CC-122 Expands Activated and Memory CD4 and CD8 T Cells In Vivo and Induces T Cell Activation Ex Vivo in Subjects with Relapsed or Refractory Diffuse Large B Cell Lymphoma and Multiple Myeloma

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2704-2704 ◽  
Author(s):  
Anita K. Gandhi ◽  
Ribrag Vincent ◽  
Cecilia Carpio ◽  
Anne-Marie Stoppa ◽  
Mecide Meric Gharibo ◽  
...  

Abstract Background: CC-122 is a first in class PPMTM pleiotropic pathway modifier compound with multiple biological activities including potent anti-proliferative activity against B lineage cells, anti-angiogenic activity and immunomodulatory effects. CC-122 binds cereblon, and promotes ubiquitination of lymphoid transcription factors Ikaros and Aiolos, leading to their subsequent degradation resulting in activation of T cells. The immunological properties of CC-122 including effects on T cell subset number in vivo and T cell cytokine production ex vivo was explored in subjects with advanced aggressive non-Hodgkin Lymphoma (NHL) and Multiple Myeloma (MM) enrolled in a Phase 1b trial (NCT01421524) at 3 mg QD and 4 and 5 mg 5/7 days dosed in 28 day cycles until disease progression. Methods: As of June 25, 2015, 76 total DLBCL and MM subjects were enrolled in the expansion phase of the study. Assessments for T cell subset numbers were performed at screening (baseline), cycle 1 day 15 (C1D15), cycle 1 day 22, cycle 2 day 15 and cycle 2 day 22 by flow cytometric immunophenotyping of fresh whole blood. Ex vivo whole blood T cell activation as measured by IL-2, IL-6, IFNg and GM-CSF cytokine production was performed using the anti-CD3 TruCulture Assay. Changes from baseline were evaluated using the t test with p<0.05 considered significant. Results: T cell subsets which were significantly changed are shown in italics in Table 1. In MM subjects (n=19-21) and DLBCL subjects (n=30-31), CC-122 treatment significantly expanded several T cell activator and memory T cell subsets while decreasing naïve T cells. A single dose of CC-122 on C1D1 activated T cells as measured in an ex vivo T cell activation assay in MM subjects (n=6-13) and DLBCL subjects (n=5-12) (Table 2). In addition, we evaluated potential correlations of clinical outcome with baseline biomarker and biomarker changes upon CC-122 treatment. Table 1. MM n=19-21 NHL n=30-31 T cell Parameter Phenotype Baseline cells/mm3 Median % Change at C1D15 from Baseline P Baseline cells/mm3 Median % Change at C1D15 from Baseline P Total T cells ABS CD3+ 636.9 17.733 0.24747 522.94 43.83 0.03638 Total T helper ABS CD3+/CD4+/CD8- 275.38 18.333 0.07812 238.96 13.428 0.09893 T helper Activated ABS CD3+/CD4+/CD8-/HLA-DR+ 62.34 105.769 0.00238 57.11 78.571 0.01567 T helper Total Naïve ABS CD3+/CD4+/CD8-/45RA+/45RO- 69.07 -54.545 0.0038 47.94 -47.841 0.03159 T helper Effector CD62L+ ABS CD3+/CD4+/CD8-/45RA+/62L+ 117.62 0 0.16621 93.74 -6 0.14611 T helper Effector CD62L- ABS CD3+/CD4+/CD8-/45RA+/62L- 21.38 -25.862 0.15196 28.44 -20.161 0.08548 T helper Total Memory ABS CD3+/CD4+/CD8-/45RA-/45RO+ 137.93 41.176 0.05373 119.15 36 0.01915 T helper Central Memory ABS CD3+/CD4+/CD8-/45RA-/62L+ 91.9 47.451 0.01953 75.74 37.143 0.01275 T helper Effector Memory ABS