scholarly journals Treatment with DC/AML Fusion Vaccine and CD3xCD123 Bi-Specific T-Cell Engager (CD123-CODV-TCE) for Treatment of Acute Myeloid Leukemia

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 904-904
Author(s):  
Dina Stroopinsky ◽  
Anita G. Koshy ◽  
Jessica J. Liegel ◽  
Myrna Nahas ◽  
Giulia Cheloni ◽  
...  

Abstract Introduction: Immunotherapy for AML holds promise in overcoming chemotherapy resistance and in preserving immunologic memory necessary for durable remissions.A bispecific T-cell engaging antibody targeting CD3 and CD123 (CD123-CODV-TCE) has been shown to stimulate T cells to target CD123-expressing leukemic cells in vitroand in mouse models 1. While the short-term immune stimulation mediated by the CD123TCE has the potential to result in clinical response, long-term disease control will require the development of immune memory. We have developed a personalized cancer vaccine in which patient's dendritic cells are fused with autologous leukemia cells resulting in presentation of a wide range of antigens to the immune system. Here, we describe a novel combination of CD123TCE with a DC/AML fusion vaccine ex vivo and in a xenograft murine model. We hypothesized that the CD123TCE will direct the vaccine-educated T cells to not only more effectively eradicate target leukemia cells but also evoke a repertoire of memory T cells and long-term response. Methods/Results: AML cells expressing CD123 were isolated from bone marrow mononuclear cells (BMMCs) from AML patients (n=3). DCs were generated from autologous adherent peripheral blood mononuclear cells (PBMCs) obtained at the time of disease remission as previously described 2,3. Concurrently, CD3+ T cells were isolated from the non-adherent fraction of PBMCs using magnetic bead separation. Fusion cells were generated by co-culturing the DC and tumor cells at a ratio of 3:1 in the presence of polyethylene glycol (PEG). Vaccine educated T cells were then generated by co-culture of T cells with the autologous fusion cells at a ratio of 10:1 for 5-7 days followed by T cell expansion via CD3/CD28 ligation. The capacity of the vaccine-educated T cells to target autologous leukemia cells with the addition of CD123TCE was assessed. The results demonstrated a statistically significant increase in Granzyme B activity in the target AML cells following co-culture with vaccine-educated T cells and the addition of the CD123TCE, compared to T cells + isotype control (n=3). Furthermore, vaccine stimulation in combination with CD123TCE led to a robust increase in induction of tumor specific activated T cells as detected by CD137 expression and intracellular IFN-γ production after co-culture of vaccine-educated T cells with autologous tumor cells in the presence of CD123TCE. The addition of CD123TCE to vaccine-educated T cells resulted in mean 25.4% and 9.6% intracellular IFN-γ expression for CD8 and CD4 T cells, respectively, compared to 8.5 and 3.1% IFN-γ expression following the addition of isotype control (n=3). Next, we examined the efficacy of the combined treatment with vaccine-educated T cells and CD123TCE in-vivo, in two independent xenograft experiments. NSG mice were irradiated with 300rads and challenged with 1x10 6 patient-derived CD123+ tumor cells via retro-orbital injections. After detection of human AML engraftment in the PB on day 76, the mice were inoculated IV with 1X10 6 resting, or ex vivo fusion vaccine educated autologous T cells IV. Subsequently, cohorts of mice were treated with CD123TCE or an appropriate isotype control every 3 days IP. A significant decrease in human leukemia burden was detected in the peripheral blood, spleen and bone marrows of analyzed animals after treatment with vaccine educated T cells and isotype control, or resting T cells and CD123TCE, compared to untreated mice (n=5). Strikingly, no detectable AML was found in peripheral blood, spleens and bone marrows of mice treated with vaccine educated T cells in combination with TCE (n=5). Of note, treatment with vaccine educated T cells led to an expansion of human CD3+ T cells in tissues obtained from the analyzed animals. These human T cells persisted in mice treated with the CD123TCE with a two-fold increase in tumor-specific CD8+ T cells, as assessed by intracellular IFN-γ secretion following ex vivo stimulation with autologous tumor lysate. Conclusions: We demonstrated that the combination of DC/AML fusion vaccine and CD123TCE led to increase in tumor specific T cell immunity, both ex-vivo and in a xenograft murine model when compared to uneducated T cells with CD123TCE or educated T cells with isotype control molecule. Most significantly, the combination treatment was shown to eradicate AML in this model with all animals remaining disease-free several months post inoculation. Disclosures Stroopinsky: The Blackstone Group: Consultancy. Nahas: Kite Pharma: Current Employment. Fraenkel: Sanofi: Current Employment. Yildirim: Sanofi: Current Employment. Bonnevaux: Sanofi: Current Employment. Guerif: Sanofi: Current Employment. Kufe: Genus Oncology: Current equity holder in publicly-traded company; Canbas: Consultancy; REATA: Consultancy, Current equity holder in publicly-traded company; Hillstream BioPharma: Current equity holder in publicly-traded company. Rosenblatt: Parexel: Consultancy; Wolters Kluwer Health: Consultancy, Patents & Royalties; Bristol-Myers Squibb: Research Funding; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Imaging Endpoints: Consultancy; Attivare Therapeutics: Consultancy. Avigan: Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Pharmacyclics: Research Funding; Kite Pharma: Consultancy, Research Funding; Juno: Membership on an entity's Board of Directors or advisory committees; Partner Tx: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Aviv MedTech Ltd: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; Legend Biotech: Membership on an entity's Board of Directors or advisory committees; Chugai: Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy; Parexcel: Consultancy; Takeda: Consultancy; Sanofi: Consultancy.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 16-17 ◽  
Author(s):  
Martin Hutchings ◽  
Fritz C. Offner ◽  
Francesc Bosch ◽  
Giuseppe Gritti ◽  
Carmelo Carlo-Stella ◽  
...  

