scholarly journals Cost per Responder Analysis to Assess the Value of CAR-T Therapy for Relapsed or Refractory Multiple Myeloma

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4961-4961
Author(s):  
Thomas Martin ◽  
Saad Z. Usmani ◽  
Nedra Joseph ◽  
Concetta Crivera ◽  
Satish Valluri ◽  
...  

Abstract New classes of therapies have emerged for treating Relapsed or Refractory Multiple Myeloma (RRMM) patients, including chimeric antigen receptor T-cell (CAR-T) therapies targeting the B-cell maturation antigen. While CAR-T therapies are expected to be a more expensive class of treatment compared to chemotherapy, 1 they have been shown to have a high overall response rate (ORR) and progression-free survival (PFS). 2,3 As newer, more innovative RRMM therapies are developed and brought to market, payers will need to balance their higher efficacy and total treatment costs when assessing potential value. To assess the value of RRMM CAR-T therapies (ciltacabtagene autoleucel [cilta-cel] and idecabtagene vicleucel [ide-cel]), we developed a cost per responder (CPR) model that incorporates efficacy and total cost of treatment. In the absence of head-to-head trial data for CAR-T therapies, indirect treatment comparisons (ITCs) can be used to evaluate comparative efficacy, and the results can be used to inform a CPR model. Matching-adjusted indirect comparisons (MAIC) is a form of ITC that involves matching and adjusting a treatment group from a clinical study with individual patient-level data (IPD) available to a comparator for which only summary-level data are available. This method mitigates potential bias arising from differences in patient characteristics between trials and is widely used and accepted in comparative effectiveness research. Unanchored matching adjusted indirect comparison (MAIC) analyses were used to inform the comparative efficacy of cilta-cel versus ide-cel in our CPR model. MAIC results indicated that cilta-cel was associated with statistically significantly improved ORR (odds ratio [OR]: 87.99 [95% confidence interval [CI]: 20.32, 381.01; p < .0001]), complete response or better (≥CR) rate (OR: 5.96 [95% CI: 2.76, 12.88; p < .0001]) and PFS (hazard ratio [HR]: 0.36 [95% CI: 0.22, 0.59; p < .0001]) when compared with ide-cel. 4 To adequately capture total treatment costs for each treatment of interest, CPR models should include all costs related to acquisition and delivery of treatment. Relevant costs of CAR-T therapy for RRMM include the cost of apheresis, bridging therapy, costs of CAR-T acquisition and administration, supportive care and monitoring costs, adverse event management costs, and any costs associated with delivery of inpatient or outpatient clinical services. Preliminary results of the CPR analysis indicate that ide-cel is associated with a cost per ORR of approximately $743,000, a cost per CR or better of $1.66 million and a cost per month in PFS of approximately $55,000. Corresponding results for cilta-cel will be generated after the PDUFA date (November 29, 2021), and presented at ASH 2021. In conclusion, CPR models have significant potential to assist payers in evaluating the value of newer, more innovative RRMM therapies by integrating information on both total costs and efficacy. References 1 Pagliarulo N. FDA approves first CAR-T cell therapy for multiple myeloma. https://www.biopharmadive.com/news/fda-car-t-multiple-myeloma-approval-bristol-myersbluebird/597438/#:~:text=The%20pharma%2C%20which%20licensed%20the,other%20approve d%20CAR%2DT%20therapies. Published 27 March 2021. Accessed 22 June 2021. 2 Munshi NC, Anderson Jr LD, Shah N, et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med. 2021;384(8):705-16. 3 Madduri D, Berdeja JG, Usmani SZ, et al. CARTITUDE-1: phase 1b/2 study of ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy, in relapsed/refractory multiple myeloma [abstract]. Blood. 2020;136(1 supplement). Abstract 177. 4 Martin T, Usmani SZ, Schecter JM, Vogel M, Jackson CC et al. (2021) Matching-adjusted indirect comparison of efficacy outcomes for ciltacabtagene autoleucel in CARTITUDE-1 versus idecabtagene vicleucel in KarMMa for the treatment of patients with relapsed or refractory multiple myeloma. Curr Med Res Opin 1-10. Disclosures Martin: Sanofi: Research Funding; Oncopeptides: Consultancy; Janssen: Research Funding; Amgen: Research Funding; GlaxoSmithKline: Consultancy. Usmani: Pharmacyclics: Consultancy, Research Funding; Seattle Genetics: Consultancy, Research Funding; Merck: Consultancy, Research Funding; SkylineDX: Consultancy, Research Funding; Bristol-Myers Squibb: Research Funding; Takeda: Consultancy, Research Funding, Speakers Bureau; Janssen Oncology: Consultancy, Research Funding; Abbvie: Consultancy; Array BioPharma: Consultancy, Research Funding; Sanofi: Consultancy, Research Funding, Speakers Bureau; Celgene/BMS: Consultancy, Research Funding, Speakers Bureau; GSK: Consultancy, Research Funding; EdoPharma: Consultancy; Janssen: Consultancy, Research Funding, Speakers Bureau; Amgen: Consultancy, Research Funding, Speakers Bureau. Joseph: Johnson and Johnson: Current Employment, Current equity holder in publicly-traded company. Crivera: Johnson & Johnson: Current Employment, Current equity holder in publicly-traded company. Valluri: Janssen: Current Employment, Current equity holder in publicly-traded company. Jackson: Memorial Sloan Kettering Cancer Center: Consultancy; Janssen: Current Employment. Cohen: Eversana Life Science Services: Current Employment, Other: Eversana Life Science Services was contracted by Janssen to work on this project.. Singh: Eversana Life Science Services: Current Employment, Other: Eversana Life Science Services was contracted by Janssen to work on this project..

