scholarly journals Phase 2 Trial of Ixazomib, Cyclophosphamide and Dexamethasone for Treatment of Previously Untreated Light Chain Amyloidosis

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 52-53
Author(s):  
Eli Muchtar ◽  
Morie A Gertz ◽  
Betsy Laplant ◽  
Francis K. Buadi ◽  
Nelson Leung ◽  
...  

Background: Bortezomib, a proteasome inhibitor, has shown efficacy in the treatment of newly diagnosed and relapsed light chain (AL) amyloidosis, and the combination of bortezomib, cyclophosphamide and dexamethasone is a commonly used regimen in AL. Ixazomib is the first oral proteasome inhibitor to be approved, and the combination of ixazomib with cyclophosphamide and dexamethasone is an all oral effective regimen for the treatment of multiple myeloma. This phase 2 trial was designed to evaluate the efficacy of this regimen in patients with AL, who have not received any therapy. Patients and methods: Newly diagnosed patients with biopsy proven AL amyloidosis, with organ involvement requiring therapy, were enrolled if they had measurable disease (Serum immunoglobulin free light chain ≥5 mg/dL AND abnormal serum free light chain ratio) and adequate organ function. Patients with severe organ involvement were excluded (Alkaline phosphatase >750 U/L, creatinine clearance <30 mL/min or NT-ProBNP ≥ 7500 ng/dL). Treatment consisted of ixazomib 4 mg days 1, 8, 15; cyclophosphamide 500 mg PO weekly and dexamethasone 40 mg, weekly for twelve 28-day cycles, followed by ixazomib maintenance (days 1, 8, 15) at the last tolerated dose till progression. The primary objective was to determine the hematologic response rate of ixazomib, used in combination with cyclophosphamide and dexamethasone in patients with previously untreated AL. A one-stage binomial design was utilized to test the null hypothesis that the hematologic response rate is at most 30% against the alternative hypothesis that it is at least 50%, with 85% power and 9% type I error. Results: Thirty-five patients were enrolled, median age was 67 (range 38-78) years; 69% were male. Organ involvement included cardiac in 23 (65.7%), renal in 19 (54.3%), and nervous system involvement in 5 (14.3%). At data cutoff 8 patients still remain on study with a median follow up of 4.4 months for those who are alive. Across the trial a median of 4 cycles (range 0-23) of treatment have been completed; the most common reason for going off study was institution of alternate therapy in 17 patients (63%). The overall hematologic response was 57% (20/35) and included amyloid CR in 5 (14%), VGPR in 9 (26%) and a PR in 6 (17%) patients. Confirmed organ responses have been observed in 5 patients so far, 2 each for cardiac and renal and 1 hepatic. The median PFS and OS have not been reached; 4 patients had hematological progression; 6 patients (17%) have died. Across 193 cycles of treatment administered, dose modification was required in 5, 3, and 10 patients, respectively, for ixazomib, cyclophosphamide and dexamethasone. A grade 3 or higher adverse event (AE), at least possibly attributed to the study drugs, was observed in 41% of patients. The figure shows the maximum grade of adverse events for individual patients seen in more than one patient across the study. Conclusions: The all-oral regimen of ixazomib, cyclophosphamide, and dexamethasone is active in patients with previously untreated AL amyloidosis with hematologic responses observed in 57% of patients, including complete responses. Organ response has been observed but will likely need longer follow up for accurate assessment, given the delay in organ responses in this disease. Further evaluation of this combination is warranted. Disclosures Gertz: Alnylam: Consultancy; Ionis/Akcea: Consultancy; Amgen: Consultancy; Medscape: Consultancy, Speakers Bureau; Physicians Education Resource: Consultancy; Data Safety Monitoring board from Abbvie: Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy; Johnson and Johnson: Speakers Bureau; DAVA oncology: Speakers Bureau; Advisory Board for Pharmacyclics: Membership on an entity's Board of Directors or advisory committees; Advisory Board for Proclara: Membership on an entity's Board of Directors or advisory committees; i3Health: Consultancy; Springer Publishing: Patents & Royalties; Amyloidosis Foundation: Research Funding; International Waldenstrom Foundation: Research Funding; NCI SPORE MM: Research Funding; Prothena: Consultancy; Sanofi: Consultancy; Janssen: Consultancy; Spectrum: Consultancy, Research Funding; Annexon: Consultancy; Appellis: Consultancy. Kapoor:Celgene: Honoraria; GlaxoSmithKline: Research Funding; Takeda: Honoraria, Research Funding; Amgen: Research Funding; Sanofi: Consultancy, Research Funding; Janssen: Research Funding; Cellectar: Consultancy. Larsen:Janssen Oncology: Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees. Dingli:Apellis: Consultancy; Janssen: Consultancy; Sanofi-Genzyme: Consultancy; Rigel: Consultancy; Bristol Myers Squibb: Research Funding; Karyopharm Therapeutics: Research Funding; Alexion: Consultancy; Millenium: Consultancy. Dispenzieri:Janssen: Research Funding; Intellia: Research Funding; Alnylam: Research Funding; Celgene: Research Funding; Pfizer: Research Funding; Takeda: Research Funding. Kumar:Adaptive Biotechnologies: Consultancy; Carsgen: Other, Research Funding; AbbVie: Other: Research funding for clinical trials to the institution, Consulting/Advisory Board participation with no personal payments; Janssen Oncology: Other: Research funding for clinical trials to the institution, Consulting/Advisory Board participation with no personal payments; Genecentrix: Consultancy; Dr. Reddy's Laboratories: Honoraria; Tenebio: Other, Research Funding; Takeda: Other: Research funding for clinical trials to the institution, Consulting/Advisory Board participation with no personal payments; BMS: Consultancy, Research Funding; Sanofi: Research Funding; Novartis: Research Funding; Kite Pharma: Consultancy, Research Funding; Karyopharm: Consultancy; Oncopeptides: Consultancy, Other: Independent Review Committee; IRC member; Merck: Consultancy, Research Funding; Amgen: Consultancy, Other: Research funding for clinical trials to the institution, Consulting/Advisory Board participation with no personal payments, Research Funding; Genentech/Roche: Other: Research funding for clinical trials to the institution, Consulting/Advisory Board participation with no personal payments; Celgene/BMS: Other: Research funding for clinical trials to the institution, Consulting/Advisory Board participation with no personal payments; Cellectar: Other; MedImmune: Research Funding.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 11-11
Author(s):  
Paolo Milani ◽  
Vaishali Sanchorawala ◽  
Ramon Lecumberri ◽  
Sunil Saith ◽  
Mathew S. Maurer ◽  
...  