Background: Up to 50% of patients suffering from Non-Hodgkin`s lymphoma (NHL) become refractory to or relapse after treatment (M. Crump, Blood 2017). With this, the lack of curative outcomes for patients with both indolent and aggressive NHL subtypes remains an unmet medical need. The CD20 CD3 T cell bispecific antibody glofitamab induces specific T-cell activation and has demonstrated significant single agent activity in r/r NHL patients (NP30179 study, M. Dickinson, EHA 2020, Abstract S241). RO7227166, a CD19 targeted 4-1BBL (CD137) costimulatory agonist has shown synergistic anti-tumor activity when combined with glofitamab in preclinical models (fig 1). RO7227166 is a bispecific antibody-like fusion protein composed of a split trimeric 4-1BB ligand, a tumor antigen-targeting moiety recognizing CD19, and a silent Fc part preventing Fc-mediated toxicity. 4-1BB is an inducible co-stimulatory molecule expressed by activated T-cells or NK cells. Through CD19-binding, the 4-1BB ligand moiety can deliver co-stimulatory signals to activated T- and NK-cell subsets in the tumor. The expected mode of action (MoA) for this molecule is to deliver a costimulatory signal 2 to enhance the effector function of tumor-infiltrating T cells or NK cells upon their activation (signal 1) by a T-cell bispecific antibody (e.g. glofitamab, RO7082859) or a tumor-targeted ADCC antibody (e.g. obinutuzumab). By delivering direct T-cell-target cell engagement followed by costimulatory activation the aim is to offer a highly active off-the-shelf immunotherapy combination. Methods: RO7227166 is being developed in combination with glofitamab and obinutuzumab in a phase I, open-label, dose-escalation study BP41072 (NCT04077723). The study is designed to evaluate the combination maximum tolerated dose (MTD), safety, tolerability, pharmacokinetic (PK), and/or pharmacodynamic (PD) profile of escalating doses of RO7227166, and to evaluate preliminary anti-tumor activity in participants with r/r NHL. The dose escalation stage is divided into Part I (combination with obinutuzumab) and Part II (combination with glofitamab) followed by an expansion stage (Part III). During Part I patients receive 1000mg obinutuzumab intravenously (IV) at a q3w schedule in combination with CD19 4-1BBL IV. During part II glofitamab is given in a q3w schedule with RO7227166 introduced at C2D8 and administered concomitantly from C3D1 onwards. A fixed dose of obinutuzumab (Gpt; pre-treatment) is administered seven days prior to the first administration of RO7227166 and seven days prior to the first administration of glofitamab (M. Bacac, Clin Cancer Res 2018; M. Dickinson, EHA 2020, Abstract S241). Patients will initially be recruited into part I of the study only using single-participant cohorts, where a rule-based dose-escalation is implemented, with dosing initiated at 5 μg (flat dose). As doses of RO7227166 increase, multiple participant cohorts will be recruited and dose-escalation will be guided by the mCRM-EWOC design for overdose control. Commencement of Part II including decision on the RO7227166 starting dose will be guided by safety and PK data from Part I. Patients with r/r NHL meeting standard organ function criteria and with adequate blood counts will be eligible. The maximum duration of the study for each participant will be up to 24 months in Part I (excluding survival follow-up) and up to 18 months in Part II and Part III. Tumor biopsies and peripheral blood biomarker analyses will be used to demonstrate MoA and proof of concept of an off the shelf flexible combination option providing signals 1 and 2. Disclosures Hutchings: Takeda: Honoraria; Takeda: Research Funding; Genmab: Honoraria; Roche: Honoraria; Genmab: Research Funding; Janssen: Research Funding; Novartis: Research Funding; Sankyo: Research Funding; Roche: Consultancy; Genmab: Consultancy; Takeda: Consultancy; Roche: Research Funding; Celgene: Research Funding; Daiichi: Research Funding; Sanofi: Research Funding. Bosch:Hoffmann-La Roche: Research Funding. Gritti:Italfarmaco: Consultancy; F. Hoffmann-La Roche Ltd: Honoraria; Jannsen: Other: Travel Support; Autolus: Consultancy; IQVIA: Consultancy; Kite: Consultancy; Takeda: Honoraria; Amgen: Honoraria. Carlo-Stella:Bristol-Myers Squibb, Merck Sharp & Dohme, Janssen Oncology, AstraZeneca: Honoraria; Servier, Novartis, Genenta Science srl, ADC Therapeutics, F. Hoffmann-La Roche, Karyopharm, Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; ADC Therapeutics and Rhizen Pharmaceuticals: Research Funding; Boehringer Ingelheim and Sanofi: Consultancy. Townsend:Roche, Gilead: Consultancy, Honoraria. Morschhauser:Gilead: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Servier: Consultancy; Janssen: Honoraria; Epizyme: Membership on an entity's Board of Directors or advisory committees; F. Hoffmann-La Roche: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees; Abbvie: Membership on an entity's Board of Directors or advisory committees; Genentech, Inc.: Consultancy. Cartron:Celgene: Consultancy, Honoraria; F. Hoffmann-La Roche: Consultancy, Honoraria; Sanofi: Honoraria; Abbvie: Honoraria; Jansen: Honoraria; Gilead: Honoraria. Ghesquieres:CELGENE: Consultancy, Other: TRAVEL, ACCOMMODATIONS, EXPENSES; Roche: Consultancy, Other: TRAVEL, ACCOMMODATIONS, EXPENSES; Gilead: Consultancy, Honoraria, Other: TRAVEL, ACCOMMODATIONS, EXPENSES; Janssen: Honoraria. de Guibert:Gilead Sciences: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; Janssen: Consultancy, Honoraria. Herter:Roche Glycart AG: Current Employment, Current equity holder in publicly-traded company, Patents & Royalties. Korfi:Roche Diagnostics GmbH: Consultancy. Craine:Roche: Current Employment. Mycroft:Roche: Current Employment. Whayman:Roche: Current Employment. Mueller:Roche: Current Employment. Dimier:Roche: Current Employment. Moore:Roche: Current Employment. Belli:Roche Pharma: Current Employment. Kornacker:Hoffmann-La Roche Ltd.: Current Employment, Current equity holder in publicly-traded company. Lechner:Roche Diagnostics GmbH: Current Employment, Current equity holder in publicly-traded company. Dickinson:Gilead: Consultancy, Honoraria, Research Funding, Speakers Bureau; Merck Sharp & Dohme: Consultancy; Novartis: Consultancy, Honoraria, Research Funding, Speakers Bureau; Janssen: Consultancy, Honoraria, Speakers Bureau; Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 75-75
Author(s):  
Jooeun Bae ◽  
Shuichi Kitayama ◽  
Laurence Daheron ◽  
Zach Herbert ◽  
Nikhil C. Munshi ◽  
...  

Abstract T cell regenerative medicine represents an emerging immunotherapeutic approach using antigen-specific Induced Pluripotent Stem Cells (iPSC) to rejuvenate CD8 + cytotoxic T lymphocytes (CTL). Here we report on an iPSC-derived therapeutic strategy targeting B-Cell Maturation Antigen (BCMA) against multiple myeloma (MM) via establishment of antigen-specific iPSC, followed by differentiation into highly functional BCMA-specific CD8 + CTL. The reprogrammed BCMA-specific iPSC displayed normal karyotypes and pluripotency potential as evidenced by expression of stem cell markers (SSEA-4, TRA1-60) and alkaline phosphatase, along with differentiation into three germ layers (Ectoderm, Mesoderm, Endoderm). During embryoid body formation, BCMA-specific iPSC further polarized into the mesoderm germ layer, evidenced by the activation of SNAI2, TBX3, PLVAP, HAND1 and CDX2 transcriptional regulators. Next, the BCMA-specific iPSC clones committed to CD8 + T cell differentiation were characterized by analyzing their hematopoietic progenitor cells (HPC; CD34 + CD43 +/CD14 - CD235a -) for specific transcriptional regulation. RNAseq analyses indicated a low variability and similar profiles of gene transcription within the iPSC clones committed to CD8 + CTL compared to increased transcriptional variability within iPSC clones committed to different cell types. The unique transcriptional profiles of the iPSC committed to CD8 + T cells included upregulation of transcriptional regulators controlling CD4/CD8 T cell differentiation ratio, memory CTL formation, NF-kappa-B/JNK pathway activation, and cytokine transporter/cytotoxic mediator development, as well as downregulation of regulators controlling B and T cell interactions, CD4 + Th cells, and inhibitory receptor development. Specifically, a major regulatory shift, indicated by upregulation of specific genes involved in immune function, was detected in HPC from the iPSC committed to CD8 + T cells. BCMA-specific T cells differentiated from the iPSC were characterized as displaying mature CTL phenotypes including high expression of CD3, CD8a, CD8b, TCRab, CD7 along with no CD4 expression (Fig. 1). In addition, the final BCMA iPSC-T cells were predominantly CD45RO + memory cells (central memory and effector memory cells) expressing high level of T cell activation (CD38, CD69) and costimulatory (CD28) molecules. Importantly, these BCMA iPSC-T cells lacked immune checkpoints (CTLA4, PD1, LAG3, Tim3) expression