CD3+/CD4+/CD8-/45RA-/62L- 44.17 18.147 0.17768 41.07 19.375 0.04749 Total T cytotoxic ABS CD3+/CD4-/CD8+ 334.07 18.044 0.27499 265.7 43.823 0.0127 T cytotoxic Activated ABS CD3+/CD4-/CD8+ /HLA-DR+ 176.76 100 0.20781 121.3 96.454 0.00686 T cytotoxic Total Naïve ABS CD3+/CD4-/CD8+ /45RA+/45RO- 173.69 -35.714 0.15126 116.04 -32.667 0.89774 T cytotoxic Effector CD62L+ ABS CD3+/CD4-/CD8+ /45RA+/62L+ 127.28 20.727 0.24151 93.43 17.419 0.09599 T cytotoxic Effector CD62L- ABS CD3+/CD4-/CD8+ /45RA+/62L- 151.72 -14.286 0.28394 120.98 -18.301 0.18068 T cytotoxic Total Memory ABS CD3+/CD4-/CD8+ /45RA-/45RO+ 55.03 167.402 0.26292 54.13 184.615 0.01034 T cytotoxic Central Memory ABS CD3+/CD4-/CD8+ /45RA-/62L+ 26.83 160.417 0.00013 18.78 264.087 0.00169 T cytotoxic Effector Memory ABS CD3+/CD4-/CD8+ /45RA-/62L- 28.14 133.333 0.00107 32.59 100 0.01939 Table 2. MM n=6-13 NHL n=5-12 Cytokine Baseline cells/mm3 Median % Change from Baseline P Baseline cells/mm3 Median % Change from Baseline P IL-2 98.71 603.509 0.01329 104.5 437.194 0.01761 IL-6 131.84 124.108 0.03426 99.64 21.68 0.2692 GM-CSF 90.24 636.207 0.06608 212.96 144.601 0.16744 IFNg 271.85 404.98 0.0056 554.64 162.451 0.03024 Conclusions: CC-122 significantly increases the proportion of several cytotoxic and helper T cells subsets while decreasing naïve T cells in both DLBCL and MM subjects. CC-122 also significantly activates T cells ex vivo as measured by cytokine production. These results indicate that CC-122 is a potent modulator of T cell numbers and activation and this may serve as rationale for combinations with other immunotherapies. Disclosures Gandhi: Celgene: Employment, Equity Ownership. Off Label Use: CC-122 is a first in class PPM(TM) pleiotropic pathway modifier with multiple biological activities against B lineage cells. Vincent:Pharmamar: Honoraria, Membership on an entity's Board of Directors or advisory committees; Servier: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Membership on an entity's Board of Directors or advisory committees; Esai: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Research Funding. Carpio:Celgene: Research Funding. Stoppa:Amgen: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria; Novartis: Consultancy, Honoraria. Gharibo:Celgene: Research Funding. Damian:Celgene: Research Funding. Rasco:Celgene: Research Funding; Asana BioSciences, LLC: Research Funding. Ysebaert:Celgene: Research Funding. Cordoba:Celgene: Research Funding. Edenfield:Celgene: Research Funding. Pinto:Celgene Corporation: Honoraria; Takeda: Honoraria, Research Funding; Spectrum: Honoraria. López-Martín:Celgene: Research Funding. Sancho:Celgene: Research Funding. Panizo:Janssen: Speakers Bureau; Takeda: Speakers Bureau; Roche: Speakers Bureau; Celgene: Research Funding. Wei:Celgene: Employment, Equity Ownership. Hagner:Celgene: Employment, Equity Ownership. Waldman:Celgene: Employment, Equity Ownership. Hege:Celgene Corporation: Employment, Equity Ownership. Chopra:Celgene Corporation: Employment, Equity Ownership. Pourdehnad:Celgene: Employment.

Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 742-742 ◽  
Author(s):  
Eric L Smith ◽  
Sham Mailankody ◽  
Arnab Ghosh ◽  
Reed Masakayan ◽  
Mette Staehr ◽  
...  

