scholarly journals KarMMa-3: A Phase 3 Study of Idecabtagene Vicleucel (ide-cel, bb2121), a BCMA-Directed CAR T Cell Therapy Vs Standard Regimens in Relapsed and Refractory Multiple Myeloma

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 24-25
Author(s):  
Michel Delforge ◽  
Rachid C. Baz ◽  
Michele Cavo ◽  
Natalie S. Callander ◽  
Armin Ghobadi ◽  
...  

BACKGROUND: Patients with relapsed and refractory multiple myeloma (RRMM) who progress on immunomodulatory agents, proteasome inhibitors (PIs), and anti-CD38 antibodies have poor outcomes, highlighting the need for novel targets for the disease. The BCMA-directed CAR T cell therapy ide-cel previously demonstrated deep, durable responses in heavily pretreated patients with RRMM (Raje N, et al. N Engl J Med. 2019;380:1726-1737; Munshi NC, et al. J Clin Oncol. 2020;38[suppl] [abstract 8503]). In the pivotal phase 2 KarMMa study, overall response rate (ORR), complete response rate, and median duration of response (DOR) were 73%, 33%, and 10.7 months, respectively, across the target dose levels of 150−450 × 106 CAR+ T cells, and 82%, 39%, and 11.3 months at the highest target dose of 450 × 106 CAR+ T cells. In order to examine the effect of ide-cel as an earlier line of treatment, the multicenter, randomized, open-label, phase 3 study, KarMMa-3, was opened to compare ide-cel vs standard regimens in patients whose disease is refractory to the last line of therapy. STUDY DESIGN: Patients with RRMM who had received 2-4 prior regimens (including ≥ 2 consecutive cycles of daratumumab [DARA], an immunomodulatory agent, and a PI [individually or in combinations]) are randomized 2:1 to receive ide-cel or one of the following standard regimens based on the patient's most recent regimen and investigator discretion: DARA + pomalidomide (POM) + dexamethasone (DEX; DPd), DARA + bortezomib + DEX (DVd), ixazomib + lenalidomide + DEX (IRd), carfilzomib + DEX (Kd), or elotuzumab + POM + DEX (EPd). Patients in the standard-regimen arm of this study are eligible to receive ide-cel after confirmed evidence of progressive disease. Randomization is stratified by age (< 65 vs ≥ 65 years), number of prior regimens (2 vs 3 or 4), and high-risk cytogenetics (t(4;14), t(14;16), or del(17p); yes vs no). Patients must be ≥ 18 years of age, have Eastern Cooperative Oncology Group performance status of 0-1, have disease that is refractory to the last treatment regimen, and have achieved minimal or better response to ≥ 1 prior regimen. Patients with nonsecretory myeloma, central nervous system involvement, prior allogeneic stem cell transplant, prior BCMA-targeted therapy, or prior gene or cellular therapy for cancer are excluded. Ide-cel is manufactured following leukapheresis and then infused (at dose levels from 150 to 450 × 106, but targeting 450 × 106, CAR+ T cells) after 2 days of rest following lymphodepletion with 3 days of fludarabine 30 mg/m2 + cyclophosphamide 300 mg/m2. Up to 1 cycle of DPd, DVd, IRd, Kd, or EPd may be given as bridging therapy while ide-cel is being manufactured. The primary endpoint is progression-free survival. The key secondary endpoints are ORR and overall survival. Other secondary endpoints include minimal residual disease, DOR, safety, pharmacokinetics, and quality of life. Immunogenicity and biomarkers are exploratory endpoints. KarMMa-3 is registered at ClinicalTrials.gov: NCT03651128. Disclosures Delforge: Amgen, Celgene, Janssen, Takeda: Honoraria. Baz:Sanofi, Karypharm, Janssen, Celgene: Other: Advisory board; Karyopharm, janssen, Bristol Myers Squibb, Celgene, Merck, Sanofi, Abbvie Inc.: Research Funding. Cavo:BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; GlaxoSmithKline: Honoraria, Speakers Bureau; Karyopharm: Honoraria; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel accomodations, Speakers Bureau; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel accomodations, Speakers Bureau; AbbVie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Callander:University of Wisconsin: Current Employment; Cellectar: Research Funding. Ghobadi:Atara: Consultancy; Celegene: Consultancy; EUSA: Consultancy; Wugen: Consultancy; Kite, a Gilead Company: Consultancy, Research Funding, Speakers Bureau. Rodriguez-Otero:GlaxoSmithKline: Consultancy, Current Employment, Current equity holder in publicly-traded company, Honoraria; Kite: Consultancy, Honoraria; Celgene/Bristol-Myers Squibb: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: TRAVEL, ACCOMMODATIONS, EXPENSES (paid by any for-profit health care company); Amgen: Consultancy, Honoraria; Janssen: Consultancy, Honoraria, Other: TRAVEL, ACCOMMODATIONS, EXPENSES (paid by any for-profit health care company); Sanofi: Consultancy, Honoraria; Medscape: Membership on an entity's Board of Directors or advisory committees; Oncopeptides: Consultancy, Honoraria; Abbvie: Consultancy, Honoraria. Mateos:Adaptive Biotechnologies: Honoraria; GlaxoSmithKline: Honoraria; Abbvie: Honoraria; Takeda: Honoraria; Janssen: Honoraria; Bristol-Myers Squibb: Honoraria; Amgen: Honoraria; EDO Mundipharma: Honoraria; Seattle Genetics: Honoraria; Roche: Honoraria. Massaro:bluebird bio: Current Employment, Current equity holder in publicly-traded company. Ding:Bristol-Myers Squibb Company: Current Employment. Patel:BMS: Current Employment. Pittari:Bristol-Myers Squibb Company: Current Employment. Novick:Bristol-Myers Squibb Company: Current Employment. Giralt:OMEROS: Consultancy, Honoraria; NOVARTIS: Consultancy, Honoraria, Research Funding; KITE: Consultancy; MILTENYI: Consultancy, Research Funding; ACTINUUM: Consultancy, Research Funding; TAKEDA: Research Funding; AMGEN: Consultancy, Research Funding; JAZZ: Consultancy, Honoraria; CELGENE: Consultancy, Honoraria, Research Funding. Berdeja:Bioclinica: Consultancy; CURIS: Research Funding; CRISPR Therapeutics: Consultancy, Research Funding; Constellation: Research Funding; Abbvie: Research Funding; Glenmark: Research Funding; Celgene: Consultancy, Research Funding; Janssen: Consultancy, Research Funding; Vivolux: Research Funding; EMD Sorono: Research Funding; Kesios: Research Funding; Kite Pharma: Consultancy; Legend: Consultancy; Lilly: Research Funding; Novartis: Research Funding; Poseida: Research Funding; Prothena: Consultancy; Teva: Research Funding; Bluebird: Research Funding; BMS: Consultancy, Research Funding; Cellularity: Research Funding; Genentech, Inc.: Research Funding; Servier: Consultancy; Amgen: Consultancy, Research Funding; Acetylon: Research Funding; Takeda: Consultancy, Research Funding; Karyopharm: Consultancy.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 959-959 ◽  
Author(s):  
Sham Mailankody ◽  
Arnab Ghosh ◽  
Mette Staehr ◽  
Terence J Purdon ◽  
Mikhail Roshal ◽  
...  