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 16-17
Author(s):  
M. Lia Palomba ◽  
Monika P. Jun ◽  
Jacob Garcia ◽  
James Lymp ◽  
November McGarvey ◽  
...  

Background: Chimeric antigen receptor (CAR) T cell therapy is generally limited to inpatient settings; yet, exploration of outpatient infusion and monitoring is ongoing. Information on health care resource utilization (HCRU) and costs associated with CAR T cell therapy administration is limited and may differ by postinfusion monitoring site. Liso-cel is an investigational, CD19-directed, defined composition, 4-1BB CAR T cell product administered at equal target doses of CD8+ and CD4+ CAR+ T cells. An interim analysis from the OUTREACH study (NCT03744676) observed lower HCRU with outpatient vs inpatient administration (Bachier et al. J Clin Oncol 2020;38:8037). The patient journey after CAR T cell therapy administration may differ for patients with outpatient vs inpatient monitoring and may result in varying costs of care. This study estimated the cost of postinfusion monitoring by site of care for patients with R/R LBCL who received third-line or later treatment with liso-cel in the TRANSCEND NHL 001 (TRANSCEND; NCT02631044) and OUTREACH clinical trials. Methods: This retrospective study analyzed HCRU reported in clinical trial databases from TRANSCEND and OUTREACH. A 2-step microcosting method was used to identify key HCRU and to estimate postinfusion costs: (1) HCRU was analyzed from the index date (day of liso-cel infusion) through the 6-month follow-up; and (2) costs were applied to each HCRU. HCRU included standard inpatient and intensive care unit (ICU) length of stay (LOS), diagnostics (laboratory work and imaging), procedures (dialysis and intubation), and medications (supportive care, prophylactic treatment, and adverse event management). Unit costs were obtained from the health care system (provider) perspective and adjusted to 2020 US dollars. Cost per standard inpatient day ($2,542) was estimated from Healthcare Cost and Utilization Project databases, and cost per ICU day ($7,556) was sourced from Dasta et al (Crit Care Med. 2005;33:1266-77). All medication costs were obtained from REDBOOK (IBM Micromedex) using wholesale acquisition costs. Diagnostic and procedure costs were obtained from the Centers for Medicare & Medicaid Services laboratory fee schedule, physician fee schedule, or outpatient prospective payment system. A payment-to-cost ratio was applied to Medicare payment rates to estimate unit costs. Costs were adjusted to reflect the site of care where the HCRU occurred. A cost ratio was applied to adjust costs from the physician's office/community oncology clinic to the hospital outpatient department (Winfield, Muhlestein, Leavitt Partners; 2017) and from outpatient to inpatient (Meisenberg et al. Bone Marrow Transplant. 1998;21:927-32). Costs were aggregated by HCRU category, specifically medications, diagnostics, procedures, and facility costs. An average total cost by post-liso-cel infusion month was calculated for patients with ongoing status in that month (patients censored due to data cutoff were not included). Analyses were stratified by site of postinfusion monitoring (inpatients vs outpatients). Results: A total of 303 patients with R/R LBCL across the 2 trials received liso-cel and postinfusion monitoring (inpatients, n = 256; outpatients, n = 47). HCRU and LOS, including standard inpatient and ICU days, are shown in the Table. Inpatients had higher rates of inpatient stays (<100% vs 62%) and tocilizumab use (for CRS and/or NE; 20% vs 9%) than outpatients, respectively. Rates of ICU admission, corticosteroid use, vasopressor use, dialysis, and intubation were similar between groups. Median and average LOS in standard inpatient and ICU settings were higher among inpatients. Median (range) total LOS for inpatients and outpatients was 15 (0-88) and 4 (0-77) days, respectively. The estimated mean postinfusion cost of care was $89,535 for inpatients and $36,702 for outpatients. Over 6 months, most costs were incurred in the first month after infusion ($50,369 [56%] for inpatients and $19,837 [54%] for outpatients). Costs were largely driven by facility costs, namely standard inpatient and ICU stays (Figure). Conclusions: Lower overall HCRU was observed with outpatient liso-cel postinfusion monitoring, primarily due to hospitalizations, which resulted in a mean 6-month cost savings of $52,833 (59%) compared with inpatient monitoring. These results are based on national average costs and may not be generalizable to specific institutions. Disclosures Palomba: Regeneron: Research Funding; Juno Therapeutics, a Bristol-Meyers Squibb Company: Honoraria, Research Funding; Genentech: Research Funding; Merck: Honoraria; Novartis: Honoraria; Celgene: Honoraria; Pharmacyclics: Honoraria. Jun:Bristol-Myers Squibb Company: Current Employment, Current equity holder in publicly-traded company. Garcia:Bristol-Myers Squibb Company: Current equity holder in publicly-traded company; Juno Therapeutics, a Bristol-Myers Squibb Company: Current Employment. Lymp:Bristol-Myers Squibb Company: Current equity holder in publicly-traded company; Juno Therapeutics, a Bristol-Myers Squibb Company: Current Employment. McGarvey:Pfizer, Inc.: Ended employment in the past 24 months; BluePath Solutions: Current Employment. Gitlin:BMS: Research Funding. Pelletier:BMS: Current Employment, Current equity holder in publicly-traded company. Nguyen:BluePath Solutions: Current Employment.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 22-23
Author(s):  
Tanya Siddiqi ◽  
Ulrich Jaeger ◽  
Olga Moshkovich ◽  
Jennifer Devlen ◽  
Matthew Miera ◽  
...  