Abstract Patients with relapsed/refractory MM (RRMM) rarely obtain durable remissions with available therapies. Clinical use of BCMA targeted CAR T cell therapy was first reported in 12/2015 for RRMM, and based on small numbers, preliminary results appear promising. Given that host immune anti-murine CAR responses have limited the efficacy of repeat dosing (Turtle C. Sci Trans Med 2016), our goal was to develop a human BCMA targeted CAR T cell vector for clinical translation. We screened a human B cell derived scFv phage display library containing 6x1010 scFvs with BCMA expressing NIH 3T3 cells, and validated results on human MM cell lines. 57 unique and diverse BCMA specific scFvs were identified containing light and heavy chain CDR's each covering 6 subfamilies, with HCDR3 length ranges from 5-18 amino acids. 17 scFvs met stringent specificity criteria, and a diverse set was cloned into CAR vectors with either a CD28 or a 4-1BB co-stimulatory domain. Donor T cells transduced with BCMA targeted CAR vectors that conveyed particularly desirable properties over multiple in vitro assays, including: cytotoxicity on human MM cell lines at low E:T ratios (&gt;90% lysis, 1:1, 16h), robust proliferation after repeat antigen stimulation (up to 700 fold, stimulation q3-4d for 14d), and active cytokine profiling, were selected for in vivo studies using a marrow predominant human MM cell line model in NSG mice. A single IV injection of CAR T cells, either early (4d) or late (21d) after MM engraftment was evaluated. In both cases survival was increased when treated with BCMA targeted CAR T cells vs CD19 targeted CAR T cells (median OS at 60d NR vs 35d p&lt;0.05). Tumor and CAR T cells were imaged in vivo by taking advantage of luciferase constructs with different substrates. Results show rapid tumor clearance, peak (&gt;10,000 fold) CAR T expansion at day 6, followed by contraction of CAR T cells after MM clearance, confirming the efficacy of the anti-BCMA scFv/4-1BB containing construct. Co-culture with primary cells from a range of normal tissues did not activate CAR T cells as noted by a lack of IFN release. Co-culture of 293 cells expressing this scFv with those expressing a library of other TNFRSF or Ig receptor members demonstrated specific binding to BCMA. GLP toxicity studies in mice showed no unexpected adverse events. We generated a retroviral construct for clinical use including a truncated epithelial growth factor receptor (EGFRt) elimination gene: EGFRt/hBCMA-41BBz. Clinical investigation of this construct is underway in a dose escalation, single institution trial. Enrollment is completed on 2/4 planned dose levels (DL). On DL1 pts received cyclophosphamide conditioning (3g/m2 x1) and 72x106 mean CAR+ T cells. On DL2 pts received lower dose cyclophosphamide/fludarabine (300/30 mg/m2 x3) and 137x106 mean CAR+ T cells. All pts screened for BCMA expression by IHC were eligible. High risk cytogenetics were present in 4/6 pts. Median prior lines of therapy was 7; all pts had IMiD, PI, high dose melphalan, and CD38 directed therapies. With a data cut off of 7/20/17, 6 pts are evaluable for safety. There were no DLT's. At DL1, grade 1 CRS, not requiring intervention, occurred in 1/3 pts. At DL2, grade 1/2 CRS occurred in 2/3 pts; both received IL6R directed Tocilizumab (Toci) with near immediate resolution. In these 2 pts time to onset of fever was a mean 2d, Tmax was 39.4-41.1 C, peak CRP was 25-27mg/dl, peak IL6 level pre and post Toci were 558-632 and 3375-9071 pg/ml, respectively. Additional serum cytokines increased &gt;10 fold from baseline in both pts include: IFNg, GM CSF, Fractalkine, IL5, IL8, and IP10. Increases in ferritin were limited, and there were no cases of hypofibrinogenemia. There were no grade 3-5 CRS and no neurotoxicities or cerebral edema. No pts received steroids or Cetuximab. Median time to count recovery after neutropenia was 10d (range 6-15d). Objective responses by IMWG criteria after a single dose of CAR T cells were observed across both DLs. At DL1, of 3 pts, responses