Abstract Introduction: BCMA targeted CAR T cell therapy has shown promising results in patients with relapsed/refractory multiple myeloma (MM). Herein, we report on the safety and efficacy of MCARH171, a second generation, human derived BCMA targeted autologous 4-1BB containing CAR T cell therapy, including a truncated epidermal growth factor receptor safety system (Smith EL. Mol Ther 2018). Methods: This is a phase I first in human, dose escalation trial of MCARH171. Patients received conditioning chemotherapy with cyclophosphamide (Cy) 3 gm/m2 as a single dose or fludarabine 30 mg/m2 daily and Cy 300 mg/m2 daily for 3 days followed by MCARH171 infusion in 1-2 divided doses. The trial followed a standard 3+3 design with 4 dose levels where patients received the following mean doses per cohort: (1) 72x106, (2) 137x106, (3) 475x106, (4) 818x106 viable CAR+ T cells. The primary objective was to demonstrate safety, and secondary objectives included efficacy and expansion, and persistence of CAR T cells using PCR from the peripheral blood. The last accrued patient received MCARH171 on Dec 6, 2017 and the data cut-off is July 16, 2018. The study is closed to accrual. Results: 11 patients with relapsed and/or refractory MM were treated. Median number of prior lines of therapy was 6 (range: 4-14), and all patients received prior therapy with a proteasome inhibitor, IMiD, anti-CD38 monoclonal antibody, and high dose melphalan/stem cell transplant. Nine (82%) patients had high-risk cytogenetics and 9 (82%) were refractory to their immediate prior line of treatment. One patient was not evaluable for DLTs given the need for early radiation and steroids for impending spinal cord compression by tumor. There are no DLTs reported. Cytokine release syndrome (CRS) grade 1-2 occurred in 4 patients (40%), grade 3 occurred in 2 (20%), and there was no grade 4-5 CRS. Grade 2 encephalopathy occurred in 1 patient (10%) in the setting of high fevers which resolved in less than 24 hours. There was no grade 3 or higher neurotoxicity observed. Tocilizumab was administered to 3 patients; 2 in cohort 2, and 1 in cohort 3. Laboratory values correlating with CRS reaching grade 3 or requiring Tocilizumab (N=4) compared to those with no or milder CRS (N=6) included peak CRP (mean: 28.5 vs 4.6 mg/dL, p<0.001), IFNg (mean peak fold increase: 271 vs 11-fold, p<0.0001), and peak IL6 before Tocilizumab, as IL6 elevation artificially increases after use (mean: 435 vs 68.7 pg/mL, p<0.005). No significant change was seen in ferritin or fibrinogen compared to baseline. Overall response rate was 64% and the median duration of response was 106 days (range: 17 to 235 days). The peak expansion and persistence of MCARH171 as well as durable clinical responses were dose dependent. Patients who were treated on the first two dose cohorts (≤150 X106 CAR T cells) had a lower peak expansion in the peripheral blood (mean 14,098 copies/µL; N=6), compared to patients who were treated on the third or fourth dose cohort 3-4 (≥450 X106 CAR T cells; N=5), where the mean peak expansion was 90,208 copies/µL (p<0.05). Among the 5 patients who received higher doses (450 X106), 5/5(100%) patients responded. The duration of responses was also related to the cell dose, with 3 of 5 patients (60%) treated in the cohorts receiving ≥450 X106 had clinical responses lasting >6 months compared to only 1 of 6 (16.7%) patients who received lower doses. Two patien have ongoing responses (VGPR) at 7.5+ and 10+ months of follow up. To normalize for dose administered we compared the pharmacokinetics of only patients treated at dose levels 3-4 ( ≥450 X106 CAR T cells). Here, we demonstrate that peak expansion correlated to clinical efficacy, with the 3 durable responders all having peak expansion >85,000 copies/µL (mean: 131,732 copies/µL); compared to transient responders, where the maximum peak expansion was 33,213 copies/µL (mean: 27,922; Figure 1). Conclusions: MCARH171 has an acceptable safety profile with no DLTs reported. A dose-response relationship with toxicity was not clearly observed, as noted by distribution of tocilizumab use across dose cohorts. However, a dose-response relationship was observed with promising clinical efficacy at dose levels of ≥450 X106 CAR T cells. Controlling for dose level, peak expansion correlated with durability of response. These results further support the development of CAR T cells for heavily pre-treated patients with relapsed and refractory MM. Disclosures Mailankody: Janssen: Research Funding; Takeda: Research Funding; Juno: Research Funding; Physician Education Resource: Honoraria. Korde:Amgen: Research Funding. Lesokhin:Takeda: Consultancy, Honoraria; Squibb: Consultancy, Honoraria; Janssen: Research Funding; Genentech: Research Funding; Serametrix, inc.: Patents & Royalties: Royalties; Bristol-Myers Squibb: Consultancy, Honoraria, Research Funding. Hassoun:Oncopeptides AB: Research Funding. Park:Juno Therapeutics: Consultancy, Research Funding; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Pfizer: Consultancy; AstraZeneca: Consultancy; Adaptive Biotechnologies: Consultancy; Kite Pharma: Consultancy; Novartis: Consultancy; Shire: Consultancy. Sauter:Juno Therapeutics: Consultancy, Research Funding; Sanofi-Genzyme: Consultancy, Research Funding; Spectrum Pharmaceuticals: Consultancy; Novartis: Consultancy; Precision Biosciences: Consultancy; Kite: Consultancy. Palomba:Pharmacyclics: Consultancy; Celgene: Consultancy. Riviere:Fate Therapeutics Inc.: Research Funding; Juno Therapeutics, a Celgene Company: Membership on an entity's Board of Directors or advisory committees, Research Funding. Landgren:Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Consultancy, Research Funding; Pfizer: Consultancy; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Karyopharm: Consultancy; Merck: Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Research Funding. Brentjens:Juno Therapeutics, a Celgene Company: Consultancy, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding. Smith:Celgene: Consultancy, Patents & Royalties: CAR T cell therapies for MM, Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 7-8
Author(s):  
Vanessa E Kennedy ◽  
Christopher Wong ◽  
Chiung-Yu Huang ◽  
Jeffrey L. Wolf ◽  
Thomas Martin ◽  
...  