Background: Chimeric antigen receptor (CAR) T cell therapy is a novel treatment modality for patients with R/R LBCL. Limited information exists regarding patients' views of CAR T cell therapy. Our research aimed to better understand patients' needs by capturing their expectations/concerns, current well-being, and treatment experiences during the beginning stages of CAR T cell therapy in the clinical trial setting. Methods: Patients with R/R LBCL from 2 ongoing trials of the investigational, CD19-directed CAR T cell therapy liso-cel (TRANSCEND WORLD [NCT03484702] or PLATFORM [NCT03310619]) were invited to participate in an optional interview component. Semistructured interviews were conducted to gain insight about patients' experience with CAR T cell therapy in the clinical trials. Interviews of ≤1 hour (in-person or over the phone) were conducted in parallel with screening procedures (interview 1), after leukapheresis (interview 2), and up to 3 days after liso-cel infusion (interview 3). Interviews were audio recorded and transcribed. MAXQDA (VERBI GmbH, Berlin, Germany) qualitative analysis software was used to manage and thematically organize interview transcript data to identify key concepts related to each research objective. Previously reported results of interview 1 showed a high perception of unmet needs, lack of alternative options, and expectations for positive outcomes. The analysis presented here primarily focused on interviews 2 and 3. Denominators shown in the Results vary by question as some patients skipped questions. Results: A total of 75 interviews were analyzed, including 35, 24, and 16 patients at interviews 1, 2, and 3, respectively, across sites in the US (n = 14), Europe (n = 26), and Japan (n = 2). Among 42 patients who completed ≥1 interview, the mean age was 62 years and 69% were male. Treatment Experience: Of 24 patients who completed interview 2, 22 (92%) reported positive experiences during leukapheresis and 16 (67%) reported the procedure was as expected. Patients thought the most difficult part of leukapheresis was the length of the procedure (n = 8/21 [38%]). Of 15 patients who provided feedback on lymphodepleting chemotherapy, a majority reported that it was as expected (n = 8 [53%]) or easier than expected (n = 3 [20%]); when asked about the most difficult part, many patients (n = 7/17 [41%]) discussed side effects (eg, nausea, fatigue, and lack of appetite). Of patients who described liso-cel infusion as different than expected, differences included easier (n = 12/13 [92%]) or quicker (n = 3/12 [25%]) than expected, and 5/12 (42%) reported few/no side effects within 3 days post-infusion. Over half of patients (n = 8/14 [57%]) reported that the infusion, as a whole, was not difficult. Changes over Time: At interviews 1, 2, and 3, respectively, 47% (n = 14/30), 47% (n = 9/19), and 69% (n = 9/13) of patients reported hoping for successful treatment. Similarly, patients generally had fewer concerns later in the process, with 21 (64%) and 11 (33%) of 33 patients reporting side-effect and treatment efficacy concerns, respectively, during interview 1 vs 5 (33%) and 3 (20%) of 15 