were 1 VGPR, 1 SD, and 1 pt treated with baseline Mspike 0.46, thus not evaluable by IMWG criteria, had &gt;50% reduction in Mspike, and normalization of K/L ratio. At DL2, 2/2 pts had objective responses with 1 PR and 1 VGPR (baseline 95% marrow involvement); 1 pt is too early to evaluate. As we are employing a human CAR, the study was designed to allow for an optional second dose in pts that do not reach CR. We have treated 2 pts with a second dose, and longer follow up data is pending. Figure 1 Figure 1. Disclosures Smith: Juno Therapeutics: Membership on an entity's Board of Directors or advisory committees, Patents & Royalties: BCMA targeted CAR T cells, Research Funding. Almo: Cue Biopharma: Other: Founder, head of SABequity holder; Institute for Protein Innovation: Consultancy; AKIN GUMP STRAUSS HAUER & FELD LLP: Consultancy. Wang: Eureka Therapeutics Inc.: Employment, Equity Ownership. Xu: Eureka Therapeutics, Inc: Employment, Equity Ownership. Park: Amgen: Consultancy. Curran: Juno Therapeutics: Research Funding; Novartis: Consultancy. Dogan: Celgene: Consultancy; Peer Review Institute: Consultancy; Roche Pharmaceuticals: Consultancy; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Seattle Genetics: Consultancy, Membership on an entity's Board of Directors or advisory committees. Liu: Eureka Therpeutics Inc.: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Brentjens: Juno Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3184-3184 ◽  
Author(s):  
Caitlin L. Costello ◽  
Tara K. Gregory ◽  
Syed Abbas Ali ◽  
Jesus G. Berdeja ◽  
Krina K. Patel ◽  
...  

P-BCMA-101 is a novel chimeric antigen receptor (CAR)-T cell product targeting B Cell Maturation Antigen (BCMA). P-BCMA-101 is produced using the piggyBac® (PB) DNA Modification System instead of the viral vector that is used with most CAR-T cells, requiring only plasmid DNA and mRNA. This makes it less costly and produces cells with a high percentage of the favorable T stem cell memory phenotype (TSCM). The higher cargo capacity of PB permits the incorporation of multiple genes in addition to CAR(s), including a safety switch allowing for rapid CAR-T cell elimination with a small molecule drug infusion in patients if desired, and a selection gene allowing for enrichment of CAR+ cells. Rather than using a traditional antibody-based binder, P-BCMA-101 has a Centyrin™ fused to a CD3ζ/4-1BB signaling domain. Centyrins are fully human proteins with high specificity and a large range of binding affinities, but are smaller, more stable and potentially less immunogenic than traditional scFv. Cumulatively, these features are predicted to result in a greater therapeutic index. A Phase 1, 3+3 dose escalation from 0.75 to 15 x 106 P-BCMA-101 CAR-T cells/kg (RP2D 6-15 x 106 cells/kg) was conducted in patients with r/r MM (Blood 2018 132:1012) demonstrating excellent efficacy and safety of P-BCMA-101, including notably low rates and grades of CRS and neurotoxicity (maximum Grade 2 without necessitating ICU admission, safety switch activation or other aggressive measures). These results supported FDA RMAT designation and initiation of a pivotal Phase 2 study. A Phase 2 pivotal portion of this study has recently been designed and initiated (PRIME; NCT03288493) in r/r MM patients who have received at least 3 prior lines of therapy. Their therapy must have contained a proteasome inhibitor, an IMiD, and CD38 targeted therapy with at least 2 of the prior lines in the form of triplet combinations. They must also have undergone ≥2 cycles of each line unless PD was the best response, refractory to the most recent line of therapy, and undergone autologous stem cell transplant or not be a candidate. Patients are required to be >=18 years old, have measurable disease by International Myeloma Working Group criteria (IMWG; Kumar 2016), adequate vital organ function and lack significant autoimmune, CNS and infectious diseases. No pre-specified level of BCMA expression is required, as this has not been demonstrated to correlate with clinical