Introduction Chimeric antigen receptor (CAR) T-cells can induce a rapid disease response but are frequently associated with immunologic toxicities. In addition to cytokine release syndrome (CRS), macrophage activation syndrome-like manifestations (MAS-L), characterized by uncontrolled immune activation, have been described (Shah et al, 2020). Traditional MAS definitions are challenging to apply in patients receiving CAR T cells, due to overlapping signs and symptoms with lymphodepletion and CRS. Therefore, we sought to develop novel criteria to characterize MAS-L following CAR T cells and used these criteria to identify risk factors for developing MAS-L. Methods We conducted a retrospective review of 55 patients who received B cell maturation antigen-directed CAR T cells for multiple myeloma from 11/1/17 - 5/1/20. Based on the labs readily available in our patient population, we defined MAS-L using the following criteria: 1) rate of ferritin rise ³ 100 mg/L/hour within a 24 hour period and2) minimum fibrinogen &lt; 150 mg/dL or maximum LDH &gt; 2 times the upper limit of normal. In developing these simplified criteria, we considered multiple laboratory markers of inflammation (ferritin, LDH, soluble interleukin receptor-2, natural killer cell activity) and end organ damage. Infection was defined as any culture positivity, febrile neutropenia, or clinical suspicion such that a new antimicrobial was started in the 30 days prior to CAR T cells. Wilcoxon rank-sums and Fisher's exact test were used to compare continuous and categorical variables, respectively. Overall (OS) and progression-free survival (PFS) were compared using log-rank tests. Results Of the 55 patients, 12 (21.8%) met the above criteria for MAS-L with similar disease trajectories. Following CAR T cells, all 12 patients first developed CRS, characterized by an elevated C-reactive protein (CRP) and administration of tocilizumab, and subsequently developed MAS-L, characterized by decrease in fibrinogen and rapid rise of ferritin and LDH (Figure 1). Compared to the 45 patients who did not develop MAS-L, patients with MAS-L had similar baseline patient and disease characteristics (Table 1); however, a significantly higher proportion of patients with MAS-L had an infection prior to receiving CAR T cells (75% vs 9.3%, p &lt; 0.001.) Patients with MAS-L also had higher peak ferritin (median 20,707 vs 573 ug/L, p &lt; 0.001), D-dimer (14,000 vs 3,010 ng/mL, p &lt; 0.001), aspartate aminotransferase (AST; 153 vs 48 U/L:, p &lt; 0.001) and a trend towards higher alanine aminotransferase (ALT; 76 vs 50 U/L, p = 0.08). In contrast, patients with MAS-L had a lower peak C-reactive protein (CRP; 29.8 vs 60 mg/L, p = 0.03). Compared to patients who did not develop MAS-L, a similar proportion of MAS-L patients developed any CRS (100% vs 84%, p = 0.33) and ³ grade 2 CRS (50% vs 50%, p = 1). Neurotoxicity was more common in patients with MAS-L (42% vs 14%, p = 0.05). A greater proportion of patients with MAS-L received tocilizumab (100% vs 70%, p = 0.05), systemic steroids (92% vs 27%, p &lt; 0.001), and anakinra (83% vs 2.3%, p &lt; 0.001). Anakinra was given per clinician discretion and not per study protocol. Following CAR T cell therapy, patients with MAS-L had longer hospitalizations (21 vs 19 days, p = 0.009) and a greater proportion required ICU-level care (27% vs 2%, p = 0.02). OS and PFS between the two groups were similar (p = 0.15 and 0.63, respectively), with a 1-year OS of 65.2% vs 90.6% and PFS of 35.4% vs 54.7% for patients with vs without MAS-L, respectively. In univariate logistic regression of baseline patient factors, disease characteristics, and ferritin, CRP, and D-dimer prior to receiving CAR T cells, only a history of documented infection in the 30 days prior to CAR T cells predicted MAS-L development (Hazard Ratio 29.2, 95% CI 5.54 - 154, p &lt; 0.001). Conclusions In this analysis, we developed novel criteria for defining MAS-L following CAR T cell therapy and used these criteria to define the unique laboratory profile and clinical trajectory of patients with MAS-L. We also identify pre-existing infection as a strong risk factor for MAS-L development. Although patients with MAS-L frequently require prolonged monitoring, this immunologic toxicity can be mitigated with steroids, anakinra, and supportive care, and patients ultimately have similar survival compared to patients without MAS-L. Larger studies are needed to prospectively validate these novel criteria. Disclosures Wolf: Adaptive: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Martin:Sanofi, Amgen, Seattle Genetics, JNJ - Janssen: Research Funding; Legend Biotech: Consultancy. Shah:BMS, Janssen, Bluebird Bio, Sutro Biopharma, Teneobio, Poseida, Nektar: Research Funding; GSK, Amgen, Indapta Therapeutics, Sanofi, BMS, CareDx, Kite, Karyopharm: Consultancy. Wong:Bristol Myers Squibb: Research Funding; Sanofi: Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy; Janssen: Research Funding; Roche: Research Funding; Fortis: Research Funding; GSK: Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 14-14
Author(s):  
Mehmet K. Samur ◽  
Mariateresa Fulciniti ◽  
Anil Aktas-Samur ◽  
Abdul Hamid Bazarbachi ◽  
Yu-Tzu Tai ◽  
...  

Chimeric antigen receptor (CAR) T-cell therapy targeting B cell maturation antigen (BCMA) has provided deep (73% - 100%) responses in relapsed/refractory multiple myeloma (MM). However, median PFS has been less than 12 months, and amongst the small number of patients retreated at the time of progression with the same CAR T product, responses have been infrequent. This highlights development of resistance that may preclude effectiveness of the 2ndinfusion, and may also underly relapse following response to the initial CAR-T cell therapy. Here, we have investigated one of the resistance mechanisms using longitudinal single cell transcriptomic and bulk genomic analysis. This patient had relapsed/refractory IgG lambda MM with hypodiploidy and a complex karyotype with t(8;12) (q24;q14), clonal t(11;14) (q13;q32), and clonal deletion 13. Patient received 150x106CAR+ T cells (ide-cel) and achieved partial response, with duration of response of 8 months. The patient was retreated with 450 x106CAR+ T cells at relapse, but with no response. To delineate the resistance mechanism, we evaluated the bone marrow (BM) niche using 37658 cells from eight time points from before 1st CAR T cell infusion to 2 months after 2nd CAR T cell infusion, and identified 13 clusters consisting of hematopoietic cells and MM/plasma cells. Using RT-PCR based detection, we observed engineered CAR T cells only at 2 weeks after first infusion, when maximal CAR T cell expansion was observed. We did not observe infused CAR T cells with single cell RNAseq after 2ndinfusion, but a limited expansion was confirmed using RT-PCR.Re-clustering of the T cell cluster showed an increased proportion of CD4+ helper and T regulatory cells (Treg) 2 weeks after 1st infusion. In contrast, TREG proportion remained constant at the 2nd infusion, suggesting other causes for lack of expansion of CAR-T cells. We also did not identify any significant increase in the proportion of cells expressing immune check point inhibitory markers or in accessory cell types with immune inhibitory function in MM BM. Since we did not delinate a role of the BM milieu mediating suppression of CAR-T cell expansion and function following 2ndinfusion, we next explored tumor intrinsic factors. Soluble BCMA level (produced predominantly by MM cells) was high before the first CAR T cell infusion and dropped significantly to a very low level coinciding with the clinical response; however, it remained low even at the time of relapse with increase burden of MM, indicating a lack of BCMA production by MM cells. We therefore investigated genomic changes in MM cells at the time of relapse. Our single cell analysis of BM samples identified 3 samples (at the time of relapse and post 2ndCAR T cell infusion) with significant numbers of MM cells, evidenced by expression of CD138 and XBP1 (marker of plasma cells), CCND1 (upregulated in this patient with t(11;14)) and lack of RB1 (downregulated in this patient with del13). Imputation of copy number alterations scRNAseq showed that the majority of MM cells had a deletion of 16p, including the BCMA locus located on 16p13.13. We further validated these findings using deep whole exome sequencing (WES) of purified CD138+ cells collected after the second CAR T infusion. Before first CAR T cell infusion, 4% MM cells showed deletion 17p, while after second infusion both WES and scRNAseq prediction showed that del17p and del16p were clonal, and longitudinal scRNAseq analysis indicated that del17p and del16p co-occurred in the same clone. Moreover, WES identified a subclonal nonsense mutation (p.Q38*) in BCMA that creates an early stop codon in the BCMA gene. This biallelic BCMA deletion, acquired with one copy loss and a 2ndloss-of-function mutation, provides the molecular basis for lack of BCMA expression in MM cells at the time of relapse. Our data showed that both TP53 and BCMA had deletion in one allele and mutation in the second allele. These results identify biallelic loss of BCMA locus as a potential resistance mechanism to BCMA targeting therapy. Our results highlight the need to investigate sBCMA as a potential indicator of BCMA loss at relapse, and to carry out detailed transcriptomic or genomic analysis to confirm mutations. Moreover, these data also demonstrate the ability of MM cells to survive without BCMA expression. With the growing number of BCMA targeting therapeutic modalities under development, we would expect to see such occurrences more commonly in the future. Disclosures Fulciniti: NIH: Research Funding. Campbell:BMS: Current Employment, Current equity holder in publicly-traded company. Petrocca:bluebird, bio: Current Employment, Current equity holder in publicly-traded company. Hege:Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company, Other: TRAVEL, ACCOMMODATIONS, EXPENSES (paid by any for-profit health care company), Patents & Royalties: numerous, Research Funding; Celgene (acquired by Bristol Myers Squibb): Ended employment in the past 24 months; Mersana Therapeutics: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Arcus Biosciences (Former Board of Directors): Divested equity in a private or publicly-traded company in the past 24 months. Kaiser:BMS: Current Employment, Current equity holder in publicly-traded company. Anderson:Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Sanofi-Aventis: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Millenium-Takeda: Membership on an entity's Board of Directors or advisory committees; Oncopep and C4 Therapeutics.: Other: Scientific Founder of Oncopep and C4 Therapeutics.. Munshi:C4: Current equity holder in private company; Legend: Consultancy; OncoPep: Consultancy, Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties; BMS: Consultancy; Janssen: Consultancy; Adaptive: Consultancy; Amgen: Consultancy; AbbVie: Consultancy; Karyopharm: Consultancy; Takeda: Consultancy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1430-1430
Author(s):  
Amanda Blackmon ◽  
Alexey V. Danilov ◽  
Lili Wang ◽  
Raju Pillai ◽  
Hormoz Babaei Mirshkarlo ◽  
...  