patients, respectively, during interview 3. At time of enrollment, most patients (n = 21/34 [62%]) were able to function normally or with minimal impact from their lymphoma, although most reported some symptoms like fatigue, pain, or stomach problems. At interview 1, 14 (40%) of 35 patients were employed; most patients reported no changes in their work life at interviews 2 (n = 19/20 [95%]) and 3 (n = 11/12 [92%]). From enrollment to immediately post-infusion, the physical health of most patients remained stable (n = 4/16 [25%]) or deteriorated (n = 9/16 [56%]). However, most patients (n = 14/15 [93%]) reported feeling positive at interview 3. Conclusions: This study provided the unique opportunity to gather feedback directly from patients participating in clinical trials of liso-cel therapy, specifically during the initial treatment stages. The overall impression of the treatment was positive, with most patients reporting that study procedures were easier than expected. The results of this qualitative research provide useful insight into the motivations, expectations, and experiences of patients with R/R LBCL receiving liso-cel therapy, which can inform the design of health care support systems and future clinical trials to better meet patients' needs. Disclosures Siddiqi: AstraZeneca: Consultancy, Research Funding, Speakers Bureau; Pharmacyclics: Consultancy, Research Funding, Speakers Bureau; Celgene: Consultancy, Research Funding; Juno: Consultancy, Research Funding; Kite, a Gilead Company: Consultancy, Research Funding; BeiGene: Consultancy, Research Funding; Oncternal: Research Funding; TG Therapeutics: Research Funding; Janssen: Speakers Bureau; Seattle Genetics: Speakers Bureau. Jaeger:F. Hoffmann-La Roche: Honoraria, Research Funding; AbbVie: Honoraria; Novartis: Consultancy, Honoraria, Research Funding; Gilead: Honoraria, Research Funding; BMS/Celgene: Consultancy, Honoraria, Research Funding; Karyopharm: Honoraria; CDR Life AG: Consultancy, Research Funding; Miltenyi: Consultancy, Honoraria. Moshkovich:Icon Plc: Current Employment. Devlen:Icon Plc: Current Employment, Current equity holder in publicly-traded company. Miera:Icon Plc: Current Employment. Williams:Icon Plc: Current Employment. Hasskarl:Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Liu:Bristol-Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Braverman:Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Salles:MorphoSys: Consultancy, Honoraria, Other; Kite: Consultancy, Honoraria, Other; Debiopharm: Consultancy; Novartis: Consultancy, Honoraria, Other; Janssen: Consultancy, Honoraria, Other: Participation in educational events; Gilead: Consultancy, Honoraria, Other: Participation in educational events; F. Hoffman-La Roche Ltd: Consultancy, Honoraria, Other; Epizyme: Consultancy; Takeda: Consultancy, Honoraria, Other; Bristol Myers Squibb: Consultancy, Other; Karyopharm: Consultancy; Amgen: Honoraria, Other: Participation in educational events; Celgene: Consultancy, Honoraria, Other: Participation in educational events; Abbvie: Consultancy, Honoraria, Other: Participation in educational events; Autolus: Consultancy; Genmab: Consultancy.