and regulatory T cells induction, distinct from other antigen-stimulated T cells. The rejuvenated BCMA iPSC-T cells demonstrated a high proliferative (1,000 folds increase) during the differentiation process as well as poly-functional anti-tumor activities and Th1 cytokine (IFN-g, IL-2, TNF-a) production triggered in response to MM patients' cells in HLA-A2-restricted manner (Fig. 2). Furthermore, the immune responses induced by these BCMA iPSC-T cells were specific to the parent heteroclitic BCMA 72-80 (YLMFLLRKI) peptide used to reprogram and establish the antigen-specific iPSC. Evaluation of 88 single cell Tetramer + CTL from the BCMA iPSC-T cells revealed a clonotype of unique T cell receptor (TCRa, TCRb) sequence. The BCMA-specific iPSC clones maintained their specific differentiation potential into the antigen-specific CD8 + memory T cells, following multiple subcloning in long-term cultures under feeder-free conditions or post-thaw after long-term (18 months) cryopreservation at -140 oC, which provides additional benefits to treat patients in a continuous manner. Taken together, rejuvenated CD8 + CTL differentiated from BCMA-specific iPSC were highly functional with significant (*p < 0.05) levels of anti-MM activities including proliferation, cytotoxic activity and Th-1 cytokine production. Therefore, the antigen-specific iPSC reprogramming and T cells rejuvenation process can provide an effective and long-term source of antigen-specific memory CTL lacking immune checkpoints and suppressors for clinical application in adoptive immunotherapy to improve patient outcome in MM. Figure 1 Figure 1. Disclosures Munshi: Amgen: Consultancy; Karyopharm: Consultancy; Takeda: Consultancy; Adaptive Biotechnology: Consultancy; Bristol-Myers Squibb: Consultancy; Celgene: Consultancy; Abbvie: Consultancy; Janssen: Consultancy; Legend: Consultancy; Oncopep: Consultancy, Current equity holder in publicly-traded company, Other: scientific founder, Patents & Royalties; Novartis: Consultancy; Pfizer: Consultancy. Ritz: Amgen: Research Funding; Equillium: Research Funding; Kite/Gilead: Research Funding; Avrobio: Membership on an entity's Board of Directors or advisory committees; Akron: Consultancy; Biotech: Consultancy; Blackstone Life Sciences Advisor: Consultancy; Clade Therapeutics, Garuda Therapeutics: Consultancy; Immunitas Therapeutic: Consultancy; LifeVault Bio: Consultancy; Novartis: Consultancy; Rheos Medicines: Consultancy; Talaris Therapeutics: Consultancy; TScan Therapeutics: Consultancy. Anderson: Sanofi-Aventis: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Millenium-Takeda: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Scientific Founder of Oncopep and C4 Therapeutics: Current equity holder in publicly-traded company, Current holder of individual stocks in a privately-held company; AstraZeneca: Membership on an entity's Board of Directors or advisory committees; Mana Therapeutics: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 748-748
Author(s):  
Ashley V Geerlinks ◽  
Brooks Scull ◽  
Christa Krupski ◽  
Ryan Fleischmann ◽  
Michael A. Pulsipher ◽  
...  

Abstract Introduction The BMT-CTN 1204 study for Hemophagocytic Syndromes or Selected Primary Immune Deficiencies (NCT01998633) (RICHI) was a single arm study testing safety and efficacy of reduced intensity conditioning (RIC) with alemtuzumab (1mg/kg), fludarabine (150 mg/m2) and melphalan (140 mg/m2). Survival was favorable compared to historical studies, but patients experienced high rates of mixed chimerism (MC) and ultimate secondary graft failure (GF). Mechanisms for GF are not known. Expansion of recipient T cells and interferon-gamma pathway activation have been proposed as drivers for GF. However, high peri-transplant alemtuzumab levels have been associated with higher risk of MC and eventual secondary GF, suggesting an inverse relationship between GF and immune activation in the context of RIC. In order to elucidate mechanisms of GF for patients on the RICHI study, we systematically evaluated cytokine patterns and alemtuzumab levels and their association with durable engraftment. Methods Serial blood samples were collected, processed, and stored for consenting patients at day -14 (window: day -28 to -14), day -7 (+/- 1 day), day -1 (+/- 1), day +1 (+1 to +3), day +14 (+/- 2), day +28 (+/- 2), day +42 (+/- 3), day +70 (+/- 10), and day +100 (+/- 10). Alemtuzumab levels were measured using a flow cytometric assay as previously described. Comprehensive cytokine analysis was performed for over 100 analytes using the MagPix platform. Primary GF was defined as donor chimerism <5% prior to day +42. Secondary GF was defined as donor chimerism <5% after initial engraftment and/or requirement of donor lymphocyte infusion (DLI) or second HCT (with or without conditioning) to manage MC or graft loss. Mixed chimerism (MC) was defined as donor chimerism <95% on at least one occasion. Results Thirty-three patients were included in this study with HLH (n=25), CAEBV (n=3), CGD (n=2), HIGM (n=2), and IPEX (n=1). All patients received bone marrow grafts and 27 (82%) patients had unrelated donors. Twenty-one grafts were 8/8 or 6/6 HLA-matched (64%) and 12 grafts were 7/8 HLA-matched (36%). Among all patients, 1 patient (3%) developed primary GF, 22 (67%) developed mixed chimerism (MC), and 11 patients (33%) developed secondary GF. Survival with sustained engraftment without DLI or second HCT was 40.0%. We first evaluated peripheral blood levels of 100+ cytokines. Analysis revealed significant differences between patients with and without GF as shown in Figure 1A. Notably, on day +14 and +28, patients with secondary GF had significantly lower CXCL9 levels than those without GF. We then estimated the cumulative incidence (CI) of secondary GF among patients with CXCL9 levels above and below the day +14 median level of 2394pg/mL. The CI of secondary GF in patients with a day +14 CXCL9 level ≤2394pg/mL was 73.6% vs 0% in patients with a level >2394pg/mL (p=0.002). The CI of secondary GF in patients with a day +28 CXCL9 level ≤2867pg/mL (day +28 median) was 64.3%, vs 0% in patients with levels >2867pg/mL (p=0.004). We then sought to correlate CXCL9 levels with alemtuzumab exposure, as high alemtuzumab levels would result in more efficient T cell depletion of donor grafts that could lead to lower CXCL9 levels. Indeed, CXCL9 levels inversely correlated with day 0 alemtuzumab levels. Patients with day 0 alemtuzumab levels >0.32µg/mL had lower CXCL9 levels compared to patients with levels ≤0.32µg/mL (Figure 1B). Finally, we examined the impact of alemtuzumab levels on MC and secondary GF. Patients with day 0 alemtuzumab levels ≤0.32µg/mL had a lower CI of MC compared to patients with levels >0.32µg/mL, 14.3% vs 90.9%, respectively (p=0.03). The CI of secondary GF was 0% in patients with day 0 alemtuzumab levels ≤0.32µg/mL compared to 54.3% in patients with levels >0.32µg/mL (p=0.08). Conclusions This study demonstrates a strong relationship between alemtuzumab levels and durable engraftment. Further, interferon gamma activity, as reflected by CXCL9, inversely correlates with peri-transplant alemtuzumab levels in this prospective cohort treated with RIC. Our findings support the paradigm that higher alemtuzumab levels drive efficient T cell depletion of the stem cell product which increases the risk of MC and secondary GF, suggesting that donor T cells promote engraftment via a graft versus hematopoiesis function. Precision alemtuzumab dosing strategies may offer an opportunity to improve outcomes for patients who undergo RIC HCT. Figure 1 Figure 1. Disclosures Pulsipher: Adaptive: Research Funding; Equillium: Membership on an entity's Board of Directors or advisory committees; Jasper Therapeutics: Honoraria. Bollard: Neximmune: Current equity holder in publicly-traded company; Catamaran Bio: Membership on an entity's Board of Directors or advisory committees; Cabaletta Bio: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Mana Therapeutics: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties; Cellectis: Honoraria, Membership on an entity's Board of Directors or advisory committees; Repertoire Immune Medicines: Current equity holder in publicly-traded company; ROCHE: Consultancy, Honoraria; SOBI: Honoraria, Membership on an entity's Board of Directors or advisory committees. Kean: Regeneron: Research Funding; Bristol Myers Squibb: Patents & Royalties: From clinical trial data, Research Funding; Bluebird Bio: Research Funding; Gilead: Research Funding; Vertex: Consultancy; Novartis: Consultancy; EMD Serono: Consultancy. Jordan: Sobi: Consultancy. Allen: Sobi: Consultancy. OffLabel Disclosure: Alemtuzumab, humanized monoclonal antibody against CD52, used as part of allogeneic HCT conditioning


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 16-16
Author(s):  
David H. Quach ◽  
Haran R. Ganesh ◽  
Sachin Thakkar ◽  
Luis Becerra-Dominguez ◽  
Birju Mehta ◽  
...  

