical application of TPL and BCL-2 inhibition in AML independent of p53 status. Disclosures Carter: Amgen: Research Funding; AstraZeneca: Research Funding; Ascentage: Research Funding.


Blood ◽  
1996 ◽  
Vol 87 (11) ◽  
pp. 4754-4761 ◽  
Author(s):  
HJ Sutherland ◽  
A Blair ◽  
RW Zapf

Despite the usual uniform and primitive appearance of cells derived from the leukemic clone in most patients with acute myeloid leukemia (AML), there is considerable heterogeneity among leukemic blasts, particularly with respect to their capacity to proliferate and/or self renew. We have assessed whether these differences in proliferative potential are correlated with the phenotypic changes that characterize normal hematopoiesis, which might suggest an analogous hierarchy of AML progenitors. We have used the ability of primitive AML cells to persist or produce blast colony forming cells (CFU-blast) detected after 2 to 8 weeks in the presence of growth factors in suspension cultures (SC) termed SC-initiating cells (IC), or with stroma in long-term cultures (LTC-IC) as a quantitative assay for a cell that may have primitive characteristics. This SC assay is linear, cell concentration independent, and the frequency of SC-IC by limiting dilution analysis is lower than primary CFU-blast. The average output of CFU-blast after 2 to 8 weeks by individual SC-IC varied between 2 and more than 100 in individual patients. Leukemic blasts were sorted based on their expression of antigens previously found useful to characterize normal progenitor differentiation, and analyzed for the percentage of CFU- blast SC-IC, and leukemic LTC-IC within each fraction. All of these progenitor types were heterogeneous in their expression of CD45RA and CD33, but expressed uniformly low levels of CD15 and differed from normal primitive progenitors in their high expression of HLA-DR. CFU- blast had a significantly higher expression of CD71 and CD38 as compared with SC-IC or leukemic LTC-IC. In patients with CD34+ blasts, the majority of their SC-IC at 4 weeks were CD34+/CD38-; however, patients with CD34- blasts had at least some CD34- progenitors. These results show that while heterogeneity exists between patients, it is possible to physically separate subpopulations of AML cells with different proliferative potentials. It also provides some support for the concept that quantitation of leukemic cells capable of producing CFU-blast for 4 weeks or more in vitro measures a less frequent leukemic progenitor with higher proliferative potential that may be the only relevant cell for maintaining the leukemic clone in vivo.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3109-3109
Author(s):  
Sarah J. Horton ◽  
Vanessa Walf-Vorderwülbecke ◽  
Steve J. Chatters ◽  
Neil J. Sebire ◽  
Jasper de Boer ◽  
...  

Abstract Chromosomal translocations involving the Mixed-Lineage-Leukemia (MLL) gene on chromosome 11q23 are frequent in infant acute leukemia and give rise to the formation of MLL-fusion genes. Several studies have addressed the importance of MLL-fusion activity for the initiation and maintenance of hematopoietic transformation. However, the dependence of established leukemias on MLL-fusion activity has not been previously addressed. We have developed a model for conditional expression of MLL-ENL in hematopoietic progenitor cells, in which expression of the fusion oncogene is turned off by doxycycline. In this study, immortalized myeloid cells conditionally or constitutively expressing the MLL-ENL fusion gene were used to induce acute myeloid leukemia (AML) in vivo. Primary recipients developed AML with a mean latency of 81.4 (±4.8) days. Secondary recipients developed AML with much shorter latencies than primary recipients regardless of whether the leukemic cells were freshly transplanted (26.8 (±6.8) days) or cultured in vitro for one month prior to transplantation (18 (±3.9) days). Genetic analysis revealed that some leukemic cells had acquired gross chromosomal abnormalities such as trisomy 6 or gains and losses of chromosome regions, which were not detected in the immortalised cells from which they were derived. Despite the acquisition of additional genetic abnormalities, the leukemic cells remained dependent upon MLL-ENL expression in vitro and in vivo. The leukemic cells terminally differentiated into neutrophils upon doxycycline treatment in vitro and established leukemias regressed following administration of doxycycline to recipient mice in their drinking water. Leukemic regression was accompanied by the complete loss of leukemic cells from the peripheral blood and differentiation of leukemic cells in the spleen. In 7 out of 34 doxycycline treated mice, remission was not sustained and the leukemias relapsed. However, most of these were shown to have acquired constitutive expression of MLL-ENL. This study demonstrates that leukemic cells are addicted to MLL-ENL expression and suggests that targeting the transcriptional/signalling networks established by MLL-fusion oncogenes in patients with 11q23 rearrangements would be a major therapeutic advance.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3302-3302
Author(s):  
Timothy Pardee ◽  
Evan Gomes ◽  
Jamie Jennings-Gee ◽  
David L. Caudell ◽  
William Gmeiner