Abstract Introduction Approximately 5-10% of patients with chronic lymphocytic lymphoma (CLL) will develop transformation to a more aggressive lymphoma, usually diffuse large B-cell lymphoma (Richter's transformation, RT). The median overall survival after transformation is less than one year. It remains difficult to predict which patients will transform although there is a correlation with poor risk features of CLL, like del17p/TP53 mutation and Notch1 mutations among others. While data emerging from trials of CD19-directed CAR-T cells (CD19CART) in CLL are showing promising results in the relapsed/refractory setting, there appears to be an emergence of RT in some cases even when there is no measurable residual CLL. For instance, in the phase 1 portion of the TRANSCEND CLL 004 trial, in the monotherapy arm with lisocabtagene maraleucel (n=23), 5 RT cases emerged subsequently and 3 of these had no recurrent CLL or MRD conversion to positive [Siddiqi T, et al. ASH 2020]. Four of these RT events were in patients who had progressed on both ibrutinib and venetoclax. Here we describe patients who developed RT after receiving CD19CART for CLL at City of Hope. Methods A retrospective chart review was performed to identify RT emergence and to analyze key factors surrounding the development of RT after CD19CART for CLL at City of Hope. Patient characteristics were assessed including age, sex, prior number of treatments, CLL FISH panel, mutational analysis, time on BTK inhibitor therapy, response to CAR T cell therapy, time to RT after CD19CAR T cell therapy, and outcomes after RT. Pathology samples from RT were assessed for CD19 expression and will be assessed for PDL-1, MYC, SYK, ZAP70, AKT, ERK expression by IHC or flow cytometry. Results A total of 7 out of 27 patients have been identified who received CD19CART for CLL at City of Hope and subsequently relapsed with RT [Table 1]. The median age at the time of CD19CART was 66 years (range, 54-68) and median number of prior therapies was 5 (range 4-7). All patients had features associated with high risk CLL prior to CD19CART: 5/7 had del17p; 3/7 had TP53 mutations, 2/7 had NOTCH1 mutations, and 1/7 had SF3B1 mutations. Most patients, 6/7, achieved an objective response to CD19CART with 4/7 undetectable minimal residual disease to a level of &lt;10 -4 cells (uMRD4) CRs on imaging and bone marrow examination, and 1 uMRD4 PR. The median time to transformation after administration of CD19CART was 9.5 months (range 3.5-40 months). All patients had received BTK inhibitor therapy prior to CAR T cells, with the median length of treatment being 1 year (5 months - 4 years) and 6/7 had received prior venetoclax as well. Biopsy material at the time of RT indicated 6/7 were positive for CD19 expression by immunohistochemistry or flow cytometry (1 was only weakly positive). PD-L1, MYC, SYK, ZAP70, AKT, ERK expression will be analyzed, and results presented at the meeting. Of these patients, 3/7 were unable to be treated for RT and died shortly after diagnosis of RT due to frailty, sepsis/respiratory failure/compartment syndrome, and CNS involvement/altered mental status/hypercalcemia/tumor lysis. Two patients achieved CR (one with R-CHOP, one with O-CHOP/pembrolizumab/acalabrutinib) and underwent allogeneic hematopoietic stem cell transplantation - one of which now has relapsed SLL 2.5 years later. Two patients are on clinical trials and are pending response evaluation. Conclusions Given the expression of CD19 in the RT pathology of most cases in this series, it appears that a different mechanism of escape or resistance is occurring in these cases. All 7 pts had poor risk features of their CLL before CD19CART like del17p/TP53 mutation, Notch1 mutation and SF3B1 mutation. We are investigating the RT pathology specimens further and will compare these RT cases with other CLL patients we have treated with CD19CART thus far and who have not relapsed/progressed with RT in order to examine the differences in treatment history, cytogenetic features, proliferative/accelerated nature of CLL at baseline, and PDL1 expression before and after CAR T cell therapy. Improved treatment combinations are needed in high risk, multiply relapsed CLL patients to prevent emergence of RT despite excellent responses of the CLL itself. Figure 1 Figure 1. Disclosures Danilov: Gilead Sciences: Research Funding; Pharmacyclics: Consultancy, Honoraria; Beigene: Consultancy, Honoraria; Abbvie: Consultancy, Honoraria; TG Therapeutics: Consultancy, Research Funding; Takeda Oncology: Research Funding; Genentech: Consultancy, Honoraria, Research Funding; SecuraBio: Research Funding; Bayer Oncology: Consultancy, Honoraria, Research Funding; Astra Zeneca: Consultancy, Honoraria, Research Funding; Bristol-Meyers-Squibb: Honoraria, Research Funding; Rigel Pharm: Honoraria. Siddiqi: Janssen: Speakers Bureau; Oncternal: Research Funding; Pharmacyclics LLC, an AbbVie Company: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Kite Pharma: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees; TG Therapeutics: Research Funding; Juno Therapeutics: Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; BeiGene: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; AstraZeneca: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. OffLabel Disclosure: CD19 CAR T products used in clinical trials for relapsed/refractory chronic lymphocytic leukemia


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 776-776
Author(s):  
Claire Roddie ◽  
Maeve A O'Reilly ◽  
Maria A V Marzolini ◽  
Leigh Wood ◽  
Juliana Dias Alves Pinto ◽  
...  