outcomes for P-BCMA-101 and other BCMA-targeted CAR-T products. Interestingly, unlike most CAR-T products patients may receive P-BCMA-101 after prior CAR-T cells or BCMA targeted agents, and may be multiply infused with P-BCMA-101. Patients are apheresed to harvest T cells, P-BCMA-101 is then manufactured and administered to patients as a single intravenous (IV) dose (6-15 x 106 P-BCMA-101 CAR-T cells/kg) after a standard 3-day cyclophosphamide (300 mg/m2/day) / fludarabine (30 mg/m2/day) conditioning regimen. One hundred patients are planned to be treated with P-BCMA-101. Uniquely, given the safety profile demonstrated during Phase 1, no hospital admission is required and patients may be administered P-BCMA-101 in an outpatient setting. The primary endpoints are safety and response rate by IMWG criteria. With a 100-subject sample, the Phase 2 part of the trial will have 90% power to detect a 15-percentage point improvement over a 30% response rate (based on that of the recently approved anti-CD38 antibody daratumumab), using an exact test for a binomial proportion with a 1-sided 0.05 significance level. Multiple biomarkers are being assessed including BCMA and cytokine levels, CAR-T cell kinetics, immunogenicity, T cell receptor diversity, CAR-T cell and patient gene expression (e.g. Nanostring) and others. Overall, the PRIME study is the first pivotal study of the unique P-BCMA-101 CAR-T product, and utilizes a number of novel design features. Studies are being initiated in combination with approved therapeutics and earlier lines of therapy with the intent of conducting Phase 3 trials. Funding by Poseida Therapeutics and the California Institute for Regenerative Medicine (CIRM). Disclosures Costello: Takeda: Honoraria, Research Funding; Janssen: Research Funding; Celgene: Consultancy, Honoraria, Research Funding. Gregory:Poseida: Research Funding; Celgene: Speakers Bureau; Takeda: Speakers Bureau; Amgen: Speakers Bureau. Ali:Celgene: Research Funding; Poseida: Research Funding. Berdeja:Amgen Inc, BioClinica, Celgene Corporation, CRISPR Therapeutics, Bristol-Myers Squibb Company, Janssen Biotech Inc, Karyopharm Therapeutics, Kite Pharma Inc, Prothena, Servier, Takeda Oncology: Consultancy; AbbVie Inc, Amgen Inc, Acetylon Pharmaceuticals Inc, Bluebird Bio, Bristol-Myers Squibb Company, Celgene Corporation, Constellation Pharma, Curis Inc, Genentech, Glenmark Pharmaceuticals, Janssen Biotech Inc, Kesios Therapeutics, Lilly, Novartis, Poseida: Research Funding; Poseida: Research Funding. Patel:Oncopeptides, Nektar, Precision Biosciences, BMS: Consultancy; Takeda, Celgene, Janssen: Consultancy, Research Funding; Poseida Therapeutics, Cellectis, Abbvie: Research Funding. Shah:University of California, San Francisco: Employment; Genentech, Seattle Genetics, Oncopeptides, Karoypharm, Surface Oncology, Precision biosciences GSK, Nektar, Amgen, Indapta Therapeutics, Sanofi: Membership on an entity's Board of Directors or advisory committees; Indapta Therapeutics: Equity Ownership; Celgene, Janssen, Bluebird Bio, Sutro Biopharma: Research Funding; Poseida: Research Funding; Bristol-Myers Squibb: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Nkarta: Consultancy, Membership on an entity's Board of Directors or advisory committees; Kite: Consultancy, Membership on an entity's Board of Directors or advisory committees; Teneobio: Consultancy, Membership on an entity's Board of Directors or advisory committees. Ostertag:Poseida Therapeutics, Inc.: Employment, Equity Ownership. Martin:Poseida Therapeutics, Inc.: Employment, Equity Ownership. Ghoddusi:Poseida Therapeutics, Inc.: Employment, Equity Ownership. Shedlock:Poseida Therapeutics, Inc.: Employment, Equity Ownership. Spear:Poseida Therapeutics, Inc.: Employment, Equity Ownership. Orlowski:Poseida Therapeutics, Inc.: Research Funding. Cohen:Poseida Therapeutics, Inc.: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5319-5319 ◽  
Author(s):  
Ann-Marie E Bröske ◽  
Ian James ◽  
Anton Belousov ◽  
Enrique Gomez ◽  
Marta Canamero ◽  
...  