While autologous T cell therapies can effectively treat B-cell leukemia and lymphoma, the personalized manufacturing process is difficult to scale, expensive and may fail. Even when autologous products are successfully manufactured, they are not immediately available to acutely ill patients. "Off-the-shelf" T cell products derived from healthy donors that can rapidly be administered, would improve accessibility and reduce the cost of T cell therapy. However, major obstacles to successful allogeneic T cell products include their potential for graft-versus-host disease (GVHD) and graft rejection, mediated by host and recipient alloreactive T cells respectively. To address GVHD, we are using Epstein-Barr Virus-specific T cells (EBVSTs) as our platform since they are virus specific rather than allospecific and have not produced GVHD in more than 300 allogeneic recipients. To prevent graft rejection we have introduced into these EBVSTs, a chimeric antigen receptor for CD30 (CD30.CAR). CD30 is upregulated during the activation of alloreactive T cells, which leads to them becoming targets. The CD30.CAR provides the additional advantage of targeting CD30-positive lymphoma and has proved safe and effective in prior clinical trials (NCT02917083) using autologous CAR-T cells. Hence, we expect off-the-shelf CD30.CAR EBVSTs to eliminate the alloreactive T cells they elicit in allogeneic hosts, and therefore persist for sufficient time to eliminate CD30-positive lymphoma, without causing GVHD. Here we show that CD30.CAR-EBVSTs resist fratricide by masking their own CD30 molecules expressed in cis, but are nonetheless protected from rejection when co-cultured with alloreactive T cells expressing CD30 in trans. Notably, CD30.CAR EBVSTs preserve the function of both their TCR and the CD30.CAR, with retention of EBV specificity and the ability to eliminate CD30-positive tumor cells. We have manufactured a bank of clinical grade CD30.CAR EBVSTs from donors with HLA types designed to provide a partial HLA match for our diverse recipients. Clinical grade CD30.CAR EBVST cultures readily expanded to sufficient numbers for a planned clinical trial and expressed the CD30.CAR on 77% to 99% of cells. All of the lines passed functional release criteria of having greater than 100 IFNɣ spot-forming units (SFU) per 105 cells in response to both latent and lytic EBV antigens, and greater than 20% specific cytolysis against a CD30-positive Hodgkin lymphoma cell line, HDLM2, at an effector to target ratio of 20:1. Although CD30.CAR killing is not HLA restricted, we will select the CD30.CAR EBVST product for each recipient, based on the best HLA class I and class II match. This will allow endogenous EBV to boost the in vivo activity of CD30.CAR EBVSTs, and will provide additional reactivity for patients with CD30-positive and EBV-positive tumors. The IND for the clinical trial (NCT04288726) has been approved and we will recruit patients with CD30-positive lymphomas including Hodgkin lymphoma, diffuse large B cell lymphoma and NK/T cell lymphoma. In summary, we present an approach to making an off-the-shelf T cell therapy that can rapidly translate to the clinic, requires no gene editing, and can serve as a platform for other CAR/TCRs to target a multiplicity of malignancies. Disclosures Quach: Tessa Therapeutics: Research Funding. Brenner:Memmgen: Membership on an entity's Board of Directors or advisory committees; Allogene: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Walking Fish: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Maker Therapeutics: Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees, Other: Founder; Tessa Therapeutics: Membership on an entity's Board of Directors or advisory committees, Other: Founder; Tumstone: Membership on an entity's Board of Directors or advisory committees; Bluebird Bio: Membership on an entity's Board of Directors or advisory committees. Heslop:Tessa Therapeutics: Consultancy, Research Funding; Novartis: Consultancy; Gilead Biosciences: Consultancy; PACT Pharma: Consultancy; Kiadis: Consultancy; AlloVir: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Marker Therapeutics: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees. Ramos:Novartis: Membership on an entity's Board of Directors or advisory committees; Tessa Therapeutics: Research Funding; Kuur Therapeutics: Research Funding. Rouce:Tessa Therapeutics: Other, Research Funding; Novartis: Honoraria. Rooney:Marker Therapeutics: Current equity holder in publicly-traded company, Other: co-founder; Tessa Therapeutics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Allovir: Current equity holder in publicly-traded company, Other: co-founder.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2704-2704 ◽  
Author(s):  
Anita K. Gandhi ◽  
Ribrag Vincent ◽  
Cecilia Carpio ◽  
Anne-Marie Stoppa ◽  
Mecide Meric Gharibo ◽  
...  