Introduction: 2nd generation CD19 CAR T cells show unprecedented efficacy in B-ALL, but several challenges remain: (1) scaling manufacture to meet patient need and (2) feasibility of generating products from lymphopenic patients post allogeneic stem cell transplant (allo-SCT). To overcome these issues we propose: (1) use of the CliniMACS Prodigy (Miltenyi Biotec), a semi-automated cGMP platform that simplifies CAR T cell manufacture and (2) the use of matched donor T cells to overcome the challenge posed by patient lymphopenia, albeit this may come with a heightened risk of graft versus host disease (GvHD). CARD (NCT02893189) is a Phase I study of matched donor derived CD19 CAR T cells generated on the CliniMACS Prodigy in 14 adult patients with relapsed/refractory (r/r) B ALL following allo-SCT. We additionally explore the requirement for lymphodepletion (LD) in the allogeneic CAR T cell setting and report on the incidence of GvHD with this therapy. Methods: Manufacturing: CARD utilises non-mobilised matched donor leucapheresate to manufacture 2nd generation CD19CAR T cells using a closed CliniMACS® Prodigy/ TransACTTM process. Study design: Eligible subjects are aged 16-70y with r/r B ALL following allo SCT. Study endpoints include feasibility of CD19CAR T cell manufacture from allo-SCT donors on the CliniMACS Prodigy and assessments of engraftment and safety including GvHD. To assess the requirement for LD prior to CD19CAR T cells in lymphopenic post-allo-SCT patients, the study is split into Cohort 1 (no LD) and Cohort 2 (fludarabine (30 mg/m2 x3) and cyclophosphamide (300mg/m2 x3)). To mitigate for the potential GvHD risk, cell dosing on study mirrors conventional donor lymphocyte infusion (DLI) schedules and is based on total CD3+ (not CAR T) cell numbers: Dose 1=1x106/kg CD3+ T cells; Dose 2= 3x106/kg CD3+ T cells; Dose 3= 1x107/kg CD3+ T cells. Results: As of 26 July 2019, 17 matched allo SCT donors were leukapheresed and 16 products were successfully manufactured and QP released. Patient demographics are as follows: (1) median patient age was 43y (range 19-64y); (2) 4/17 had prior blinatumomab and 5/17 prior inotuzumab ozogamicin; (3) 7/17 had myeloablative allo SCT and 10/17 reduced intensity allo SCT of which 6/17 were sibling donors and 12/17 were matched unrelated donors. No patients with haploidentical transplant were enrolled. To date, 12/16 patients have received at least 1 dose of CD19CAR T cells: 7/16 on Cohort 1 and 5/16 on Cohort 2 (2/16 are pending infusion on Cohort 2 and 2/16 died of fungal infection prior to infusion). Median follow-up for all 12 patients is 22.9 months (IQR 2.9-25.9; range 0.7 - 25.9). At the time of CAR T cell infusion, 7/12 patients were in morphological relapse with &gt;5% leukemic blasts. Despite this, CD19CAR T cells were administered safely: only 2/12 patients experienced Grade 3 CRS (UPenn criteria), both in Cohort 1, which fully resolved with Tocilizumab and corticosteroids. No patients experienced ≥Grade 3 neurotoxicity and importantly, no patients experienced clinically significant GvHD. In Cohort 1 (7 patients), median peak CAR expansion by flow was 87 CD19CAR/uL blood whereas in Cohort 2 (5 patients to date), median peak CAR expansion was 1309 CD19CAR/uL blood. This difference is likely to reflect the use of LD in Cohort 2. CAR T cell persistence by qPCR in Cohort 1 is short, with demonstrable CAR in only 2/7 treated patients at Month 2. Data for Cohort 2 is immature, but this will also be reported at the meeting in addition to potential mechanisms underlying the short persistence observed in Cohort 1. Of the 10 response evaluable patients (2/12 pending marrow assessment), 9/10 (90%) achieved flow/molecular MRD negative CR at 6 weeks. 2/9 responders experienced CD19 negative relapse (one at M3, one at M5) and 3/9 responders experienced CD19+ relapse (one at M3, one at M9, one at M12). 4/10 (40%) response evaluable patients remain on study and continue in flow/molecular MRD negative remission at a median follow up of 11.9 months (range 2.9-25.9). Conclusions: Donor-derived matched allogeneic CD19 CAR T cells are straightforward to manufacture using the CliniMACS Prodigy and deliver excellent early remission rates, with 90% MRD negative CR observed at Week 6 in the absence of severe CAR associated toxicity or GvHD. Peak CAR expansion appears to be compromised by the absence of LD and this may lead to a higher relapse rate. Updated results from Cohorts 1 and 2 will be presented. Disclosures Roddie: Novartis: Consultancy; Gilead: Consultancy, Speakers Bureau; Celgene: Consultancy, Speakers Bureau. O'Reilly:Kite Gilead: Honoraria. Farzaneh:Autolus Ltd: Equity Ownership, Research Funding. Qasim:Autolus: Equity Ownership; Orchard Therapeutics: Equity Ownership; UCLB: Other: revenue share eligibility; Servier: Research Funding; Bellicum: Research Funding; CellMedica: Research Funding. Linch:Autolus: Membership on an entity's Board of Directors or advisory committees. Pule:Autolus: Membership on an entity's Board of Directors or advisory committees. Peggs:Gilead: Consultancy, Speakers Bureau; Autolus: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 779-779 ◽  
Author(s):  
Zinaida Good ◽  
Jay Y. Spiegel ◽  
Bita Sahaf ◽  
Meena B. Malipatlolla ◽  
Matthew J. Frank ◽  
...  