2018 ◽  
Vol 36 (15_suppl) ◽  
pp. TPS3103-TPS3103 ◽  
Author(s):  
Robert F. Cornell ◽  
Frederick Lundry Locke ◽  
Michael Russell Bishop ◽  
Robert Z. Orlowski ◽  
Sarah Marie Larson ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2537-2537
Author(s):  
Lauren C Shapiro ◽  
Radhika Gali ◽  
Astha Thakkar ◽  
Jesus D Gonzalez-Lugo ◽  
Abdul Hamid Bazarbachi ◽  
...  

Abstract It is well established that COVID-19 carries a higher risk of morbidity and mortality in patients (pts) with hematologic malignancies. Emerging data suggests that despite the 3 COVID-19 vaccines with emergency use authorization (EUA) by the FDA inducing high levels of immunity in the general population, pts with hematologic malignancies have lower rates of seroconversion for the SARS-CoV-2 Spike antibody (Spike IgG) and thus possibly lower protection against severe COVID-19. We established a program of rapid vaccination and evaluation of response in an inner city minority population to help determine the factors that contribute to the poor seroconversion to COVID-19 vaccination in pts with hematologic malignancies. We conducted a cross-sectional cohort study of pts with hematologic malignancies seen at Montefiore Medical Center between March 29, 2021 and July 8, 2021 who completed their vaccination series with 1 of the 3 FDA EUA COVID-19 vaccines, Moderna, Pfizer, or Johnson & Johnson (J&J). We qualitatively measured Spike IgG production in all pts using the AdviseDx Spike IgG assay and performed quantitative analysis on pts who completed their vaccination series with at least 14 days (d) after the 2 nd dose of the Moderna or Pfizer vaccines or 28d after the single J&J vaccine. Safety data was collected via questionnaires or as part of the electronic medical record. We analyzed the characteristics of these pts using standard descriptive statistics and associations between pts characteristics, cancer subtypes, treatments, and vaccine response using a Fisher Exact test, Kruskal-Wallis Rank Sum test, or Kendall Tau-b test. A total of 121 pts with hematologic malignancies were enrolled and another 10 pts were included by retrospective chart review. Five pts did not have a Spike IgG performed after consent and excluded. Ten patients had Spike IgG testing before completion of their vaccination series and excluded from quantitative analyses. A total of 116 pts were included in immunogenicity analysis and 106 pts in quantitative analysis. Baseline characteristics and representative malignancies are listed in Table 1. Seventy pts (60%) received Pfizer, 36 pts (31%) Moderna, and 10 pts (9%) J&J. Median time from vaccination completion to Spike IgG was 40d. We observed a high-rate of seropositivity (86%) with 16 pts (14%) having a negative Spike IgG. Percent positivity was not statistically significant between vaccine types (p=0.50). We observed significantly lower seroconversion rates in pts with Non-Hodgkin lymphoma (p=0.005) and pts who received: cytotoxic chemotherapy (p=0.002), IVIG (p=0.01), CAR-T cell therapy (p=0.00002), and CD20 monoclonal antibodies (Ab) (p=0.0000008) especially within 6 mo of Spike Ab evaluation (p=0.01). All pts who received anti-CD19 (Axi-cel) CAR-T therapy (0/6) were seronegative, and 1 pt that received BCMA directed CAR-T (Cilta-cel) was seropositive with no association between timing CAR-T cell infusion and seroconversion/titer. Use of BCL2 inhibitors (p=0.04), CD20 monoclonal Ab (p=0.0009), CAR-T cell therapy (p=0.01), BTK inhibitors (p=0.04), current steroid use (p=0.002), and IVIG (p=0.003) also correlated with significantly lower Ab titers with a trend toward lower Ab titers in pts on any active cancer therapy at time of vaccination (p=0.051). Immunomodulatory drugs (p=0.01) and proteasome inhibitors (p=0.01) had significantly higher seroconversion rates, and pts with history prior COVID-19 (12/106) had significantly higher Ab titers (p=0.0003). Of 47 pts who received stem cell transplant, 43 received an autologous (37 seropositive, 6 seronegative) and 4 an allogeneic transplant (3 seropositive, 1 seronegative), with no significant association with seroconversion, Ab titer, or time since transplant (greater or less than 1 year). The majority of pts, 64% and 53%, reported no adverse effects (AE) to the 1 st and 2 nd dose respectively. The most common AE were mild in severity and included sore arm, muscle aches, fatigue, and fever. No life-threatening AE were observed. Our findings indicate that vaccination is safe, effective, and well tolerated in the majority of pts with hematologic malignancies. We observed that pts receiving B-cell depleting therapies are unable to mount an effective serological response to COVID-19 vaccines and remain vulnerable to the disease. Novel immunization strategies (active or passive) are urgently needed in this population. Figure 1 Figure 1. Disclosures Gritsman: iOnctura: Research Funding. Shastri: Onclive: Honoraria; Kymera Therapeutics: Research Funding; Guidepoint: Consultancy; GLC: Consultancy. Halmos: Merck: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Research Funding; Astra-Zeneca: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees, Research Funding; AbbVie: Research Funding; Boehringer-Ingelheim: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; GSK: Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding; Mirati: Research Funding; Elevation: Research Funding; Blueprint: Research Funding; Advaxis: Research Funding; Eli-Lilly: Research Funding; TPT: Membership on an entity's Board of Directors or advisory committees; Apollomics: Membership on an entity's Board of Directors or advisory committees; Guardant Health: Membership on an entity's Board of Directors or advisory committees. Verma: BMS: Research Funding; GSK: Research Funding; Novartis: Consultancy; Stelexis: Consultancy, Current equity holder in publicly-traded company; Eli Lilly: Research Funding; Curis: Research Funding; Medpacto: Research Funding; Incyte: Research Funding; Acceleron: Consultancy; Stelexis: Current equity holder in publicly-traded company; Celgene: Consultancy; Throws Exception: Current equity holder in publicly-traded company.