Abstract Background: CC-122 is a first in class PPMTM pleiotropic pathway modifier compound with multiple biological activities including potent anti-proliferative activity against B lineage cells, anti-angiogenic activity and immunomodulatory effects. CC-122 binds cereblon, and promotes ubiquitination of lymphoid transcription factors Ikaros and Aiolos, leading to their subsequent degradation resulting in activation of T cells. The immunological properties of CC-122 including effects on T cell subset number in vivo and T cell cytokine production ex vivo was explored in subjects with advanced aggressive non-Hodgkin Lymphoma (NHL) and Multiple Myeloma (MM) enrolled in a Phase 1b trial (NCT01421524) at 3 mg QD and 4 and 5 mg 5/7 days dosed in 28 day cycles until disease progression. Methods: As of June 25, 2015, 76 total DLBCL and MM subjects were enrolled in the expansion phase of the study. Assessments for T cell subset numbers were performed at screening (baseline), cycle 1 day 15 (C1D15), cycle 1 day 22, cycle 2 day 15 and cycle 2 day 22 by flow cytometric immunophenotyping of fresh whole blood. Ex vivo whole blood T cell activation as measured by IL-2, IL-6, IFNg and GM-CSF cytokine production was performed using the anti-CD3 TruCulture Assay. Changes from baseline were evaluated using the t test with p<0.05 considered significant. Results: T cell subsets which were significantly changed are shown in italics in Table 1. In MM subjects (n=19-21) and DLBCL subjects (n=30-31), CC-122 treatment significantly expanded several T cell activator and memory T cell subsets while decreasing naïve T cells. A single dose of CC-122 on C1D1 activated T cells as measured in an ex vivo T cell activation assay in MM subjects (n=6-13) and DLBCL subjects (n=5-12) (Table 2). In addition, we evaluated potential correlations of clinical outcome with baseline biomarker and biomarker changes upon CC-122 treatment. Table 1. MM n=19-21 NHL n=30-31 T cell Parameter Phenotype Baseline cells/mm3 Median % Change at C1D15 from Baseline P Baseline cells/mm3 Median % Change at C1D15 from Baseline P Total T cells ABS CD3+ 636.9 17.733 0.24747 522.94 43.83 0.03638 Total T helper ABS CD3+/CD4+/CD8- 275.38 18.333 0.07812 238.96 13.428 0.09893 T helper Activated ABS CD3+/CD4+/CD8-/HLA-DR+ 62.34 105.769 0.00238 57.11 78.571 0.01567 T helper Total Naïve ABS CD3+/CD4+/CD8-/45RA+/45RO- 69.07 -54.545 0.0038 47.94 -47.841 0.03159 T helper Effector CD62L+ ABS CD3+/CD4+/CD8-/45RA+/62L+ 117.62 0 0.16621 93.74 -6 0.14611 T helper Effector CD62L- ABS CD3+/CD4+/CD8-/45RA+/62L- 21.38 -25.862 0.15196 28.44 -20.161 0.08548 T helper Total Memory ABS CD3+/CD4+/CD8-/45RA-/45RO+ 137.93 41.176 0.05373 119.15 36 0.01915 T helper Central Memory ABS CD3+/CD4+/CD8-/45RA-/62L+ 91.9 47.451 0.01953 75.74 37.143 0.01275 T helper Effector Memory ABS CD3+/CD4+/CD8-/45RA-/62L- 44.17 18.147 0.17768 41.07 19.375 0.04749 Total T cytotoxic ABS CD3+/CD4-/CD8+ 334.07 18.044 0.27499 265.7 43.823 0.0127 T cytotoxic Activated ABS CD3+/CD4-/CD8+ /HLA-DR+ 176.76 100 0.20781 121.3 96.454 0.00686 T cytotoxic Total Naïve ABS CD3+/CD4-/CD8+ /45RA+/45RO- 173.69 -35.714 0.15126 116.04 -32.667 0.89774 T cytotoxic Effector CD62L+ ABS CD3+/CD4-/CD8+ /45RA+/62L+ 127.28 20.727 0.24151 93.43 17.419 0.09599 T cytotoxic Effector CD62L- ABS CD3+/CD4-/CD8+ /45RA+/62L- 151.72 -14.286 0.28394 120.98 -18.301 0.18068 T cytotoxic Total Memory ABS CD3+/CD4-/CD8+ /45RA-/45RO+ 55.03 167.402 0.26292 54.13 184.615 0.01034 T cytotoxic Central Memory ABS CD3+/CD4-/CD8+ /45RA-/62L+ 26.83 160.417 0.00013 18.78 264.087 0.00169 T cytotoxic Effector Memory ABS CD3+/CD4-/CD8+ /45RA-/62L- 28.14 133.333 0.00107 32.59 100 0.01939 Table 2. MM n=6-13 NHL n=5-12 Cytokine Baseline cells/mm3 Median % Change from Baseline P Baseline cells/mm3 Median % Change from Baseline P IL-2 98.71 603.509 0.01329 104.5 437.194 0.01761 IL-6 131.84 124.108 0.03426 99.64 21.68 0.2692 GM-CSF 90.24 636.207 0.06608 212.96 144.601 0.16744 IFNg 271.85 404.98 0.0056 554.64 162.451 0.03024 Conclusions: CC-122 significantly increases the proportion of several cytotoxic and helper T cells subsets while decreasing naïve T cells in both DLBCL and MM subjects. CC-122 also significantly activates T cells ex vivo as measured by cytokine production. These results indicate that CC-122 is a potent modulator of T cell numbers and activation and this may serve as rationale for combinations with other immunotherapies. Disclosures Gandhi: Celgene: Employment, Equity Ownership. Off Label Use: CC-122 is a first in class PPM(TM) pleiotropic pathway modifier with multiple biological activities against B lineage cells. Vincent:Pharmamar: Honoraria, Membership on an entity's Board of Directors or advisory committees; Servier: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Membership on an entity's Board of Directors or advisory committees; Esai: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Research Funding. Carpio:Celgene: Research Funding. Stoppa:Amgen: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria; Novartis: Consultancy, Honoraria. Gharibo:Celgene: Research Funding. Damian:Celgene: Research Funding. Rasco:Celgene: Research Funding; Asana BioSciences, LLC: Research Funding. Ysebaert:Celgene: Research Funding. Cordoba:Celgene: Research Funding. Edenfield:Celgene: Research Funding. Pinto:Celgene Corporation: Honoraria; Takeda: Honoraria, Research Funding; Spectrum: Honoraria. López-Martín:Celgene: Research Funding. Sancho:Celgene: Research Funding. Panizo:Janssen: Speakers Bureau; Takeda: Speakers Bureau; Roche: Speakers Bureau; Celgene: Research Funding. Wei:Celgene: Employment, Equity Ownership. Hagner:Celgene: Employment, Equity Ownership. Waldman:Celgene: Employment, Equity Ownership. Hege:Celgene Corporation: Employment, Equity Ownership. Chopra:Celgene Corporation: Employment, Equity Ownership. Pourdehnad:Celgene: Employment.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 476-476
Author(s):  
Yaya Chu ◽  
Jordan Milner ◽  
Margaret Lamb ◽  
Elena Maryamchik ◽  
Olivia Rigot ◽  
...  

Abstract Background: The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a pandemic that has taken millions of lives around the globe. Treatment of patients with moderate and severe COVID-19 disease has included dexamethasone, tocilizumab, Remdesivir, convalescent plasma, and targeted antibodies, however, currently, there are no FDA approved targeted cellular therapies in the treatment of mild or moderate SARS-CoV-2 disease. Virus-specific cytotoxic T cell lymphocytes (vCTLs) have shown therapeutic efficacy in immunocompromised patients with viral infections. We developed a multicenter and multidisciplinary Viral Cytotoxic T-Cell Consortium (VIRCTLC) to investigate the use of vCTLs manufactured by direct enrichment using the Cytokine Capture System (CCS) on the CliniMACS® Prodigy device. SARS-CoV-2 specific PepTivator Peptides consist of overlapping peptides that span the entire sequence of the protein (Protein N and M), or the length of its immunodominant domain (Protein S). The peptides can bind to either MHC class I or MHC class II molecules and are therefore able to target both CD4 and CD8 T cells. Objective: To screen, manufacture, and characterize SARS-CoV-2 vCTLs generated from convalescent COVID-19 donors using the CliniMACS® Cytokine Capture System on the CliniMACS® Prodigy device. Methods: Donor screening was done utilizing PBMNCs from 15 convalescent COVID-19 donors after informed consent. PBMNCs were stimulated with a mix of PepTivator peptides (Miltenyi Biotech®) contained in the S, M and N proteins. IFN-γ levels were examined in CD3, CD4, and CD8 T cells by flow cytometry analysis. After informed consent, PBMNCs from three convalescent COVID-19 donors who screened positively to the PepTivator® peptide pools of SARS-CoV-2 Proteins M, N and S were collected by apheresis using the SPECTRA Optia® apheresis instrument. PBMNCs were incubated with the PepTivator® peptide pools for 4 hours. After incubation, the SARS-CoV-2 vCTLs were enriched using the CliniMACS Cytokine Capture System as we have previously described (Flower/Cairo, et al, ASTCT, 2020). Samples were taken from the enriched vCTLs and tested in gram stains, sterility cultures, cell counts, viability and IFN-γ cytokine staining (CD3/CD4/CD8/IFN-γ marker panel) by flow cytometry. Amplification and sequencing of TCRβ CDR3 regions of pre-stimulated PBMNC, stimulated PBMNCs samples taken from the QC bag (QC samples) and the enriched SARS-CoV-2 vCTLs were performed on the ImmunoSEQ platform using ImmunoSEQ® TCRB Assay kit (Adaptive Biotechnologies, Seattle, WA, USA). Characterization of immune subsets was done by mass