Axicabtagene ciloleucel (Axi-cel) is an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy approved for the treatment of relapsed or refractory diffuse large B-cell lymphoma (r/r DLBCL). Long-term analysis of the ZUMA-1 phase 1-2 clinical trial showed that ~40% of Axi-cel patients remained progression-free at 2 years (Locke et al., Lancet Oncology 2019). Those patients who achieved a complete response (CR) at 6 months generally remained progression-free long-term. The biological basis for achieving a durable CR in patients receiving Axi-cel remains poorly understood. Here, we sought to identify CAR T-cell intrinsic features associated with CR at 6 months in DLBCL patients receiving commercial Axi-cel at our institution. Using mass cytometry, we assessed expression of 33 surface or intracellular proteins relevant to T-cell function on blood collected before CAR T cell infusion, on day 7 (peak expansion), and on day 21 (late expansion) post-infusion. To identify cell features that distinguish patients with durable CR (n = 11) from those who developed progressive disease (PD, n = 14) by 6 months following Axi-cel infusion, we performed differential abundance analysis of multiparametric protein expression on CAR T cells. This unsupervised analysis identified populations on day 7 associated with persistent CR or PD at 6 months. Using 10-fold cross-validation, we next fitted a least absolute shrinkage and selection operator (lasso) model that identified two clusters of CD4+ CAR T cells on day 7 as potentially predictive of clinical outcome. The first cluster identified by our model was associated with CR at 6 months and had high expression of CD45RO, CD57, PD1, and T-bet transcription factor. Analysis of protein co-expression in this cluster enabled us to define a simple gating scheme based on high expression of CD57 and T-bet, which captured a population of CD4+ CAR T cells on day 7 with greater expansion in patients experiencing a durable CR (mean±s.e.m. CR: 26.13%±2.59%, PD: 10.99%±2.53%, P = 0.0014). In contrast, the second cluster was associated with PD at 6 months and had high expression of CD25, TIGIT, and Helios transcription factor with no CD57. A CD57-negative Helios-positive gate captured a population of CD4+ CAR T cells was enriched on day 7 in patients who experienced progression (CR: 9.75%±2.70%, PD: 20.93%±3.70%, P = 0.016). Co-expression of CD4, CD25, and Helios on these CAR T cells highlights their similarity to regulatory T cells, which could provide a basis for their detrimental effects. In this exploratory analysis of 25 patients treated with Axi-cel, we identified two populations of CD4+ CAR T cells on day 7 that were highly associated with clinical outcome at 6 months. Ongoing analyses are underway to fully characterize this dataset, to explore the biological activity of the populations identified, and to assess the presence of other populations that may be associated with CAR-T expansion or neurotoxicity. This work demonstrates how multidimensional correlative studies can enhance our understanding of CAR T-cell biology and uncover populations associated with clinical outcome in CAR T cell therapies. This work was supported by the Parker Institute for Cancer Immunotherapy. Figure Disclosures Muffly: Pfizer: Consultancy; Adaptive: Research Funding; KITE: Consultancy. Miklos:Celgene: Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees; Kite-Gilead: Membership on an entity's Board of Directors or advisory committees, Research Funding; AlloGene: Membership on an entity's Board of Directors or advisory committees; Precision Bioscience: Membership on an entity's Board of Directors or advisory committees; Miltenyi Biotech: Membership on an entity's Board of Directors or advisory committees; Becton Dickinson: Research Funding; Adaptive Biotechnologies: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Juno: Membership on an entity's Board of Directors or advisory committees. Mackall:Vor: Other: Scientific Advisory Board; Roche: Other: Scientific Advisory Board; Adaptimmune LLC: Other: Scientific Advisory Board; Glaxo-Smith-Kline: Other: Scientific Advisory Board; Allogene: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Apricity Health: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Unum Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Obsidian: Research Funding; Lyell: Consultancy, Equity Ownership, Other: Founder, Research Funding; Nektar: Other: Scientific Advisory Board; PACT: Other: Scientific Advisory Board; Bryologyx: Other: Scientific Advisory Board.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 196-196
Author(s):  
Bishwas Shrestha ◽  
Kelly Walton ◽  
Jordan Reff ◽  
Elizabeth M. Sagatys ◽  
Nhan Tu ◽  
...  

Distinct from pharmacologic immunosuppression, we designed a programmed cytolytic effector T cell that prevents graft versus host disease (GVHD). CD83 is expressed on allo-activated conventional T cells (Tconv) and pro-inflammatory dendritic cells (DCs), which are implicated in GVHD pathogenesis. Therefore we developed a novel human CD83 targeted chimeric antigen receptor (CAR) T cell for GVHD prophylaxis. Here we demonstrate that human CD83 CAR T cells eradicate cell mediators of GVHD, significantly increase the ratio of regulatory T cells (Treg) to allo-activated Tconv, and provide lasting protection from xenogeneic GVHD. Further, we show human, acute myeloid leukemia (AML) expresses CD83 and can be targeted by CD83 CAR T cells. A 2nd generation CD83 CAR was generated with CD3ζ and 41BB costimulatory domain that was retrovirally transduced in human T cells to generate CD83 CAR T cells. The CD83 CAR construct exhibited a high degree of transduction efficiency of about 60%. The CD83 CAR T cells demonstrated robust IFN-γ and IL-2 production, killing, and proliferation when cultured with CD83+ target cells. To test whether human CD83 CAR T cells reduce alloreactivity in vitro, we investigated their suppressive function in allogeneic mixed leukocyte reactions (alloMLR). CD83 CAR T cells were added to 5-day alloMLRs consisting of autologous T cells and allogeneic monocyte-derived DCs at ratios ranging from 3:1 to 1:10. The CD83 CAR T cells potently reduced alloreactive T cell proliferation compared to mock transduced and CD19 CAR T cells. We identified that CD83 is differentially expressed on alloreactive Tconv, compared to Tregs. Moreover, the CD83 CAR T cell efficiently depletes CD83+ Tconv and proinflammatory DCs with 48 hours of engagement. To test the efficacy of human CD83 CAR T cells in vivo, we used an established xenogeneic GVHD model, where mice were inoculated with human PBMCs (25x106) and autologous CD83 CAR (1-10x106) or mock transduced T cells. The CD83 CAR T cells were well tolerated by the mice, and significantly improved survival compared to mock transduced T cells (Figure 1A). Mice treated with CD83 CAR T cells exhibited negligible GVHD target organ damage at day +21 (Figure 1B). Mice inoculated with CD83 CAR T cells demonstrated significantly fewer CD1c+, CD83+ DCs (1.7x106 v 6.2x105, P=0.002), CD4+, CD83+ T cells (4.8x103 v 5.8x102, P=0.005), and pathogenic Th1 cells (3.1x105 v 1.1x102, P=0.005) at day +21, compared to mice treated with mock transduced T cells. Moreover, the ratio of Treg to alloreactive Tconv (CD25+ non-Treg) was significantly increased among mice treated with CD83 CAR T cells (78 v 346, P=0.02), compared to mice injected with mock transduced T cells. Further, CD83 appears to be a promising candidate to target myeloid malignancies. We observed CD83 expression on malignant myeloid K562, Thp-1, U937, and MOLM-13 cells. Moreover, the CD83 CAR T cells effectively killed AML cell lines. Many AML antigens are expressed on progenitor stem cells. Thus, we evaluated for stem cell killing in human colony forming unit (CFU) assays, which demonstrated negligible on-target, off-tumor toxicity. Therefore, the human CD83 CAR T cell is an innovative cell-based approach to prevent GVHD, while providing direct anti-tumor activity against myeloid malignancies. Figure Disclosures Blazar: Kamon Pharmaceuticals, Inc: Membership on an entity's Board of Directors or advisory committees; Five Prime Therapeutics Inc: Co-Founder, Membership on an entity's Board of Directors or advisory committees; BlueRock Therapeutics: Membership on an entity's Board of Directors or advisory committees; Abbvie Inc: Research Funding; Leukemia and Lymphoma Society: Research Funding; Childrens' Cancer Research Fund: Research Funding; KidsFirst Fund: Research Funding; Tmunity: Other: Co-Founder; Alpine Immune Sciences, Inc.: Research Funding; RXi Pharmaceuticals: Research Funding; Fate Therapeutics, Inc.: Research Funding; Magenta Therapeutics and BlueRock Therapeuetics: Membership on an entity's Board of Directors or advisory committees; Regeneron Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees. Davila:Atara: Research Funding; Celgene: Research Funding; Precision Biosciences: Consultancy; Bellicum: Consultancy; GlaxoSmithKline: Consultancy; Adaptive: Consultancy; Anixa: Consultancy; Novartis: Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 11-12
Author(s):  
Felix Korell ◽  
Thomas Luft ◽  
Michael Schmitt ◽  
Sascha Dietrich ◽  
Anita Schmitt ◽  
...  