Introduction: CD20-TCB (RG6026) is a novel T-cell-engaging bispecific (TCB) antibody with a '2:1' molecular format that comprises two fragment antigen binding regions that bind CD20 (on the surface of B cells) and one that binds CD3 (on the surface of T cells). CD20-TCB offers the potential for increased tumor antigen avidity, rapid T-cell activation, and enhanced tumor cell killing versus other bispecific formats. The safety, tolerability, pharmacokinetics, biomarkers, and antitumor activity of CD20-TCB are currently being investigated in a multicenter Phase I dose-escalation trial (NP30179; NCT03075696). We recently presented preliminary clinical data demonstrating promising clinical activity in relapsed or refractory (R/R) non-Hodgkin lymphoma (NHL) patients with indolent or aggressive disease (Dickinson et al. ICML 2019). Here, we present preliminary blood and tissue biomarker analyses to explore modes of action, support optimal biological dose selection, and identify potential outcome predictors. Methods: For biomarker analyses, we performed immune profiling of peripheral blood by flow cytometry, analyzed plasma cytokine levels by ELISA, and characterized baseline and on-treatment tumor biopsies by immunohistochemistry/immunofluorescence assays and RNA sequencing. Biomarker data were obtained from 122 patients dosed with 0.005-25mg CD20-TCB. Results: CD20-TCB infusion led to a rapid and transient reduction in T cells in the peripheral circulation (T-cell margination) in all patients. T-cell margination reached nadir 6 hours after the first CD20-TCB infusion, and showed a strong association with CD20-TCB dose and receptor occupancy (RO%; as determined by Djebli et al. ASH 2019). Interestingly, rebound of T cells 160 hours after the first CD20-TCB infusion was associated with response to treatment. Responding patients showed long-term T-cell activation after the first infusion of CD20-TCB at doses from 0.6mg and above. T-cell activation was demonstrated by 2-4-fold elevation of T-cell activation markers such as Ki67, HLA-DR, PD-1, ICOS, OX40, and 4-1BB, which was sustained up to Cycle 5 (105 days). Analysis of paired pre- and on-treatment tumor biopsies (n=6) obtained before and 2-3 weeks after the first dose of CD20-TCB showed evidence of T-cell-mediated tumor cell killing. Analysis of archival and pre-treatment tumor biopsies (n=80) revealed that clinical responses were achieved irrespective of the amount of tumor T-cell infiltration at baseline. In contrast, preliminary baseline bulk tumor RNA sequencing data (n=46) showed upregulation of gene signatures associated with cell proliferation/Myc and T-cell subsets (effector vs exhausted-like) in non-responding patients. Conclusions: In this study, we demonstrated the mode of action of CD20-TCB, a novel bispecific antibody with promising clinical activity in R/R NHL. We also demonstrated that biomarker data on T-cell activation can support dose finding in conjunction with pharmacokinetics. Additional analysis is ongoing to evaluate response predictors and better characterize the population that will benefit most from T-cell mediated therapies. Disclosures Bröske: Roche: Employment, Equity Ownership. James:A4P Consulting Ltd: Consultancy. Belousov:Roche: Employment. Gomez:F. Hoffmann-La Roche Ltd: Employment. Canamero:F. Hoffmann-La Roche Ltd: Employment, Equity Ownership. Ooi:F. Hoffmann-La Roche Ltd: Employment, Equity Ownership. Grabole:F. Hoffmann-La Roche Ltd: Employment, Equity Ownership. Wilson:F. Hoffmann-La Roche Ltd: Employment. Korfi:F. Hoffmann-La Roche Ltd: Consultancy. Kratochwil:F. Hoffmann-La Roche Ltd: Employment. Morcos:Roche: Employment, Equity Ownership. Ferlini:Roche: Employment, Equity Ownership. Thomas:F. Hoffmann-La Roche Ltd: Employment, Equity Ownership. Dimier:F. Hoffmann-La Roche Ltd: Employment, Equity Ownership. Moore:F. Hoffmann-La Roche Ltd: Employment, Equity Ownership. Bacac:Roche: Employment, Equity Ownership, Patents & Royalties: Patents, including the one on CD20-TCB. Weisser:Pharma Research and Early Development Roche Innovation Center Munich: Employment, Equity Ownership, Patents & Royalties. Dickinson:Merck Sharpe and Dohme: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Research Funding, Speakers Bureau; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; F. Hoffmann-La Roche Ltd: Consultancy, Honoraria, Research Funding, Speakers Bureau; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; GlaxoSmithKline: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. OffLabel Disclosure: CD20-TCB (also known as RG6026, RO7082859) is a full-length, fully humanized, immunoglobulin G1 (IgG1), T-cell-engaging bispecific antibody with two fragment antigen binding (Fab) regions that bind to CD20 (on the surface of B cells) and one that binds to CD3 (on the surface of T cells) (2:1 format). The 2:1 molecular format of CD20-TCB, which incorporates bivalent binding to CD20 on B cells and monovalent binding to CD3 on T cells, redirects endogenous non-specific T cells to engage and eliminate malignant B cells. CD20-TCB is an investigational agent.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1410-1410 ◽  
Author(s):  
John E. Godwin ◽  
Carmen Ballesteros-Merino ◽  
Nikhil Lonberg ◽  
Shawn Jensen ◽  
Tarsem Moudgil ◽  
...  

Introduction The infiltration of immune cells into tumors has been associated with therapeutic effects in preclinical models and patients with cancer. In AML, we have previously reported that immune infiltrated TME is predictive of failure to cytotoxic chemotherapy, but associated with response to immunotherapy, specifically FLZ (Uy ASH 2018, Rutella ASH 2018). Furthermore, FLZ also affects immune infiltration in the TME (Rutella ASH 2018). NK cells play an important role in AML control (Ruggieri Science 2012). FLZ (MGD006/S80880) is a humanized DART® molecule that bridges CD123 on AML with CD3 on T cells and mediates anticancer activity via T-cell activation and cytolytic activity against the bound cancer cell. While this is well described in vitro, little evidence of this interaction is available in vivo. Methods Patients (pts) were treated on the recommended phase 2 dose (RP2D) of FLZ (multi-step lead-in dose followed by 500ng/kg/day, in 28-day cycles). We studied the bone marrow (BM) tissue samples for 6 primary refractory pts at baseline and after treatment. Response assessment was performed at day 25±3 days of each cycle. Serial BM samples were evaluated using 2 different staining panels (PD-L1, FoxP3, CD8, CD3, CD103 / CD123, CD3, CD57, CD16) on consecutive slides. Slides were stained using a Leica BondRx autostainer and fluorescence imaged using a Polaris Vectra 3 and analyzed using inForm software. A density-based clustering algorithm developed and run in QuPath was used to quantify CD3+ T cell clusters. Results Six pts with primary refractory AML were included in this report. Pts were heavily pretreated (median prior lines of therapy was 3, range 2-9), and had adverse cytogenetic risk (ELN 2017). Three pts had a complete remission (CR) after 1 cycle of therapy (CR, CRh, CRi), two went on the receive allogeneic stem cell transplant (HSCT). In baseline BM samples, CD3 and CD8 cell infiltrates were higher in CR vs non-responders (CD3+ 18.3% ±6.9 vs 9.3% ±1.8; CD8+ 9.4% ±3.5 vs 4.8% ±1.2; mean±SEM). Two of the three CR patients, who underwent HSCT, developed clusters (Figure 1) in their on-treatment biopsies with 65 and 22 clusters of an average of 34 and 17 T cells per cluster, respectively. All clusters in CR pts were found on or adjacent to CD123+ cells. The BM biopsy of the CR pt with no detected clusters had no unequivocal evidence of residual/recurrent leukemic blasts. This pt had their dose interrupted early due to