Introduction: The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has become a global health crisis since it was first reported in December 2019. In a subset of infected subjects, pneumonia, multi-organ failure, and eventually death can occur. Frail patients and those with comorbidities are believed to be at increased risk of severe manifestations of SARS-CoV-2 infection. Patients with light chain (AL) amyloidosis have a hematologic malignancy that causes multi-organ dysfunction and can be at higher risk of complications and death. The International Society of Amyloidosis (ISA) has issued a guidance (Kastritis et al. BJH 2020, https://cms.cws.net/content/isaamyloidosis.org/files/ISA%20recommendations%20Covid-19%20v_%203_3.pdf) for patients with amyloidosis during the pandemic and called for an international data collection in April 2020. Aim of this study is to report the preliminary data of the ongoing international survey regarding systemic AL amyloidosis and COVID-19. Methods: The survey was proposed by the ISA Board and approved by the coordinating institution's Ethics Committee. All members of the ISA were invited to participate by email and a link for participation is online on ISA website. RedCap software was used for the data collection. Results: Twelve Institutions requested the access to the data collection system from 7 countries. At the data lock of July 26, 2020, 29 patients with systemic amyloidoses were collected from 7 different Institutions. Systemic AL amyloidosis patients reported so far were 19: 12 from the Pavia Amyloidosis Research and Treatment Center (Italy), 3 from the Boston Medical Center (USA), and 1 patient each from the Columbia University Hospital (New York, USA), Hospital Clinic (Barcelona, Spain), Clinica Universitaria de Navarra (Navarra, Spain) and Amyloidosis Centrum (Heidelberg, Germany). Eleven (58%) had heart involvement, 8 (42%) had kidney and two or more organs were involved in 9 patients (47%). The most frequent comorbidities reported were history of hypertension in 7 (37%) and cardiovascular diseases in 3 (16%). Four (21%) patients were newly diagnosed and treatment-naïve at the time SARS-CoV-2 infection was documented. The remaining 15 patients had received a median number of 2 previous lines of therapy (range 1-3). Nine (47%) patients were on active chemotherapy at the time of COVID-19 infection. Five were receiving daratumumab combinations, and the 4 remaining patients were on cyclophosphamide, bortezomib and dexamethasone, oral melphalan and dexamethasone, lenalidomide and ixazomib. Relevant concomitant medications were anti-hypertensive drugs in 26% of cases and diuretics in 21%. One patient was on dialysis. COVID-19-related symptoms were fever 11 (58%), cough 8 (42%), anosmia and ageusia. Pneumonia was documented in 10 (53%) patients, 5 of whom had acute respiratory distress syndrome (ARDS) (26%). Four of them were treated with non-mechanical ventilation and one accessed intensive care support. Three of the 5 patients with severe COVID-19 had heart involvement, 2/5 had concomitant heart and kidney involved and 3 was infected while on active chemotherapy. Azytromicin was used in 6 (26%) cases, which was in combination with hydroxycloroquine in 4 of them. Three patients received steroids as treatment for SARS-CoV-2 infection, while anticoagulant therapy was used only in two cases. Lopinavir, tocilizumab and sarilumab were used in one patient each. Four patients (21%) died in the whole cohort. Three had ARDS and one patient died few weeks after the recovery of COVID-19 infection. All deceased patients had heart involvement, 2 were on active therapy (daratumumab plus bortezomib and ixazomib plus dexamethasone). Two patients with kidney involvement at diagnosis, one with ARDS and one with a radiological documented pneumonia treated with non-mechanical ventilation recovered from COVID-19 but developed subsequent worsening of renal function, requiring dialysis in one case. Conclusions: The fatality rate and the proportion of patients with severe COVID-19 in this series is in the higher range of reports from the general population. Severe SARS-CoV-2 infection can result in renal failure in patients with renal AL amyloidosis. Disclosures Milani: Janssen: Other: Speaker honoraria; Pfizer: Other: Speaker honoraria; Celgene: Other: Travel support. Sanchorawala:Oncopeptide: Research Funding; Abbvie: Other: advisory board; Proclara: Other: advisory board; Caleum: Other: advisory board; Regeneron: Other: advisory board; Prothena: Research Funding; Takeda: Research Funding; Janssen: Research Funding; UpToDate: Patents & Royalties; Caelum: Research Funding; Celgene: Research Funding. Cibeira:Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Educational lectures; Akcea Therapeutics: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Other: Educational lectures; Amgen: Honoraria, Other: Educational lectures. Schönland:Janssen, Prothena, Takeda: Honoraria, Other: travel support to meetings, Research Funding. Palladini:Celgene: Other: Travel support; Jannsen Cilag: Honoraria, Other.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4577-4577
Author(s):  
Sneha Purvey ◽  
Kenneth Seier ◽  
Sean M. Devlin ◽  
Josel D Ruiz ◽  
Molly A. Maloy ◽  
...  

Background: Deep and durable hematologic remissions following RA-ASCT are associated with improved organ function and extended overall survival (OS) in AL amyloidosis. Achieving at least a very good partial response (VGPR) defined by a dFLC <4mg/dL is an accepted goal of therapy based on favorable outcomes, including improved renal survival (REF: Palladini JCO 2012, Palladini Blood 2014). Recently more profound clonal suppression as indicated by no evidence of minimal residual plasma cell disease (MRD) in bone marrow (BM) (Muchtar Blood 2017) and achieving dFLC <1mg/dL (Manwani Blood 2018) have shown additional benefit. While depth of hematologic response by standard criteria are important, this study assessed additional factors that influence renal response and time to renal response. Methods: All patients (pts) with AL and renal involvement (biopsy proven renal tissue diagnosis and/or 24hr proteinuria >500mg/day) undergoing RA-ASCT at Memorial Sloan Kettering Cancer Center between January 1, 2007 to December 31, 2016 were included. Pts with follow up less than 12 months post RA-ASCT, hemodialysis prior to RA-ASCT and Waldenstrom macroglobulinemia were excluded. Melphalan dose was assigned based on age, cardiac involvement and renal compromise (Landau Leukemia 2013). Hematologic response was assessed at 3 and 12 months (mos) post RA-ASCT (Palladini JCO 2012) and those with less than complete response (CR) were offered consolidation therapy with bortezomib and dexamethasone (BD). All pts underwent serial organ function assessment (Palladini Blood 2014). Logistic regression models were used to assess association with renal response by 12 mos. Covariates for adjustment in multivariate models were chosen based on univariate analyses and clinical relevance. Results: Sixty-four patients with renal AL meeting the inclusion criteria were identified; 3 pts died within a year post RA-ASCT were excluded. Median age (range) was 61 years (44-73), M:F 49%:51%, white 90% and 34% had cardiac involvement. Median (IQR) 24 hr proteinuria pre RA-ASCT was 5014 mg/day (2632-7514) and eGFR 68 ml/min/1.73 m2 (44-91). Renal amyloid stage I:II:III was 33%:52%:15%. Mayo cardiac stage (2004) I:II:III was 28%:61%:11% and revised Mayo stage (2012) I:II:III:IV was 13%:57%:21%:8%. Median BM plasma cells pre RA-ASCT was 9% (IQR 2-14%). 46% pts received treatment prior to ASCT. Melphalan dose (mg/m2) 200:140:100 was 44%:43%:11%. 46% pts received BD consolidation. Hematologic response at 3 mos post RA-ASCT was CR 44%, VGPR 29%, partial response (PR) 20% and stable disease (SD) 7%. MRD in BM by 10-color flow cytometry was assessed in 33 pts and 13 (39%) were MRD negative. dFLC <1mg/dL was achieved in 63% of pts. Renal response by 12 mos following RA-ASCT was achieved in 32 pts (53%). Median (IQR) time to renal response in these pts was 5.8 mos (5.1 - 11.3). Amongst renal responders, 50% were in CR, 53% had MRD negative BM (of 15 pts) and 78% with dFLC <1mg/dL early post RA-ASCT. In pts who achieved dFLC <1mg/dL early post RA-ASCT, 66% had renal response. By univariate analysis (Table 1) OR (95% CI) Mayo cardiac Stage (2004) II and III 0.23 (0.07-0.83, p=0.025), early post RA-ASCT dFLC <1mg/dL 3.00 ( 1.01-8.93, p=0.048), VGPR early post RA-ASCT 7.80 (1.69-36.06, p=0.009), dFLC <1mg/dL at 12 mos 7.20 (2.14-24.21, p=0.001) and CR at 12 mos 10.27 (1.14-92.26, p=0.038) were significantly associated with renal response. Neither renal stage, Mayo stage (2012), MRD negativity, melphalan dose nor consolidation was associated with renal response. By multivariate analysis (Table 2), early post RA-ASCT dFLC <1mg/dL continued to be the most significant factor predicting renal response, OR (95% CI) 4.52 (1.26-16.24, p=0.021), when adjusted for renal amyloid stage and Mayo cardiac stage (2004). Conclusion: In this single center study, we report that RA-ASCT results in renal response in more than half (53%) of the patients at 1 year. Achieving dFLC <1mg/dL early post ASCT is significantly associated with renal response. Renal response is independent of baseline proteinuria and BM plasma cells or MRD status post ASCT. Our study supports that pathologic entity in organ damage is not the plasma cells but rather light chains. Further studies using dFLC <1mg/dL should be evaluated in organ response. Mass spectrometric light chain monitoring may even be more sensitive and could potentially serve as a non-invasive way to measure disease burden. Disclosures Shah: Janssen: Research Funding; Amgen: Research Funding. Hassoun:Janssen: Research Funding; Celgene: Research Funding; Novartis: Consultancy. Giralt:Celgene: Consultancy, Research Funding; Takeda: Consultancy; Sanofi: Consultancy, Research Funding; Amgen: Consultancy, Research Funding. Landau:Pfizer: Membership on an entity's Board of Directors or advisory committees; Prothena: Membership on an entity's Board of Directors or advisory committees; Caelum: Membership on an entity's Board of Directors or advisory committees; Amgen: Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Karyopharm: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 48-49
Author(s):  
Patrick Mellors ◽  
Surendra Dasari ◽  
Mindy Kohlhagen ◽  
Bonnie Kaye Arendt ◽  
Morie A. Gertz ◽  
...  