BACKGROUND: In a previous study we have shown that CD19-directed chimeric antigen receptor (CAR)-T cells do not appear to be inferior to alloHCT when used as standard cellular immunotherapy (CI) for patients with multiply r/r LBCL (EBMT 2020). The purpose of the present follow-up analysis was to further compare the risk profile of the 2 cohorts by applying the EASIX score (lactate dehydrogenase (U/L) × creatinine (mg/dL)/thrombocytes (109 cells per L)), and to assess if EASIX could be used as outcome predictor in patients with r/r LBCL undergoing CAR-T and alloHCT, respectively. METHODS: Eligible were all patients referred to our institution with relapsed/refractory (R/R) DLBCL and a tumor board decision recommending treatment with CAR-T cells between 07/2018 and 02/2020 and those recommending allogeneic donor search between 2004 and 2019. Patients with DLBCL transformed from CLL were excluded. EASIX was evaluated retrospectively using uni- and multivariable analyses (with regards to age, gender and number of failed therapy lines) and mortality using Cox regression analyses. RESULTS: 41 patients intended for CAR-T cells and 60 patients intended for alloHCT were included. In both cohorts nearly all patients had active disease at indication. Cohorts were comparable for sex, time from diagnosis, ZUMA1 eligibility, and PS, but CAR-T patients tended to be older (median 56 vs 51 years, p=0.093), and had more often primary refractory and bulky disease (p=0.004 and p=0.04, respectively). Median EASIX score across both cohorts was 1.50 (0.27-70.5), with significantly higher scores in the CART group both at indication (EASIX-ind; median 1.79 and 1.22 for CAR-T and alloHCT, respectively, p=0.031) and at conditioning for CI (EASIX-pre, median 2.24 vs 1.26, p=0.005). Median OS from indication was 475d for the CAR-T cohort vs 285d for the alloHCT cohort (p=0.88). On multivariate analysis, EASIX-ind was significantly associated with adverse OS if alloHCT was intended (HR per 2fold increase 1.43, 95%CI 1.08-1.90, p=0.013), but not if CAR-T was intended (HR per 2fold increase 1.16, 95%CI 0.88-1.53, p=0.3). After CI, 12-month estimates for NRM, relapse incidence, PFS, and OS for CAR-T vs alloHCT were 3% vs 21% (p=0.04), 59% vs 44% (p=0.12), 39% vs 33% (p=0.97), and 68% vs 54% (p=0.32). EASIX-pre predicted overall survival (OS) in both CAR-T (HR per 2fold increase 2.11, 95%CI 1.21-3.7, p=0.009) and alloHCT (HR per 2fold increase 3.69, 95%CI 1.54-8.31, p=0.003) cohorts. In the alloHCT group, the EASIX effect was largely driven by higher NRM risk with increasing EASIX-pre, while in the CAR-T group poorer OS with increasing EASIX-pre was largely relapse-related. CONCLUSIONS: In patients undergoing CI for r/r LBCL, EASIX measured prior to conditioning can predict mortality after both CAR-T and alloHCT. If applied already at indication for CI, the predictive capacity of EASIX is weaker and no longer significant if CAR-T is intended. Further studies for validation of this data appear to be warrantable. Disclosures Schmitt: MSD: Membership on an entity's Board of Directors or advisory committees, Other: PI of clinical trials on letermovir; TolerogenixX Ltd: Other: Co-Founder and shareholder; Hexal: Other: Travel grants , Research Funding; Apogenix: Research Funding; Kite: Other: Travel grants, educational activities and conferences; Novartis: Other: educational activities and conferences, Research Funding. Dietrich:Roche: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees; KITE: Membership on an entity's Board of Directors or advisory committees. Schmitt:Hexal: Other: Travel grants ; TolerogenixX LtD: Other: Co-founder, Part-time employee ; Therakos/Mallinckrodt: Research Funding; Jazz Pharmaceuticals: Other: Travel grants . Dreger:Neovii: Research Funding; Roche: Consultancy, Speakers Bureau; Riemser: Consultancy, Research Funding, Speakers Bureau; Novartis: Consultancy, Speakers Bureau; Janssen: Consultancy; Gilead: Consultancy, Speakers Bureau; AstraZeneca: Consultancy; AbbVie: Consultancy, Speakers Bureau.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 8001-8001 ◽  
Author(s):  
Wendy Osborne ◽  
Maria Marzolini ◽  
Eleni Tholouli ◽  
Aravind Ramakrishnan ◽  
Carlos R. Bachier ◽  
...  

8001 Background: CD19 directed CAR T cells are effective in patients with r/r DLBCL, however relapses due to CD19 loss or PDL1 upregulation are common. In this study, we evaluate the safety and efficacy of AUTO3, a CAR T targeting CD19/22 with limited duration of PD-1 blockade. Methods: We constructed a bicistronic retroviral vector encoding both an anti-CD19 (OX40 co-stim) and an anti-CD22 (41BB co-stim) CAR with humanized binders. The cell product was manufactured in a semi-automated and closed process using CliniMACS Prodigy. Patients (≥ 18 years) with r/r DLBCL (NOS) or transformed (tDLBCL); ECOG <2, adequate organ function are eligible. Lymphodepletion was Flu/Cy prior to AUTO3. Bridging therapy was allowed. The three dose levels explored are 50, 150, and 450 x 10^6 CAR T cells. Patients received AUTO3 alone, or with 3 doses of pembrolizumab (pem) 200 mg q 3 wks starting on D14 (regimen A), or with a single dose of pem 200 mg on D-1 (regimen B). The primary endpoint is frequency of DLTs and grade (G) 3-5 adverse events (AE) and secondary endpoints included ORR, CRR, and biomarkers. Results: As of Jan 21, 2020, 28 patients underwent leukapheresis, 27 successfully manufactured, 1 being manufactured, and 19 patients treated with AUTO3. The median age was 57 (28 - 71) and median number of prior therapies was 3 (2 - 10). 89% had refractory disease, 74% were DLBCL NOS, and 26% were tDLBCL. Dose escalation from 50 to 450 x 106 cells with pem regimen A and B have been completed without DLTs. G > 3 treatment emergent AEs that occurred > 15% were neutropenia (89%), thrombocytopenia (58%), anemia (47%), febrile neutropenia (16%), and hypophosphataemia (16%). Across all dose levels, there were 0% sCRS with primary infusion and 5% severe neurotoxicity (sNT) (1/19), which resolved. There were no cases of sCRS and no neurotoxicity of any grade at > 50 x 106 cells. Eighteen patients were evaluable for efficacy. Among the 11 treated at dose > 50 x 106, the ORR and CRR were 64% and 55%, and all CRs are ongoing (1-12 mth). Two out of 3 patients achieved CR at 450 x 106 cells on pem regimen B. Additional patients and longer follow up, as well as biomarkers, will be presented. Conclusions: AUTO3 at > 50 x 106 CAR T cells with pembrolizumab induces CRs without severe CRS or neurotoxicities of any grade. Clinical trial information: NCT03287817 .