cytometry analysis with 41 Immunophenotypic markers. Transcriptome of the immune landscape of QC samples, and enriched vCTLs was compared with the pre samples using the human nCounter PanCancer Immune Profiling Panel on the nCounter system. Results: We demonstrate that 93.3% of convalescent donor blood samples passed the screening criteria for clinical manufacture. Three validation runs resulted in enriched T cells that consisted of 79% + 21% (mean + SEM) IFNγ + T cells (Fig.1). TCRβ sequencing showed that convalescent COVID-19 donors have a highly diverse TCR repertoire and we identified TCRβ CDR3 clones that are known to be associated with SARS-CoV-2 T cell responses. Immunophenotyping analysis demonstrated more CD4 T cells than CD8 T cells in the SARS CoV-2 vCTLs, an increase in memory CD8 and CD4 cells, especially CD8 T EM, CD4 T cm and CD4 T EMRA cells (Fig.2) and an increase DC cells in the SARS CoV-2 vCTL products as compared to pre-stimulated PBMNCs. Expression of the exhaustion markers was not enhanced in the SARS CoV-2 vCTLs as compared to pre-stimulated PBMNCs. Transcriptome analysis showed increased gene expression in T-cell function, interleukin, pathogen defense, and TNF superfamily pathway genes in the SARS CoV-2 vCTLs as compared to pre-stimulated PBMNCs. Conclusion: Our study demonstrates that highly functional SARS-CoV-2 vCTLs can be rapidly generated by direct cytokine enrichment from convalescent donor peripheral blood mononuclear cells. These data serve as pre-clinical validation for an ongoing clinical trial utilizing related HLA-matched and haplo-identical SARS CoV-2 vCTLs for the treatment of patients with mild and moderate SARS-CoV-2 disease (IND #27260, NCT# 04896606). Figure 1 Figure 1. Disclosures Lee: Kiadis Pharma: Divested equity in a private or publicly-traded company in the past 24 months, Honoraria, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding; Courier Therapeutics: Current holder of individual stocks in a privately-held company. Johnson: Miltenyi Biotec: Research Funding. Cairo: Jazz Pharmaceutical: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Amgen: Speakers Bureau; Sanofi: Speakers Bureau; Servier: Speakers Bureau; Sobi: Speakers Bureau; Omeros: Membership on an entity's Board of Directors or advisory committees; Nektar: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 471-471
Author(s):  
Swati Naik ◽  
Spyridoula Vasileiou ◽  
Ifigeneia Tzannou ◽  
Manik Kuvalekar ◽  
Ayumi Watanabe ◽  
...  

Abstract Background: Hematopoietic stem cell transplant (HSCT) is a curative option for patients with high-risk Acute Lymphoblastic Leukemia (HR-ALL), but relapse remains a major cause of treatment failure. Strategies to enhance the graft-versus-leukemia (GVL) effect have been employed to prevent relapse, including modulating immune suppression post-HSCT to hasten immune reconstitution or with the use of donor lymphocyte infusions (DLIs). However, DLIs carry a significant risk of graft-versus-host disease (GVHD) due to the concurrent transfer of alloreactive T cells. To enhance the GVL effect while minimizing GVHD, we developed a protocol for the generation of ex vivo expanded, donor-derived T-cell lines targeting PRAME, WT1 and Survivin - tumor associated antigens that are frequently expressed in both B- and T-cell ALL. These multi-antigen-targeted T cells (multiTAAs) were adoptively transferred to pediatric and adult patients with HR-ALL who had undergone an allogeneic HSCT. Methods: Donor-derived multiTAA-specific T cells were generated by co-culturing PBMCs with autologous DCs loaded with pepmixes (15 mer peptides overlapping by 11 amino acids) spanning all 3 target antigens in the presence of a Th1-polarizing/pro-proliferative cytokine cocktail. Following 2-4 rounds of stimulation these multiTAA-specific T cells were infused to patients with ALL who had undergone an HSCT but remained at a high risk for disease relapse. Results: We have generated 15 clinical grade multiTAA-specific T cell lines comprising CD3+ T cells (mean 95.1±1.9%) with a mixture of CD4+ (mean 22.8±6.3%) and CD8+ (mean 52.5±5.3%) cells, which expressed central [CD45RO+/CD62L+: 13.5±2.8%] and effector memory markers [CD45RO+/CD62L-: 56.4±3.8%]. The expanded lines recognized the targeted antigens PRAME (range 0-370 SFC/2x10 5), WT1 (0-363 SFC/2x10 5), and Survivin (0-65 SFC/2x10 5) in an IFNg ELIspot. None of the lines reacted against non-malignant patient-derived cells (3.7±0.8% specific lysis; E: T 20:1) - a study release criterion indicating lack of alloreactivity. We have infused 11 HR-ALL patients (8 pediatric and 3 adult) with donor-derived multiTAA-specific T cells to prevent disease relapse (Table 1). Patients were administered with up to 4 infusions of cells at 3 escalating dose levels, ranging from 0.5 - 2x10 7 cells/m 2. Infusions were well tolerated with no dose-limiting toxicity, GVHD, cytokine release syndrome or other adverse events. Three patients were not evaluable per study criteria as they received &gt;0.5mg/kg of steroids (2 patients received stress doses for septic shock and 1 for elevated liver enzymes presumed to be GVHD that was later ruled out) within 4 weeks of infusion and were replaced. Six of the 8 remaining patients infused remain in CR on long-term follow up at a median of 46.5 months post-infusion (range 9-51 months). In patients who remained in long term CR we detected an expansion of tumor-reactive T cells in their peripheral blood post-infusion against both targeted (WT1, Survivin, PRAME) and non-targeted antigens (SSX2, MAGE-A4, -A1, -A2B, -C1, MART1, AFP and NYESO1) reflecting epitope and antigen spreading, which correlated temporally (within 4 weeks) with multiTAA infusions. By contrast in the two patients who relapsed we saw no evidence of in vivo T cell amplification within the first 4 weeks after infusion. Conclusion: The preparation and infusion of donor-derived multiTAA-specific T cells to patients with B- and T-ALL post allogeneic HSCT is feasible, safe and as evidenced by in vivo tumor-directed T cell expansion and antigen spreading in patients, may contribute to disease control. This strategy may present a promising addition to current immunotherapeutic approaches for prophylaxis for leukemic relapse in HSCT recipients. Figure 1 Figure 1. Disclosures Vasileiou: Allovir: Consultancy. Tzannou: Gileas: Honoraria; Allovir: Current equity holder in publicly-traded company. Kuvalekar: Allovir: Consultancy. Watanabe: Allovir: Consultancy. Grilley: QB Regulatory Consulting: Other: Ownership, project management support, Research Funding; Marker: Consultancy, Other: Regulatory and project management support; Allovir: Current equity holder in publicly-traded company, Other: Leadership. Hill: Incyte: Membership on an entity's Board of Directors or advisory committees. Omer: Allovir: Research Funding. Gottschalk: Tessa Therapeutics: Consultancy; Immatics: Membership on an entity's Board of Directors or advisory committees; Other: Other: patents and patent applications in the field of cancer cell and gene therapy ; Tidal: Consultancy; Novartis: Consultancy; Catamaran Bio: Consultancy. Heslop: Gilead: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Kiadis: Membership on an entity's Board of Directors or advisory committees; Kuur Therapeutics: Research Funding; GSK: Membership on an entity's Board of Directors or advisory committees; Allovir: Current equity holder in publicly-traded company; Tessa Therapeutics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Marker Therapeutics: Current equity holder in publicly-traded company; Fresh Wind Biotherapies: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees. Rooney: Allogene: Patents & Royalties; Bellicum: Patents & Royalties; Bluebird: Current equity holder in publicly-traded company; Allovir: Current equity holder in publicly-traded company; Alimera: Consultancy; Memgen: Consultancy; TScan Therapeutics: Consultancy; Takeda: Patents & Royalties; Marker: Current equity holder in publicly-traded company; Tessa: Consultancy, Other: Leadership, Research Funding. Vera: Allovir: Consultancy, Current equity holder in publicly-traded company, Other: Leadership, travel , accomodations, expenses, Patents & Royalties; Marker: Current Employment, Other: Travel, Accomodations, Expenses, Patents & Royalties, Research Funding. Leen: Allovir: Consultancy, Current equity holder in publicly-traded company; Marker: Current equity holder in publicly-traded company.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 22-23
Author(s):  
Pinar Ataca Atilla ◽  
Mary K McKenna ◽  
Norihiro Watanabe ◽  
Maksim Mamonkin ◽  
Malcolm K. Brenner ◽  
...  