Introduction: Since 2018, immunoenrichment-based matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), termed MASS-FIX, has replaced immunofixation for the detection and isotyping of serum monoclonal proteins at Mayo Clinic. MASS-FIX has advantages including increased sensitivity, specificity, and the ability to distinguish therapeutic monoclonal antibodies. Herein, we report the laboratory characteristics and distribution of diagnoses of patients tested clinically at Mayo Clinic. Methods: MASS-FIX was performed on patient samples as previously described (Kohlhagen et. al. Clin Chem Lab 2020). Demographics and laboratory data, including quantitative M-spike, serum free light chains (FLC), and quantitative immunoglobulins at the time of MASS-FIX were recorded. For patients with multiple samples during the study period, only the initial MASS-FIX was evaluated. We identified 9195 unique patients with MASS-FIX performed between 7/24/2018 and 3/6/2020. Seven-thousand nine hundred and forty-six patients provided consent for study enrollment, and 7689 had data available on index diagnosis. Given considerable variability in the interpretation of diagnostic criteria for light chain (LC) MGUS, patients with this diagnosis (1360, 18%) were excluded. Patients were considered to have negative results (2211 in total) on MASS-FIX if: 1) no monoclonal protein was identified (1081, 49%); 2) the interpretation was "cannot rule out monoclonal protein" (945, 43%); 3) multiple, nonspecific spectral peaks were identified consistent with immune reconstitution (29, 1%); or 4) the only monoclonal protein identified was consistent with a therapeutic monoclonal antibody (156, 7%). Results: The final cohort consisted of 4118 patients with a positive MASS-FIX and 2211 patients with a negative MASS-FIX, all in the setting of underlying PCDs. Figure 1 illustrates the numbers and percentages of patients who are MASS-FIX positive versus MASS-FIX negative by diagnosis. MGUS and multiple myeloma (MM) were the most common diagnoses overall, and both were more common in the MASS-FIX positive cohort. More than 90% of patients with Waldenstrom's macroglobulinemia (WM), smoldering WM, smoldering MM, and cold agglutinin disease were positive by MASS-FIX. For MASS-FIX positive patients, IgG isotype was identified in 2575 patients (63%), IgA in 703 (17%) and IgM in 710 (17%). Bence Jones proteinemia was identified in 283 patients (7%) with lambda restriction being the most common (57%). 3625 patients (88%) had a monoclonal pattern, 228 patients (6%) had a bi-clonal pattern, and 7 (&lt;1%) had a tri-clonal pattern. The majority of patients (58%) were kappa LC restricted by MASS-FIX, 222 (5%) had N-glycosylated LC, and 2 patients (&lt;1%) had a heavy chain with no light chain. Conclusions: This single institution experience illustrates the practicality of MASS-FIX in detecting and following monoclonal proteins for a wide range of PCDs in a tertiary center. In this cohort, the percentage of patients who were MASS-FIX positive varied by diagnosis, reflecting cross sectional sampling of patients throughout their disease course. Disclosures Gertz: Research to Practice: Other; Springer Publishing: Patents & Royalties; Aurora Bio: Other; Johnson and Johnson: Speakers Bureau; Sanofi: Other; Amgen: Other: personal fee; Appellis: Other: personal fee; Annexon: Other: personal fee; Spectrum: Other: personal fee, Research Funding; Janssen: Other: personal fee; Prothena: Other: personal fee; Alnylam: Other: personal fee; Ionis/Akcea: Other: personal fee; Proclara: Other; DAVA oncology: Speakers Bureau; Celgene: Other; Teva: Speakers Bureau; Abbvie: Other; Physicians Education Resource: Other: personal fee; Medscape: Other: personal fee, Speakers Bureau. Kumar:AbbVie: Other: Research funding for clinical trials to the institution, Consulting/Advisory Board participation with no personal payments; Dr. Reddy's Laboratories: Honoraria; Takeda: Other: Research funding for clinical trials to the institution, Consulting/Advisory Board participation with no personal payments; Carsgen: Other, Research Funding; Karyopharm: Consultancy; Merck: Consultancy, Research Funding; Oncopeptides: Consultancy, Other: Independent Review Committee; IRC member; Kite Pharma: Consultancy, Research Funding; BMS: Consultancy, Research Funding; Janssen Oncology: Other: Research funding for clinical trials to the institution, Consulting/Advisory Board participation with no personal payments; Amgen: Consultancy, Other: Research funding for clinical trials to the institution, Consulting/Advisory Board participation with no personal payments, Research Funding; Genecentrix: Consultancy; Adaptive Biotechnologies: Consultancy; Novartis: Research Funding; MedImmune: Research Funding; Sanofi: Research Funding; Tenebio: Other, Research Funding; Cellectar: Other; Genentech/Roche: Other: Research funding for clinical trials to the institution, Consulting/Advisory Board participation with no personal payments; Celgene/BMS: Other: Research funding for clinical trials to the institution, Consulting/Advisory Board participation with no personal payments. Kapoor:Sanofi: Consultancy, Research Funding; Amgen: Research Funding; Takeda: Honoraria, Research Funding; GlaxoSmithKline: Research Funding; Cellectar: Consultancy; Janssen: Research Funding; Celgene: Honoraria. Dingli:Karyopharm Therapeutics: Research Funding; Bristol Myers Squibb: Research Funding; Rigel: Consultancy; Alexion: Consultancy; Sanofi-Genzyme: Consultancy; Janssen: Consultancy; Apellis: Consultancy; Millenium: Consultancy. Lin:Merck: Research Funding; Legend BioTech: Consultancy; Juno: Consultancy; Bluebird Bio: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Novartis: Consultancy; Janssen: Consultancy, Research Funding; Kite, a Gilead Company: Consultancy, Research Funding; Gamida Cells: Consultancy; Takeda: Research Funding; Sorrento: Consultancy, Membership on an entity's Board of Directors or advisory committees; Vineti: Consultancy. Murray:The Binding Site: Patents & Royalties: Patent Use of Mass Spec to identify monoclonal proteins licensed to The Binding Site. Dispenzieri:Alnylam, Intellia, Janssen, Takeda, Pfizer, Prothena, Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 482-482
Author(s):  
Blessie Elizabeth Nelson ◽  
Jeremy L. Ramdial ◽  
Qaiser Bashir ◽  
Neeraj Saini ◽  
Chitra Hosing ◽  
...  