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4810-4810
Author(s):  
Mark B. Geyer ◽  
Briana Cadzin ◽  
Elizabeth Halton ◽  
Peter Kane ◽  
Brigitte Senechal ◽  
...  

Abstract Background: Autologous CD19-targeted chimeric antigen receptor-modified (CAR) T-cell therapy leads to complete responses (CR) in patients (pts) with (w/) relapsed or refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL, &gt;80% CR rate) and diffuse large B-cell lymphoma (DLBCL, ~40-55% CR rate). However, following fludarabine/cyclophosphamide (Flu/Cy) conditioning and CAR T-cell therapy w/ a CD28 costimulatory domain (e.g. 19-28z CAR T-cells), rates of grade ≥3 ICANS and grade ≥3 cytokine release syndrome (CRS) in pts w/ R/R DLBCL and morphologic R/R B-ALL exceed 30%. CRS and ICANS are associated w/ considerable morbidity, including increased length of hospitalization, and may be fatal. Host monocytes appear to be the major reservoir of cytokines driving CRS and ICANS post-CAR T-cell therapy (Giavradis et al. and Norelli et al., Nature Medicine, 2018). Circulating monocytic myeloid-derived suppressor cells (MDSCs) may also blunt efficacy of 19-28z CAR T-cells in R/R DLBCL (Jain et al., Blood, 2021). The CD45-targeted antibody radioconjugate (ARC) 131-I apamistamab is being investigated at myeloablative doses as conditioning prior to hematopoietic cell transplantation in pts w/ R/R acute myeloid leukemia. However, even at low doses (4-20 mCi), transient lymphocyte and blast reduction are observed. Preclinical studies in C57BL/6 mice demonstrate low-dose anti CD45 radioimmunotherapy (100 microCi) transiently depletes &gt;90% lymphocytes, including CD4/CD8 T-cells, B-cells, NK cells, and T-regs, as well as splenocytes and MDSCs, w/ negligible effect on bone marrow (BM) hematopoietic stem cells (Dawicki et al., Oncotarget, 2020). We hypothesized a higher, yet nonmyeloablative dose of 131-I apamistamab may achieve more sustained, but reversible depletion of lymphocytes and other CD45 + immune cells, including monocytes thought to drive CRS/ICANS. We additionally hypothesized this approach (vs Flu/Cy) prior to CAR T-cell therapy would promote CAR T-cell expansion while reducing CSF levels of monocyte-derived cytokines (e.g. IL-1, IL-6, and IL-10), thus lowering the risk of severe ICANS (Fig 1A). Study design and methods: We are conducting a single-institution pilot study of 131-I apamistamab in lieu of Flu/Cy prior to 19-28z CAR T-cells in adults w/ R/R BALL or DLBCL (NCT04512716; Iomab-ACT); accrual is ongoing. Pts are eligible for leukapheresis if they are ≥18 years-old w/ R/R DLBCL (de novo or transformed) following ≥2 chemoimmunotherapy regimens w/ ≥1 FDG-avid measurable lesion or B-ALL following ≥1 line of multi-agent chemotherapy (R/R following induction/consolidation; prior 2 nd/3 rd gen TKI required for pts w/ Ph+ ALL) w/ ≥5% BM involvement and/or FDG-avid extramedullary disease, ECOG performance status 0-2, and w/ appropriate organ function. Active or prior CNS disease is not exclusionary. Pts previously treated w/ CD19-targeted CAR T-cell therapy are eligible as long as CD19 expression is retained. See Fig 1B/C: Post-leukapheresis, 19-28z CAR T-cells are manufactured as previously described (Park et al., NEJM, 2018). Bridging therapy is permitted at investigator discretion. Thyroid blocking is started ≥48h pre-ARC. 131-I apamistamab 75 mCi is administered 5-7 days pre-CAR T-cell infusion to achieve total absorbed marrow dose ~200 cGy w/ remaining absorbed dose &lt;25 cGy at time of T-cell infusion. 19-28z CAR T-cells are administered as a single infusion (1x10 6/kg, B-ALL pts; 2x10 6/kg, DLBCL pts). The primary objective is to determine safety/tolerability of 131-I apamistamab 75 mCi given prior to 19-28z CAR T-cells in pts w/ R/R B-ALL/DLBCL. Secondary objectives include determining incidence/severity of ICANS and CRS, anti-tumor efficacy, and 19-28z CAR T-cell expansion/persistence. Key exploratory objectives include describing the cellular microenvironment following ARC and 19-28z CAR T-cell infusion using spectral cytometry, as well as cytokine levels in peripheral blood and CRS. The trial utilizes a 3+3 design in a single cohort. If dose-limiting toxicity (severe infusion-related reactions, treatment-resistant severe CRS/ICANS, persistent regimen-related cytopenias, among others defined in protocol) is seen in 0-1 of the first 3 pts treated, then up to 6 total (up to 3 additional) pts will be treated. We have designed this study to provide preliminary data to support further investigation of CD45-targeted ARCs prior to adoptive cellular therapy. Figure 1 Figure 1. Disclosures Geyer: Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees; Actinium Pharmaceuticals, Inc: Research Funding; Amgen: Research Funding. Geoghegan: Actinium Pharmaceuticals, Inc: Current Employment. Reddy: Actinium Pharmaceuticals: Current Employment, Current holder of stock options in a privately-held company. Berger: Actinium Pharmaceuticals, Inc: Current Employment. Ludwig: Actinium Pharmaceuticals, Inc: Current Employment. Pandit-Taskar: Bristol Myers Squibb: Research Funding; Bayer: Research Funding; Clarity Pharma: Research Funding; Illumina: Consultancy, Honoraria; ImaginAb: Consultancy, Honoraria, Research Funding; Ymabs: Research Funding; Progenics: Consultancy, Honoraria; Medimmune/Astrazeneca: Consultancy, Honoraria; Actinium Pharmaceuticals, Inc: Consultancy, Honoraria; Janssen: Research Funding; Regeneron: Research Funding. Sauter: Genmab: Consultancy; Celgene: Consultancy, Research Funding; Precision Biosciences: Consultancy; Kite/Gilead: Consultancy; Bristol-Myers Squibb: Research Funding; GSK: Consultancy; Gamida Cell: Consultancy; Novartis: Consultancy; Spectrum Pharmaceuticals: Consultancy; Juno Therapeutics: Consultancy, Research Funding; Sanofi-Genzyme: Consultancy, Research Funding. OffLabel Disclosure: 131-I apamistamab and 19-28z CAR T-cells are investigational agents in treatment of ALL and DLBCL


Sign in / Sign up

Export Citation Format

Share Document