Blood ◽  
2021 ◽  
Author(s):  
Di Wang ◽  
Jue Wang ◽  
Guang Hu ◽  
Wen Wang ◽  
Yi Xiao ◽  
...  

B cell maturation antigen- (BCMA) specific chimeric antigen receptor (CAR) T-cell therapies have shown efficacy in relapsed, refractory multiple myeloma (RRMM). Since the non-human originated antigen-targeting domain may limit clinical efficacy, we developed a fully human BCMA-specific CAR, CT103A, and report its safety and efficacy in a phase I trial. Eighteen consecutive RRMM patients, including four patients with prior murine BCMA CAR exposures, were enrolled. CT103A was administered at 1, 3, and 6 × 106 CAR-positive T cells/kg in the dose-escalation phase, and 1 × 106 CAR-positive T cells/kg in the expansion cohort. The overall response rate (ORR) was 100%, with 72.2% of the patients achieving complete response or stringent complete response (sCR). For the four murine BCMA CAR-exposed patients, three achieved sCR, and one achieved a very good partial response. At one year, the progression-free survival rate was 58.3% for all cohorts and 79.1% for the patients without extramedullary myeloma. Hematologic toxicities were the most common adverse events. 70.6% of the patients experienced grade 1 or 2 cytokine release syndromes. No immune effector cell-associated neurotoxicity syndrome was observed. To the cutoff date, CAR transgenes were detectable in 77.8% of the patients. The median CAR transgene persistence was 307.5 days. Only one patient was positive for the anti-drug antibody. Altogether, CT103A is safe and highly active in RRMM patients and can be developed as a promising therapy for RRMM. Patients who relapsed from prior murine BCMA CAR T-cell therapy may still benefit from CT103A. (Chinese Clinical Trial Registry ChiCTR1800018137)


2021 ◽  
Author(s):  
Larry D Anderson

Idecabtagene vicleucel (ide-cel), a novel chimeric antigen receptor (CAR) T-cell therapy targeting B-cell maturation antigen (BCMA), has recently gained approval by the US FDA for relapsed and refractory multiple myeloma (RRMM) after multicenter trials have demonstrated unprecedented results in this difficult-to-treat subgroup of patients. As the first CAR T-cell product approved for myeloma, ide-cel is poised to become a practice-changing treatment option. This first-in-class therapeutic offers hope for more durable remissions, as well as better quality of life, following a single infusion in a group of patients that previously had little hope. This paper reviews the ide-cel product in terms of design, pharmacology, efficacy and toxicity as described in studies reported to date.


Sign in / Sign up

Export Citation Format

Share Document