Abstract Background: There has been an increased use of novel agents in the induction therapy for transplant-eligible AL amyloidosis over past decade. Hematologic response after an autologous hematopoietic stem cell transplantation (ASCT) is predictive of better outcomes, including organ response and overall survival. However, limited data exist about the outcomes of patients who are refractory to induction chemotherapy but proceed with upfront ASCT). We present here the outcomes of AL amyloidosis refractory to induction therapy. Methods: This retrospective study included all consecutive AL patients who had their ASCT at our institution between 01/2008 and 12/2018 and received induction therapy. We excluded patients who were untreated at the time of transplant. Primary objective: assess the hematologic response, progression-free survival (PFS) and overall survival (OS). Secondary objective: compare PFS and OS of AL amyloidosis by response to induction therapy (refractory vs sensitive). Refractory disease was defined as patient who had stable disease (SD) or progressive disease (PD) after at least 1 line of induction therapy. Hematologic response was defined per the 2012 consensus criteria. Survival estimates were calculated using Kaplan-Meier method. Results: One-hundred-and-eleven patients with a median age of 61 (range, 27-77) years met eligibility criteria. Thirty-three (30%) were refractory and 78 (70%) were sensitive to induction therapy. Table 1 summarizes patient and disease characteristics of all study patients and for the refractory vs sensitive groups. Overall, the two groups were comparable except for significantly more kidney involvement in the refractory group (97% of patients). Induction therapies were similar in the two groups, with bortezomib/cyclophosphamide/dexamethasone (VCD) being the most commonly used regimen (46%). With a median follow-up of 3.11 (range, 0.18-11.15) years, the 3-year PFS and OS for all study patients were 67% and 78%, respectively. At 3 months after transplant, 74% of the patients in the refractory group achieved an objective hematologic response (OHR; defined as PR or better). Of these, 29% achieved VGPR/CR and 45% achieved PR. As expected, more patients in the sensitive group achieved OHR (97%) and VGPR/CR (76%). The respective 3-year PFS and OS were 49% and 73% in the refractory group compared to 75% and 83% in the sensitive group (p=0.0068 for PFS; p=0.0790 for OS). Univariate analysis (UVA) was performed for the variables listed in Table 1 and multivariable analyses included only factors with p value&lt;0.1 in in the UVA. In MVA, in addition to increased risk for refractory patients (HR 2.885, 95% CI:1.237-6.729; p=0.0142), only elevated beta-2 microglobulin (HR 3.899, 95% CI:1.039-14.629; p=0.0437) was associated with inferior PFS. Regarding OS, age ≥60 (HR 3.812, 95% CI:1.038-14.002; p=0.0438) and revised Mayo stage III/IV (HR 3.886, 95% CI: 1.029-14.679; p=0.0453) were associated with inferior survival. In a subgroup analysis comparing PFS and OS stratifying patients by their response to induction (refractory vs sensitive) and their 3-month hematologic response after transplant, we found no significant differences in the 3-year PFS (86% for refractory vs 80% for sensitive group; p=0.7284) for those with VGPR or better but significantly inferior PFS for refractory patients who achieved &lt;VGPR (27% compared to 74% for the sensitive group; p=0.0196). Conclusion: AL amyloid patients refractory to induction therapy seem to benefit from high-dose chemotherapy and ASCT in terms of both response rates and survival. Durable responses for refractory disease are notable in patients who achieved &gt;VGPR after ASCT. Prospective studies comparing transplant versus non-transplant approaches are warranted for these high-risk patients. Figure 1 Figure 1. Disclosures Hosing: Nkarta Therapeutics: Membership on an entity's Board of Directors or advisory committees. Popat: Bayer: Research Funding; Abbvie: Research Funding; Novartis: Research Funding; Incyte: Research Funding. Lee: Bristol Myers Squibb: Consultancy; Celgene: Consultancy; Genentech: Consultancy; Janssen: Consultancy, Research Funding; Karyopharm: Consultancy; Legend Biotech: Consultancy; GlaxoSmithKline: Consultancy, Research Funding; Sanofi: Consultancy; Oncopetides: Consultancy; Takeda Pharmaceuticals: Consultancy, Research Funding; Amgen: Consultancy, Research Funding; Regeneron: Research Funding. Orlowski: Asylia Therapeutics, Inc., BioTheryX, Inc., and Heidelberg Pharma, AG.: Other: Laboratory research funding; Asylia Therapeutics, Inc.: Current holder of individual stocks in a privately-held company, Patents & Royalties; Amgen, Inc., BioTheryX, Inc., Bristol-Myers Squibb, Celgene, Forma Therapeutics, Genzyme, GSK Biologicals, Janssen Biotech, Juno Therapeutics, Karyopharm Therapeutics, Inc., Kite Pharma, Neoleukin Corporation, Oncopeptides AB, Regeneron Pharmaceuticals, I: Membership on an entity's Board of Directors or advisory committees; CARsgen Therapeutics, Celgene, Exelixis, Janssen Biotech, Sanofi-Aventis, Takeda Pharmaceuticals North America, Inc.: Other: Clinical research funding; Amgen, Inc., BioTheryX, Inc., Bristol-Myers Squibb, Celgene, EcoR1 Capital LLC, Genzyme, GSK Biologicals, Janssen Biotech, Karyopharm Therapeutics, Inc., Neoleukin Corporation, Oncopeptides AB, Regeneron Pharmaceuticals, Inc., Sanofi-Aventis, and Takeda P: Consultancy, Honoraria. Qazilbash: Janssen: Research Funding; Biolline: Research Funding; Angiocrine: Research Funding; Amgen: Research Funding; NexImmune: Research Funding; Bristol-Myers Squibb: Other: Advisory Board; Oncopeptides: Other: Advisory Board.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3543-3543 ◽  
Author(s):  
Alexis A. Thompson ◽  
Mark C. Walters ◽  
Janet L. Kwiatkowski ◽  
Suradej Hongeng ◽  
John B. Porter ◽  
...  