Introduction: Efforts to safely and effectively treat acute myeloid leukemia (AML) by targeting a single leukemia associated antigen with chimeric antigen receptor T (CAR T) cells have had limited success. We determined whether combinatorial expression of chimeric antigen receptors directed to two different AML associated antigens would augment tumor eradication and prevent relapse in targets with heterogeneous expression of myeloid antigens. Methods: We generated CD123 and CD33 targeting CARs; each containing a 4-1BBz or CD28z endodomain. We analyzed the anti-tumor activity of T cells expressing each CAR alone or in co-transduction with a CLL-1 CAR with CD28z endodomain and CD8 hinge previously optimized for use in our open CAR-T cell trial for AML (NCT04219163). We analyzed CAR-T cell phenotype, expansion and transduction efficacy by flow cytometry and assessed function by in vitro and in vivo activity against AML cell lines expressing high, intermediate or low levels of the target antigens (Molm 13= CD123 high, CD33 high, CLL-1 intermediate, KG1a= CD123 low, CD33 low, CLL-1 low and HL60= CD123 low, CD33 intermediate, CLL-1 intermediate/high) For in vivo studies we used NOD.SCID IL-2Rg-/-3/GM/SF (NSGS) mice with established leukemia, determining antitumor activity by bioluminescence imaging. Results: We obtained high levels of gene transfer and expression with both single (CD33.4-1BBʓ, CD123.4-1BBʓ, CD33.CD28ʓ, CD123.CD28ʓ, CLL-1 CAR) and double transduction CD33/CD123.4-1BBʓ or CD33/CD123.CD28ʓ) although single-transductants had marginally higher total CAR expression of 70%-80% versus 60-70% after co-transduction. Constructs containing CD28 co-stimulatory domain exhibited rapid expansion with elevated peak levels compared to 41BB co-stim domain irrespective of the CAR specificity. (p&lt;0.001) (Fig 1a). In 72h co-culture assays, we found consistently improved anti-tumor activity by CAR Ts expressing CLL-1 in combination either with CD33 or with CD123 compared to T cells expressing CLL-1 CAR alone. The benefit of dual expression was most evident when the target cell line expressed low levels of one or both target antigens (e.g. KG1a) (Fig 1b) (P&lt;0.001). No antigen escape was detected in residual tumor. Mechanistically, dual expression was associated with higher pCD3ʓ levels compared to single CAR T cells on exposure to any given tumor (Fig 1c). Increased pCD3ʓ levels were in turn associated with augmented CAR-T degranulation (assessed by CD107a expression) in both CD4 and CD8 T cell populations and with increased TNFα and IFNɣ production (p&lt;0.001 Fig 1d). In vivo, combinatorial targeting with CD123/CD33.CD28ʓ and CLL-1 CAR T cells improved tumor control and animal survival in lines (KG1a, MOLM13 and HL60) expressing diverse levels of the target antigens (Fig 2). Conclusion: Combinatorial targeting of T cells with CD33 or CD123.CD28z CARs and CLL-1-CAR improves CAR T cell activation associated with superior recruitment/phosphorylation of CD3ʓ, producing enhanced effector function and tumor control. The events that lead to increased pCD3ʓ after antigen engagement in the dual transduced cells may in part be due to an overall increase in CAR expression but may also reflect superior CAR recruitment after antigen engagement. We are now comparing the formation, structure, and stability of immune synapses in single and dual targeting CARs for AML. Disclosures Brenner: Walking Fish: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Bluebird Bio: Membership on an entity's Board of Directors or advisory committees; Tumstone: Membership on an entity's Board of Directors or advisory committees; Tessa Therapeutics: Membership on an entity's Board of Directors or advisory committees, Other: Founder; Maker Therapeutics: Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees, Other: Founder; Memmgen: Membership on an entity's Board of Directors or advisory committees; Allogene: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees. Atilla:Bluebird Bio: Membership on an entity's Board of Directors or advisory committees; Tumstone: Membership on an entity's Board of Directors or advisory committees; Tessa Therapeutics: Membership on an entity's Board of Directors or advisory committees, Other: founder; Marker Therapeuticsa: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees, Other: Founder, Patents & Royalties; Allogene: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Walking Fish: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties; Memgen: Membership on an entity's Board of Directors or advisory committees; KUUR: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4225-4225
Author(s):  
Hussein Hamad ◽  
Wingchi K Leung ◽  
Spyridoula Vasileiou ◽  
Shivani Mukhi ◽  
Quillan Huang ◽  
...  