Abstract Abstract 3302 Acute Myeloid Leukemia (AML) is an aggressive myeloid malignancy that leads to marrow failure and death. This disease affects approximately 12,000 people per year in the United States, causing 9,000 deaths. Despite decades of research, therapy remains essentially unchanged and outcomes are poor. In patients over the age of 60 less then 10% of patients survive 5 years from diagnosis. There is a desperate need for the identification of new active agents with favorable toxicity profiles. The novel polymeric fluoropyrimidine (FP) FdUMP[10] is an oligodeoxynucleotide pro-drug of the thymidylate synthase (TS)-inhibitory FP metabolite 5-fluoro-2'-deoxyuridine-5`-O-monophosphate (FdUMP). The observation that this compound was highly active against several leukemia lines in the NCI 60 cell line screen prompted us to evaluate its activity in several preclinical models of AML. In vitro, FdUMP[10] exhibited remarkable activity against 3 human acute leukemia cell lines, HL60, Jurkat and THP-1, with IC50 values of 3.378 nM (95% CI 2.984 to 3.825), 5.438 nM (4.609 to 6.417) and 4.093 nM (3.413 to 4.907) respectively. We next tested its efficacy against a more genetically defined murine model of AML driven by expression of MLL-ENL. FdUMP[10] exhibited even greater activity against all murine lines tested. The IC50 values of FdUMP[10] against two MLL-ENL driven murine AML cell lines were 214 pM (95%CI 178.9 to 255.9) and 292.3 pM (251.8 to 339.4). The IC50 values observed for FdUMP[10] for all the murine lines tested were lower than both Ara-C (30-40 nM) and doxorubicin (2-4 nM). We then determined the cytotoxic mechanism for FdUMP[10] in vitro. Upon treatment with FdUMP[10] both the human and murine cell lines undergo extensive apoptosis as indicated by Annexin V and propidium iodide staining. Treated cells developed γH2AX foci, rapid and complete TS inhibition and display trapped Topoisomerase I (Topo I) cleavage complexes. FdUMP[10]-mediated induction of apoptosis was p53 independent as murine AML cells that had p53 knocked down by RNAi demonstrated resistance to both Ara-C and doxorubicin, but not to FdUMP[10]. We next tested the efficacy of FdUMP[10] in vivo. The MLL-ENL driven murine AML model results in blasts that can be transplanted into sublethally irradiated, immunocompetent, syngeneic recipients. The recipients develop a fatal and therapy-resistant AML. Lines were generated that expressed a luciferase reporter. Animals were imaged 6–7 days after injection of the leukemias to ensure engraftment and then began treatment with either the combination of Ara-C plus doxorubicin, single-agent FdUMP[10], or observation. Studies were performed using 2 doses of FdUMP[10] at 150 or 300 mg/kg injected on days 1 and 3 and compared to animals treated with 100 mg/kg Ara-C and 3mg/kg doxorubicin injected on days 1 through 5. Both treatments resulted in a statistically significant survival advantage over observation. A preliminary toxicology study compared FdUMP[10], 150 mg/kg daily, to 5-fluorouracil (5 FU), 150 mg/kg daily, or the combination of Ara-C at 100 mg/kg plus doxorubicin at 3 mg/kg daily. All groups were treated for 3, 4 or 5 days. On day 6 animals were sacrificed and organs harvested, sectioned, and stained. Slides were then reviewed by a veterinary pathologist. Tissues most affected were the small intestine, colon, and the bone marrow. The 5FU-treated animals had severe villous blunting and fusion with crypt necrosis in both large and small intestine. In contrast, FdUMP[10]-treated animals had only mild crypt epithelial apoptosis with mitoses. The 5 FU and Ara-C plus doxorubicin groups had a severe pan-cytopenia in the marrow compared to FdUMP[10] treated animals that showed only minimal to mild apoptosis. These data support the assertion that FdUMP[10] has lower toxicity then either Ara-C plus doxorubicin or identically dosed 5 FU. In summary FdUMP[10] exhibited remarkable activity against AML cells in vitro and in vivo. Additionally, FdUMP[10] had decreased toxicity compared to treatment with either single agent 5 FU or combination treatment with Ara-C plus doxorubicin. Disclosures: Gmeiner: Salzburg Therapeutics: Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document