Background Transfusion-dependent β-thalassemia (TDT) is treated with regular, lifelong red blood cell (RBC) transfusions and despite iron-chelating therapy, carries a risk of serious organ damage from iron overload and other complications. Transplantation with autologous CD34+ cells encoding a βA-T87Q-globin gene (LentiGlobin for β-thalassemia) is being evaluated in patients with TDT. Interim results are presented here from the ongoing, international, single-arm, phase 3 Northstar-2 study (HGB-207; NCT02906202) of LentiGlobin gene therapy in pediatric, adolescent, and adult patients with TDT (defined by receiving ≥100 mL/kg/yr of RBCs or ≥8 RBC transfusions/yr) and non-β0/β0 genotypes. Methods Patients undergo hematopoietic stem cell (HSC) mobilization with G-CSF and plerixafor. Following apheresis, CD34+ cells are transduced with BB305 lentiviral vector and infused into patients after pharmacokinetic-adjusted, single-agent busulfan myeloablation. The primary efficacy endpoint is transfusion independence (TI; weighted average hemoglobin [Hb] ≥9 g/dL without RBC transfusions for ≥12 months). HSC engraftment, βA-T87Q-globin expression, Hb levels, detection of replication competent lentivirus (RCL), and adverse events (AE) are also assessed. Patients are followed for 2 years and offered participation in a long-term follow-up study. Summary statistics are presented as median (min - max). Results Twenty patients were treated in Northstar-2 as of 13 December 2018 and have been followed for a median of 8.1 (0.5 - 22.2) months. At enrollment, median age was 16 (8 - 34) years; 5 patients were &lt;12 years of age. Median drug product cell dose was 8.0 (5.0 - 19.9) x106 cells/kg and vector copy number was 3.2 (1.9 - 5.6) copies/diploid genome. Time to neutrophil and platelet engraftment in the 18/20 and 15/20 evaluable patients was 22.5 (13 - 32) and 45 (20 - 84) days, respectively. Non-hematologic grade ≥3 AEs in ≥3 patients after LentiGlobin infusion included stomatitis (n=12), febrile neutropenia (n=6), pyrexia (n=4), epistaxis (n=3), and veno-occlusive liver disease (n=3). One serious AE of grade 3 thrombocytopenia was considered possibly related to LentiGlobin. No patient died, had graft failure, or had detection of RCL. No insertional oncogenesis has been observed. Gene therapy-derived HbAT87Q stabilized approximately 6 months after infusion. In adolescent and adult patients treated with LentiGlobin, median HbAT87Q at Months 6, 12 and 18 was 9.5 (n=11), 9.2 (n=8), and 9.5 (n=3) g/dL, respectively. The median total Hb without transfusions at Months 6, 12, and 18 were 11.9 (n=11), 12.4 (n=8), 12.3 (n=2) g/dL, respectively. At Month 6, 91% (10/11) of patients had total Hb of &gt;11 g/dL without transfusions. Five adolescent and adult patients were evaluable for the primary endpoint of transfusion independence, 4 (80%) of whom achieved TI. The median weighted average Hb during TI was 12.4 (11.5 - 12.6) g/dL which compared favorably to pre-transfusion nadir Hb levels before enrollment (median 9.1 g/dL [7.5 - 10.0 g/dL]). At time of analysis, the median duration of TI was 13.6 (12.0 - 18.2) months. One patient who did not achieve TI stopped transfusions for 11.4 months but resumed transfusions due to recurrent anemia. This patient had a 71.4% reduction in RBC transfusion volume from Month 6 to Month 18 compared to baseline. Marrow cellularity and myeloid:erythroid (M:E) ratios were evaluated in 8 adolescent and adult patients with ≥12 months follow-up to assess the effect of LentiGlobin treatment on dyserythropoiesis. Seven of 8 patients had improved marrow M:E ratios at Month 12 (0.63 - 1.90) compared with baseline (0.14 - 0.48). In patients who stopped transfusions, soluble transferrin receptor levels were reduced by a median of 72% (58% - 78%) at Month 12 (n=6). Updated outcomes in adolescents and adults and outcomes in pediatric patients will be reported. Summary In this update of the Northstar-2 study of LentiGlobin gene therapy in patients with TDT and non-β0/β0 genotypes, transfusion independence was observed in 4/5 evaluable adolescent and adults and 10/11 treated patients had total Hb of &gt;11 g/dL without transfusion support 6 months after LentiGlobin infusion. HbAT87Q stabilized approximately 6 months after treatment and patients who stopped RBC transfusions had improved erythropoiesis. A safety profile consistent with busulfan conditioning was observed after LentiGlobin gene therapy. Disclosures Thompson: bluebird bio, Inc.: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Baxalta: Research Funding. Walters:TruCode: Consultancy; AllCells, Inc: Consultancy; Editas Medicine: Consultancy. Kwiatkowski:bluebird bio, Inc.: Consultancy, Research Funding; Terumo: Research Funding; Celgene: Consultancy; Agios: Consultancy; Imara: Consultancy; Apopharma: Research Funding; Novartis: Research Funding. Porter:Protagonism: Honoraria; Celgene: Consultancy, Honoraria; Bluebird bio: Consultancy, Honoraria; Agios: Consultancy, Honoraria; La Jolla: Honoraria; Vifor: Honoraria; Silence therapeutics: Honoraria. Thrasher:Rocket Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees; Orchard Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Generation Bio: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; 4BIOCapital: Membership on an entity's Board of Directors or advisory committees. Thuret:BlueBird bio: Other: investigators for clinical trials, participation on scientific/medical advisory board; Celgene: Other: investigators for clinical trials, participation on scientific/medical advisory board; Novartis: Other: investigators for clinical trials, participation on scientific/medical advisory board; Apopharma: Consultancy. Elliot:bluebird bio, Inc.: Employment, Equity Ownership. Tao:bluebird bio, Inc.: Employment, Equity Ownership. Colvin:bluebird bio, Inc.: Employment, Equity Ownership. Locatelli:Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Bellicum: Consultancy, Membership on an entity's Board of Directors or advisory committees; bluebird bio: Consultancy; Miltenyi: Honoraria.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3150-3150 ◽  
Author(s):  
Raymond L. Comenzo ◽  
Daniel E Fein ◽  
Hani Hassoun ◽  
Christina Bello ◽  
Joanne F Chou ◽  
...  