Myelodysplastic syndromes (MDS) are a heterogeneous group of disorders characterized by bone marrow failure and a propensity to progress to acute myeloid leukemia (AML). A core component of the underlying pathogenesis in MDS is deregulation of inflammatory cytokines, such as tumor growth factor-β (TGFβ), which impact the function of immune cells and hence their capacity to mount anti-infective or anti-tumor responses. However, little is known about antigen-specific T cell function in patients with MDS. We hypothesized that virus-specific T cell (VST) function might be preserved in patients with MDS, and that the functional capacity of T cells reactive against tumor-associated antigens aberrantly overexpressed by clonal MDS cells such as Cyclin A1 (CCNA1) and Proteinase (PR3) might also be preserved and exploited for immunotherapeutic purposes. Following informed consent, we collected peripheral blood samples from 10 patients (pts) with MDS and 17 healthy donors. Most pts (9 out of 10) were transfusion dependent and 3 subsequently underwent an allogeneic HSCT. Table 1 summarizes the other clinical characteristics, karyotypic and mutational profile at the time of blood collection. Compared with T cells isolated from healthy donors, MDS patient-derived T cells had a similar CD4 to CD8 ratio (1.5-2.5:1 for healthy donors and 3:1 for MDS pts), but displayed a more exhausted profile at baseline (CD3+TIM3+: 1% in healthy donors and 5% in MDS pts) and produced higher levels of inflammatory cytokines [IFNγ (18±3pg/ml vs 36±16pg/ml, healthy donor vs MDS; p=0.12), and IL-8 (56±32 vs 704±446 pg/ml, p=0.01)]. Next, to assess the capacity of MDS pts to mount ex vivo functional virus-directed responses, we stimulated patient-derived PBMCs (n=5) with overlapping peptide libraries (pepmixes) spanning immunogenic AdV, CMV, EBV, BK and HHV-6 antigens. Similar to healthy donor-derived T cell lines (n=5, 3 specific for 4 viruses and 2 for 5 viruses), all 5 MDS patient-derived lines demonstrated specificity for one or more of the target viruses (1 for 5 viruses, 1 for 4, 2 for 3 and 1 for 1 virus) as observed by IFNγ ELISpot assay with comparable magnitude (range Adv: 43-730 vs 384-941 in healthy donors, CMV: 0-1599 vs 0-3002, EBV: 0-1486 vs 0-541, BK: 0-839 vs 38-275 and HHV6: 0-794 vs 5-407 SFU/2x105 cells, respectively). We next examined the feasibility of expanding autologous MDS-antigen directed T cell products (n=10) to determine whether an adoptive immunotherapeutic approach might be applicable for MDS treatment. Thus, we exposed patient-derived PBMCs to autologous dendritic cells (DC) loaded with pepmixes spanning 6 MDS-associated antigens (CCNA1, survivin, WT1, PRAME, PR3 and NYESO1). After 3 rounds of stimulation, the products obtained were predominantly CD3+ T cells (mean 88±1.3%) that were polyclonal (CD4: 46±5% and CD8: 41±4%) containing predominantly memory T cells (TEM: 36±6% TCM: 37±5% and Tnaïve =13±3%). Six lines (60%) showed specific recognition to at least one of the target antigens: 4 lines specific for PRAME, 1 for CCNA1, 1 for WT1 and 1 for NYESO1 (range 0-40, 0-184, 0-1386 and 0-179 SFU/2x105 cells, respectively by IFNγ ELIspot). T cell lines were capable of specifically secreting multiple effector cytokines in response to targets (TNFα: 12% and IFNγ: 16% in response to PRAME in a representative patient-derived T cell line). Furthermore, this line was capable of killing PRAME+ targets in a 4hr 51Cr release assay [60% specific lysis, E:T 20:1]. In conclusion, functional virus-directed T cell immunity in patients with MDS is preserved, potentially explaining the lower rates of viral reactivation seen in these patients compared with other infections. Moreover, T cells specific for MDS-expressed tumor antigens can also be successfully expanded ex vivo from patients. Taken together this raises the possibility of applying an adoptive immunotherapeutic approach for the treatment of MDS. Disclosures Ramos: Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Tessa Therapeutics: Research Funding. Leen:Allovir: Consultancy, Other: Cofounder, Ownership Interest; Marker Therapeutics: Consultancy, Other: Cofounder, Ownership Interest.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 776-776
Author(s):  
Claire Roddie ◽  
Maeve A O'Reilly ◽  
Maria A V Marzolini ◽  
Leigh Wood ◽  
Juliana Dias Alves Pinto ◽  
...  

Introduction: 2nd generation CD19 CAR T cells show unprecedented efficacy in B-ALL, but several challenges remain: (1) scaling manufacture to meet patient need and (2) feasibility of generating products from lymphopenic patients post allogeneic stem cell transplant (allo-SCT). To overcome these issues we propose: (1) use of the CliniMACS Prodigy (Miltenyi Biotec), a semi-automated cGMP platform that simplifies CAR T cell manufacture and (2) the use of matched donor T cells to overcome the challenge posed by patient lymphopenia, albeit this may come with a heightened risk of graft versus host disease (GvHD). CARD (NCT02893189) is a Phase I study of matched donor derived CD19 CAR T cells generated on the CliniMACS Prodigy in 14 adult patients with relapsed/refractory (r/r) B ALL following allo-SCT. We additionally explore the requirement for lymphodepletion (LD) in the allogeneic CAR T cell setting and report on the incidence of GvHD with this therapy. Methods: Manufacturing: CARD utilises non-mobilised matched donor leucapheresate to manufacture 2nd generation CD19CAR T cells using a closed CliniMACS® Prodigy/ TransACTTM process. Study design: Eligible subjects are aged 16-70y with r/r B ALL following allo SCT. Study endpoints include feasibility of CD19CAR T cell manufacture from allo-SCT donors on the CliniMACS Prodigy and assessments of engraftment and safety including GvHD. To assess the requirement for LD prior to CD19CAR T cells in lymphopenic post-allo-SCT patients, the study is split into Cohort 1 (no LD) and Cohort 2 (fludarabine (30 mg/m2 x3) and cyclophosphamide (300mg/m2 x3)). To mitigate for the potential GvHD risk, cell dosing on study mirrors conventional donor lymphocyte infusion (DLI) schedules and is based on total CD3+ (not CAR T) cell numbers: Dose 1=1x106/kg CD3+ T cells; Dose 2= 3x106/kg CD3+ T cells; Dose 3= 1x107/kg CD3+ T cells. Results: As of 26 July 2019, 17 matched allo SCT donors were leukapheresed and 16 products were successfully manufactured and QP released. Patient demographics are as follows: (1) median patient age was 43y (range 19-64y); (2) 4/17 had prior blinatumomab and 5/17 prior inotuzumab ozogamicin; (3) 7/17 had myeloablative allo SCT and 10/17 reduced intensity allo SCT of which 6/17 were sibling donors and 12/17 were matched unrelated donors. No patients with haploidentical transplant were enrolled. To date, 12/16 patients have received at least 1 dose of CD19CAR T cells: 7/16 on Cohort 1 and 5/16 on Cohort 2 (2/16 are pending infusion on Cohort 2 and 2/16 died of fungal infection prior to infusion). Median follow-up for all 12 patients is 22.9 months (IQR 2.9-25.9; range 0.7 - 25.9). At the time of CAR T cell infusion, 7/12 patients were in morphological relapse with &gt;5% leukemic blasts. Despite this, CD19CAR T cells were administered safely: only 2/12 patients experienced Grade 3 CRS (UPenn criteria), both in Cohort 1, which fully resolved with Tocilizumab and corticosteroids. No patients experienced ≥Grade 3 neurotoxicity and importantly, no patients experienced clinically significant GvHD. In Cohort 1 (7 patients), median peak CAR expansion by flow was 87 CD19CAR/uL blood whereas in Cohort 2 (5 patients to date), median peak CAR expansion was 1309 CD19CAR/uL blood. This difference is likely to reflect the use of LD in Cohort 2. CAR T cell persistence by qPCR in Cohort 1 is short, with demonstrable CAR in only 2/7 treated patients at Month 2. Data for Cohort 2 is immature, but this will also be reported at the meeting in addition to potential mechanisms underlying the short persistence observed in Cohort 1. Of the 10 response evaluable patients (2/12 pending marrow assessment), 9/10 (90%) achieved flow/molecular MRD negative CR at 6 weeks. 2/9 responders experienced CD19 negative relapse (one at M3, one at M5) and 3/9 responders experienced CD19+ relapse (one at M3, one at M9, one at M12). 4/10 (40%) response evaluable patients remain on study and continue in flow/molecular MRD negative remission at a median follow up of 11.9 months (range 2.9-25.9). Conclusions: Donor-derived matched allogeneic CD19 CAR T cells are straightforward to manufacture using the CliniMACS Prodigy and deliver excellent early remission rates, with 90% MRD negative CR observed at Week 6 in the absence of severe CAR associated toxicity or GvHD. Peak CAR expansion appears to be compromised by the absence of LD and this may lead to a higher relapse rate. Updated results from Cohorts 1 and 2 will be presented. Disclosures Roddie: Novartis: Consultancy; Gilead: Consultancy, Speakers Bureau; Celgene: Consultancy, Speakers Bureau. O'Reilly:Kite Gilead: Honoraria. Farzaneh:Autolus Ltd: Equity Ownership, Research Funding. Qasim:Autolus: Equity Ownership; Orchard Therapeutics: Equity Ownership; UCLB: Other: revenue share eligibility; Servier: Research Funding; Bellicum: Research Funding; CellMedica: Research Funding. Linch:Autolus: Membership on an entity's Board of Directors or advisory committees. Pule:Autolus: Membership on an entity's Board of Directors or advisory committees. Peggs:Gilead: Consultancy, Speakers Bureau; Autolus: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document