Abstract Abstract 3150 Background: AL is a plasma cell dyscrasia characterized by the pathologic production of monoclonal light chains which misfold, deposit in various organs, including the heart, and can cause early death. High dose melphalan with stem cell transplant (SCT) results in high hematologic response rates and is a standard treatment for eligible patients. Achieving a complete hematologic response (CR) to SCT results in extended event-free and overall survival (OS), up to 8 and 13 years respectively in one large series. (Blood 2011; 118:4346) We have studied the addition of novel agents as consolidation following risk-adapted SCT (RA-SCT) in order to improve hematologic response (HR) rates and therefore outcomes. (Br J Haem 2007;139:224; Amyloid 2010;17:80a) In this report we examine the long-term outcomes of patients who received initial therapy with RA-SCT followed by consolidation for hematologic response less than CR (HR < CR). Methods: We performed a retrospective study to assess the HR rates, incidence of hematologic progression and overall survival (OS) of AL patients enrolled at diagnosis on two consecutive phase II trials using RA-SCT with consolidation for HR < CR (NCT01527032 and NCT00458822). OS was calculated from date of transplant to date of death or last follow up. Median event free survival (EFS) and OS were estimated by the method of Kaplan Meier. Cumulative incidence function was used to estimate the incidence of progression and death. Results: Between 2002 and 2011, 83 patients were enrolled and underwent RA-SCT on these trials and, following RA-SCT, those with HR < CR received consolidation with thalidomide and dexamethasone (TD) in the first and bortezomib and dexamethasone (BD) in the second trial. Thirty-six patients had cardiac involvement (43%) and all patients had free light chain measurements employed to score hematologic response and progression using consensus criteria (Am J Hematol 2005;79:319; Blood 2010;116:1364a). The frequency of CR following SCT was 24% and increased to 48% with post-SCT consolidation. The CR rates increased at 1 year compared to 3 months post-SCT from 21% to 36% with TD and from 28% to 62% with BD. With a median follow up of 5.1 years, the EFS is 4.5 years (95% CI: 2.6 to not reached) and the OS of all patients has not been reached (Figure 1). Sixteen patients died prior to hematologic progression and 26 patients have progressed with a cumulative incidence of hematologic progression of 8%, 18%, and 29% at 1, 2 and 3 years, respectively (Figure 2). Thirty-one percent (8/26) of relapsed patients have not required second-line therapy while among those who have, 78% (14/18) have responded including 44% (8/18) with CR. The median OS following hematologic progression was 5 years (95% CI: 2.6–5.8). Conclusions: Half of the AL patients on initial therapy trials employing RA-SCT and consolidation for HR < CR achieved CR with 36% of pts on the TD and 62% on the BD consolidation trial in CR at 1 year post-SCT respectively. At 3 years post-SCT the cumulative incidence of relapse was 29% and a third of relapsed patients did not require therapy, likely due to the very sensitive serum free light chain assay that detects low level hematologic progression in the absence of organ progression. Almost 80% of patients requiring second-line therapy responded, over half with CR, and median OS after relapse was 5 years. These results indicate that initial therapy with RA-SCT and consolidation is an effective initial treatment strategy for patients with AL in the era of novel agents. With over 5 years of follow up the median OS has not been reached. Disclosures: Comenzo: Millennium Pharmaceuticals, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding. Off Label Use: Use of the investigational agent MLN9708, an oral proteasome inhibitor, in the treatment of relapsed or refractory light-chain amyloidosis. Hassoun:Millenium: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Research Funding. Giralt:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Millenium: Membership on an entity's Board of Directors or advisory committees; Onyx: Membership on an entity's Board of Directors or advisory committees, Research Funding. Landau:Millenium: Membership on an entity's Board of Directors or advisory committees, Research Funding; Onyx: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1786-1786 ◽  
Author(s):  
Heather Landau ◽  
Raymond L. Comenzo ◽  
Tasneem Balasinorwala ◽  
Melissa Warner ◽  
Ola Landgren ◽  
...  

Abstract Background: Hematologic response criteria in AL amyloidosis are based on reduction of FLCs and correlate with organ improvement and survival in the front-line setting (Palladini 2012). Hematologic progression is defined from complete response (CR) as any detectable monoclonal (m) protein or abnormal FLC ratio (light chain must double); and from partial response (PR) as a 50% increase in serum or urine m-protein to > 0.5g/dl or 200mg/d respectively; or a 50% increase in FLC to > 10mg/dL based on consensus criteria (Gertz 2005); while cardiac and renal progression criteria have recently been validated (Palladini 2012 & 2014). Trials enrolling relapsed pts define measurable disease by a difference in FLC (dFLC) >5mg/dl such that accurate responses (VGPR, PR) can be assessed. However, many pts with hematologic and/or organ progression fail to meet dFLC > 5mg/dL set by inclusion criteria (if progression from CR) or the high bar of FLC > 10mg/dL set by the progression criteria and are ineligible for clinical trials. Composite criteria for progression of disease involving both hematologic measures and biomarkers of organ damage do not exist. The goal of the current study was to characterize pts with AL and evidence of progressive disease who were ineligible for clinical trials in order to determine the magnitude of this problem and define potential AL study populations whose medical needs are not being met. Methods: Previously treated AL pts screened for clinical trials from 5/2013 to 5/2015 at Memorial Sloan Kettering Cancer Center and Tufts Medical Center were reviewed retrospectively. Trials included 1) phase I/II trial of carfilzomib (NCT01789242), 2) phase I trial of ixazomib (NCT01318902) and 3) phase III trial of ixazomib/dexamethasone versus physician's choice (NCT01659658). Inclusion for all 3 required relapsed AL with dFLC >5mg/dl and evidence of organ damage. Pts with progressive hematologic and/or organ disease (by consensus or validated criteria) who were screened for these trials were included in this analysis. Results: Among 36 pts screened, 33% (N=12) enrolled. Yet, 67% (N=24) with hematologic (N=14), cardiac (N =6) and/or renal (N=11) progression were ineligible. Median age was 61 years (range, 41-78); prior lines of therapy were 1 in 38%, 2 in 38% and >2 in 25%. Median BNP, TROP, serum ALB, eGFR and 24hr urine total protein were: 283pg/mL (36-2197), 0ng/mL (0-0.09), 3.4g/dL (1.3-4.8), 66ml/min (7-128) and 1800 mg/24hrs (trace-12,875), respectively. Median involved FLC was 6.48mg/dl (0.93-52.6) and dFLC 4.69mg/dl (0.01-52). 58% (14/24) were ineligible due to dFLC <5mg/dl, which was the most common reason for screen failure despite meeting hematologic and/or organ criteria for progression. Others were excluded for multiple myeloma (N=2), cardiac stage III (N=4), prior malignancy (N=1), number of prior therapies (N=1) and low creatinine clearance (N=2). 92% (22/24) have received therapy: 19 off study, 2 on alternate trials and 1 eventually qualified with dFLC >5mg/dl; 2 are being monitored for FLC progression with unclear clinical implications. One-third of patients ineligible for these trials have died. Conclusions: The finding that only 1/3 of pts with AL amyloidosis and hematologic or organ progression requiring therapy are eligible for clinical trials demonstrates the limitations of the current definitions of progression and "measurable disease" criteria for enrolling relapsed pts on trials. The necessary decision to treat pts with organ progression in advance of their meeting a criterion for FLC progression (to >10mg/dl) indicates that this arbitrarily defined value needs to be revised. Moreover, time to next therapy rather than progression free survival (as currently defined) is a more relevant clinical trial end point. More sensitive, validated hematologic progression and composite criteria defining progression of hematologic and organ disease are critically needed to identify patients whose level of hematologic disease progression and risk of organ damage is at variance with current criteria as defined by FLCs. This will enable novel therapies that have the potential to reduce the risks of end-stage organ failure and death to be tested in this population. Disclosures Landau: Spectrum Pharmaceuticals: Honoraria; Prothena: Consultancy, Honoraria; Onyx: Honoraria, Research Funding; Janssen: Consultancy; Janssen: Consultancy; Takeda: Research Funding. Comenzo:Prothena: Research Funding; Janssen: Research Funding; Karyopharm: Research Funding; Takeda Millennium: Research Funding; Prothena: Membership on an entity's Board of Directors or advisory committees; Takeda Millennium: Membership on an entity's Board of Directors or advisory committees. Landgren:BMJ Publishing: Honoraria; Bristol-Myers Squibb: Honoraria; Celgene: Honoraria; Medscape: Honoraria; Onyx: Honoraria; International Myeloma Foundation: Research Funding; Onyx: Research Funding; BMJ Publishing: Consultancy; Medscape: Consultancy; Bristol-Myers Squibb: Consultancy; Celgene: Consultancy; Onyx: Consultancy. Giralt:CELGENE: Consultancy, Honoraria, Research Funding; TAKEDA: Consultancy, Honoraria, Research Funding; JAZZ: Consultancy, Honoraria, Research Funding, Speakers Bureau; AMGEN: Consultancy, Research Funding; SANOFI: Consultancy, Honoraria, Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2082-2082
Author(s):  
Nidhi Tandon ◽  
Surbhi Sidana ◽  
Morie A. Gertz ◽  
Angela Dispenzieri ◽  
Martha Q. Lacy ◽  
...  

Abstract Introduction Immunoglobulin light chain amyloidosis (AL Amyloidosis) is a monoclonal plasma cell proliferative disorder that is characterized by tissue deposits of misfolded insoluble κ or λ light chain derived amyloid fibrils, leading to organ dysfunction. The prognosis of patients depends on the number and severity of organ involvement, especially cardiac involvement. Autologous stem cell transplant (ASCT), if eligible, alkylator (melphalan) and novel drugs like proteasome inhibitors (PI) and immunomodulators (IMiD) have improved the overall survival (OS) during the past decades. But still, nearly half of the patients die within a year of diagnosis. We analyzed the factors predicting early relapse / progression or death (within 12 months) after first line therapy for systemic AL amyloidosis. Methods Clinical and laboratory data of all consecutive patients with systemic AL amyloidosis seen at Mayo Clinic within 90 days of their diagnosis, between 2006 and 2015, was collected by chart review and analyzed retrospectively. Patients who died within 3 months of starting the first line treatment were excluded from analysis. Early relapse (ER) was defined as relapse / progression requiring treatment change / re-institution or death within 12 months of starting first line treatment. Patients in the cohort with ER were compared with patients with a follow up of more than 12 months who had a relapse / progression beyond 12 months or had continuing response at the time of analysis. Categorical variables were analyzed using chi - square and Fisher's exact test and continuous variables using Kruskal- Wallis test and Wilcoxon rank sum test. Multivariate analysis was done using logistic regression model. Results Seven hundred and eighty six patients with newly diagnosed systemic AL amyloidosis met the study criteria and were included in the analysis. Among these, 230 (29.3%) patients had ER within 12 months of starting initial therapy while 556 (70.7%) patients either relapsed after 1 year or had continuing response at the time of analysis. Baseline demographics, organ involvement and type of first line therapy are presented in Table1. The median estimated follow up for the entire cohort from start of initial therapy was 62.9 months (95% CI; 59.9, 67.3). The variables included in the univariate and multivariate analyses for factors predicting ER were age at diagnosis (≤ vs > 70 years ), revised mayo stage (I and II vs III and IV), bone marrow plasma cell percentage (BMPC; ≤ 10% vs > 10%), presence of any chromosomal abnormalities, trisomies or IgH translocations by fluorescence in situ hybridization (FISH), multiorgan involvement [(>1 vs 1) (heart, liver, kidney, gastrointestinal tract, autonomic neuropathy), incorporation of ASCT in initial therapy. In univariate analysis, mayo stage (p<0.0001), multiorgan involvement (p=0.0008) and inclusion of ASCT as part of initial therapy (p<0.0001) were significantly associated with ER, while age (p=0.06), BMPC(p=0.9), FISH abnormalities (p=0.2) were not. However, in multivariate analysis, only mayo stage (III + IV vs I + II; p=0.01) and non-inclusion of ASCT in first line treatment (p=0.0001) were significantly predictive of ER. Conclusions Despite the introduction of ASCT and novel drugs, the early mortality in systemic AL amyloidosis remains high. This study demonstrates that patients with ER are older with higher prevalence of cardiac involvement and multiorgan involvement and higher Mayo stage (III and IV). Incorporation of ASCT as part of the initial therapy was associated with reduced early relapse, but it is difficult to separate the influence of the eligibility for ASCT from the effect of ASCT itself. This will help us in characterizing these patients to better understand their mechanisms of resistance to therapy and gives an insight to the type of initial therapy that benefits them. Disclosures Dispenzieri: GSK: Membership on an entity's Board of Directors or advisory committees; Jannsen: Research Funding; Prothena: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Alnylam: Research Funding; pfizer: Research Funding. Kapoor:Takeda: Research Funding; Amgen: Research Funding; Celgene: Research Funding. Kumar:Celgene: Consultancy, Research Funding; Kesios: Consultancy; BMS: Consultancy; Sanofi: Consultancy, Research Funding; Noxxon Pharma: Consultancy, Research Funding; Glycomimetics: Consultancy; Millennium: Consultancy, Research Funding; Array BioPharma: Consultancy, Research Funding; Onyx: Consultancy, Research Funding; AbbVie: Research Funding; Skyline: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 646-646 ◽  
Author(s):  
Efstathios Kastritis ◽  
Xavier Leleu ◽  
Bertrand Arnulf ◽  
Elena Zamagni ◽  
María Teresa Cibeira ◽  
...  

Abstract Background. Current upfront treatment of light chain (AL) amyloidosis is often based on bortezomib in patients. However, data on the safety and efficacy of bortezomib in this setting mostly derive from uncontrolled, retrospective series, that are difficult to compare due to different proportion of patients with advanced disease. Here we report the analysis of a multicenter randomized phase III trial comparing MDex, a current standard of care, and MDex with the addition of bortezomib (BMDex) in newly-diagnosed AL amyloidosis that was performed in Europe and Australia (EMN-03 study, NCT01277016). Patients and Methods. Main eligibility criteria included measurable disease (M-protein >10 g/L or dFLC >50 mg/L), estimated glomerular filtration rate (eGFR) ³30 mL/min, and adequate liver function. Previously treated patients, those who had >30% bone marrow plasma cell or lytic bone lesions, NYHA class >II heart failure, grade 3 sensory or grade 1 painful peripheral neuropathy, or ECOG performance status >2 were excluded. In January 2013 the protocol was amended to include Mayo stage III patients, provided their NT-proBNP was <8500 ng/L (stage IIIa). Patients were randomized to receive either MDex (melphalan at 0.22 mg/kg and dexamethasone at 40 mg daily for 4 consecutive days every 28 days) or BMDex (bortezomib added at 1.3 mg/m2, on days 1, 4, 8, and 11 in cycles 1 and 2, and on days 1, 8, 15, and 22 in the following cycles). The primary endpoint was overall hematologic response at 3 months. Treatment was continued until completion of MDex cycle 9 or BMDex cycle 8, or achievement of CR or of at least partial response (PR) plus organ response after cycle 6, and was discontinued in case PR was not achieved by cycle 3. Enrollment is now completed (110 patients) with the last patient enrolled in February 2016 (database lock: July 25, 2016). Results. Patients' characteristics are reported in the Table. The proportion of patients experiencing at least 1 grade 3-4 severe adverse events (SAE) was similar in the MDex and BMDex arms (49% vs. 60%, P=0.11). The total number of reported adverse events per cycle was lower in the MDex group (10% vs 23%, P<0.01). Most common SAEs (MDex vs. BMDex) were cytopenia (4% vs. 7%, P=0.04), fluid retention (3% vs. 6%, P=0.02), and neuropathy (0 vs. 2%, P<0.01). One patient died within 3 months in the MDex arm and 3 in the BMDex group (P=0.28). Response was evaluated by intent to treat. Hematologic response rates after cycle 3 were 51% and 78% (P=0.001), with 28% and 53% complete response (CR) /very good partial response (VGPR) (P=0.003), in the MDex and BMDex arms, respectively. Overall hematologic response at the end of treatment, after a median of 5 cycles, was 56% and 81% (P=0.001), with 38% and 64% CR/VGPR in the MDex and BMDex arms, respectively (P=0.002). Cardiac response was reached in 8 of 33 evaluable patients treated with MDex (24%) and 10 of 26 (38%) who received BMDex (P=0.119). Renal response was attained in 17 of 35 patients (48%) in both arms. However, there was a higher proportion of cardiac progression in the MDex arm with borderline statistical significance (32% vs. 15%, P=0.054). After a median follow-up of living patients of 25 months, 26 patients (24%) died, 16 in the MDex arm and 10 in the BMDex arm with no significant difference in survival (Figure 1a). Achievement of hematologic and cardiac response at 3 months significantly improved survival (Figures 1b and 1c). Conclusion. This is the first prospective randomized trial of novel agents in AL amyloidosis. The criteria of hematologic and cardiac response are validated in the prospective setting for the first time. The primary endpoint, hematologic response at 3 months has been reached, showing more frequent and more profound hematologic responses with BMDex, preventing progression of cardiac dysfunction, with a modest increase in toxicity. This regimen can be proposed as a new standard of care in AL amyloidosis. We would like to acknowledge the European Myeloma Network, the Australasian Leukaemia and Lymphoma Group and the Leukaemia Foundation of Australia for their ongoing support, and Janssen-Cilag for partially funding the trial and providing the study drug. Disclosures Kastritis: Genesis: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Amgen: Consultancy, Honoraria. Cibeira:Janssen: Honoraria; Celgene: Honoraria. Mollee:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Nilelse: Research Funding. Hajek:Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees. Moreau:Janssen: Honoraria, Speakers Bureau; Celgene: Honoraria; Novartis: Honoraria; Amgen: Honoraria; Takeda: Honoraria; Bristol-Myers Squibb: Honoraria. Mateos:Janssen, Celgene, Amgen, Takeda, BMS: Honoraria. Wechalekar:Takeda: Honoraria; Janssen: Honoraria; Glaxo Smith Kline: Honoraria; Celgene: Honoraria. Dimopoulos:Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Genesis: Consultancy, Honoraria; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Palumbo:Janssen Cilag: Honoraria; Takeda: Employment, Honoraria. Sonneveld:Amgen: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Takeda: Consultancy, Honoraria; Karyopharm: Consultancy, Honoraria, Research Funding. Merlini:Pfizer: Honoraria, Speakers Bureau; Millennium Takeda: Consultancy; Prothena: Honoraria; GlaxoSmithKline: Consultancy. Palladini:Prothena: Honoraria.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3182-3182
Author(s):  
Mohammed A Aljama ◽  
M Hasib Sidiqi ◽  
Angela Dispenzieri ◽  
Morie A. Gertz ◽  
Martha Q. Lacy ◽  
...  

Abstract Background: Cardiac involvement is integral in staging and prognosis of immunoglobulin light chain (AL) amyloidosis. The N-terminal prohormone of brain natriuretic peptide (NT proBNP) is a cardiac biomarker used in screening for cardiac involvement and staging the disease. Transthoracic echocardiogram (TTE) and cardiac magnetic resonance (CMR) are the imaging modalities recommended to determine cardiac involvement and function. Methods: We conducted a retrospective review of all patients with biopsy proven systemic AL amyloidosis seen at the mayo clinic between Jan 1, 2006 and Dec 30, 2015. The aim of the study is to identify the nature of abnormalities in cardiac biomarkers and echocardiographic features in patients with AL amyloidosis and the ability of these investigations to diagnose cardiac involvement. We first identified all patients with AL amyloidosis that underwent endomyocardial biopsy for suspicion of cardiac involvement (Cohort 1). We then analyzed a cohort (Cohort 2) which consisted of patients who had serum NT proBNP and a comprehensive echocardiographic evaluation at time of diagnosis. Results: 179 patients with AL amyloidosis underwent endomyocardial biopsy (Cohort 1) of whom 173 had evidence of amyloid deposition. In this cohort, 159 patients had NT proBNP performed at the time of the procedure. The NT proBNP was elevated (>300) in all 159 patients with a median NT proBNP of 4917 (range 355-69541). The median left ventricular ejection fraction (LVEF), interventricular septal (IVS) thickness and strain rate were 54 (range 10-77), 15 (range 8-30) and -9 (range -21 to 0) respectively. CMR findings were consistent or suggestive of light chain amyloidosis in 38/42 patients, yielding a sensitivity of 90 percent. The LVEF, IVS thickness and strain rate were abnormal in 89/168 (53%), 102/64 (61%) and 92/95 (97%) respectively. 95 patients with biopsy proven cardiac amyloidosis had complete echocardiogram data available on LVEF, IVS thickness and strain rate, with 97% (n=92) presenting with an abnormality in at least one of these variables . CMR findings were consistent or suggestive of light chain amyloidosis in 38/42 patients, yielding a sensitivity of 90 percent. Patients with a normal NT proBNP and normal echocardiogram were considered disease free (true negative), based on our initial analysis of these investigations in Cohort 1. Cohort 2 consisted of 342 consecutive patients. The median NT pro BNP was 1878 (25-48214). The median LVEF, IVS thickness and strain rate were 63 (22-90), 14 (6-25) and -13 (-25 to -3) respectively. 259 (76%) patients had a positive NT proBNP (above 300), of whom 237 (92%) had an abnormality detected on TTE. 83 patients had a negative NT proBNP, of whom 27 (33%) had an abnormality in either LVEF, IVS thickness or strain rate. 19 of these 27 patients had a borderline reduced strain rate between -17 and -18, whilst the remaining 8 patients had a strain between -14 and -15. Only 6/27 patients were considered to have possible early cardiac involvement and none have any other diagnostic or classical features of amyloidosis on TTE. Conclusion: The combination of NT proBNP and comprehensive echocardiographic evaluation provides substantial information to diagnose cardiac amyloidosis in a significant portion of patients negating the need for endomyocardial biopsy. A negative NT proBNP rules out clinically meaningful cardiac involvement and may obviate the routine use of TTE in patients with a low clinical suspicion of cardiac amyloidosis. Disclosures Dispenzieri: Celgene, Takeda, Prothena, Jannsen, Pfizer, Alnylam, GSK: Research Funding. Gertz:Research to Practice: Consultancy; Physicians Education Resource: Consultancy; Ionis: Honoraria; celgene: Consultancy; spectrum: Consultancy, Honoraria; Teva: Consultancy; Amgen: Consultancy; Medscape: Consultancy; janssen: Consultancy; Alnylam: Honoraria; Abbvie: Consultancy; annexon: Consultancy; Apellis: Consultancy; Prothena: Honoraria. Lacy:Celgene: Research Funding. Dingli:Millennium Takeda: Research Funding; Millennium Takeda: Research Funding; Alexion Pharmaceuticals, Inc.: Other: Participates in the International PNH Registry (for Mayo Clinic, Rochester) for Alexion Pharmaceuticals, Inc.; Alexion Pharmaceuticals, Inc.: Other: Participates in the International PNH Registry (for Mayo Clinic, Rochester) for Alexion Pharmaceuticals, Inc.. Kapoor:Takeda: Research Funding; Celgene: Research Funding. Kumar:AbbVie: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Research Funding; Roche: Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Oncopeptides: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; KITE: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; AbbVie: Membership on an entity's Board of Directors or advisory committees, Research Funding; KITE: Membership on an entity's Board of Directors or advisory committees, Research Funding; Merck: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document