non-treatment related AE (infectious complication) and did not receive a full cycle of treatment; the response was transient and the pt relapsed shortly thereafter. NK cells (CD57+CD16+) were increased in post treatment biopsies of CR vs non-responders (0.93 ±0.31 vs 0.27 ±0.13; mean±SEM) with the largest fold increase in CR (28 vs 9). Lastly, post treatment biopsy PD-L1 expression was higher in non-responders than CR (23% vs 16%) with non-responders exhibiting the largest fold change in total PD-L1+ cells (10.9 vs 2.2). Summary Consistent with its proposed mechanism of action, these data highlight for the first time, the dynamic induction of an increase in T-cell infiltration, and clustering around CD123 AML cells in the bone marrow microenvironment of two AML patients that responded to FLZ. In pts with resistance to FLZ (non-responders) PD-L1 induction was significantly higher indicating that in some pts treatment with sequential check point inhibitor could obviate this mechanism of resistance A trial combining FLZ with sequential administration of a PD-1 inhibitor (MGA012) is currently recruiting pts. Figure 1. Baseline and on-treatment IHC of BM biopsies of a FLZ-treated CR pt showing cluster formation following treatment. Disclosures Bifulco: Ventana: Other: advisory board; PrimeVax: Equity Ownership, Other: ScientificBoard; BMS: Other: Advisory Board; Providnece: Patents & Royalties: Imaging processing; Halio Dx: Other: advisory board. Wigginton:macrogenics: Employment, Equity Ownership; western oncolytics: Consultancy, Other: consultancy. Muth:MacroGenics, Inc.: Employment, Equity Ownership. Davidson-Moncada:MacroGenics, Inc.: Employment, Equity Ownership. Fox:Akoya: Research Funding; Bristol Myers Squibb: Research Funding; Definiens: Membership on an entity's Board of Directors or advisory committees; Macrogenics: Research Funding; Ultivue: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1571-1571
Author(s):  
Patrick P. Ng ◽  
Mehrdad Mobasher ◽  
Kitman S. Yeung ◽  
Andrew N. Hotson ◽  
Craig M. Hill ◽  
...  

Introduction ITK is a tyrosine kinase critical to T cell receptor (TCR) signaling. Overexpression of this gene has been reported in cutaneous T-cell lymphoma (CTCL) and peripheral T-cell lymphoma (PTCL). Genomic analyses have demonstrated the contribution of aberrant TCR signaling in the pathogenesis of T-cell lymphomas (TCL). RLK, a closely related kinase, is co-expressed with ITK in T and NK cells, and is partially functionally redundant with ITK signaling. In NK cells, ITK has been shown to be involved in FcγRIII signaling and antibody-dependent cellular cytotoxicity (ADCC). However, the relative contribution of ITK vs RLK in ADCC is not well understood. Thus, selective inhibition of ITK, but not other signal transduction components such as RLK, may be an effective strategy to treat TCL while preserving normal T and NK cell functions. CPI-818 is an orally bioavailable, covalent inhibitor of ITK with &gt;100-fold selectivity over RLK and BTK. It was well tolerated and exhibited anti-tumor activity in companion dogs with spontaneous TCL (2019 AACR Annual Meeting Abstract #1313). A phase 1/1b trial with CPI-818 in human TCL has been initiated (NCT03952078). Here we present preclinical evidence that CPI-818 inhibits the proliferation of human malignant T cells with relative sparing of normal lymphocytes and report early results from the clinical trial. Methods Eligible patients for the dose-escalation/expansion trial of CPI-818 have relapsed/refractory TCL (PTCL, CTCL and others). Starting dose of CPI-818 is 100 mg BID continuously. The objectives of the study are to evaluate the safety and tolerability of CPI-818 in ascending dose levels; evaluate pharmacokinetics/pharmacodynamics and potential biomarkers. In in vitro studies, T cells from the blood of Sézary syndrome patients were stimulated for 6 days with αCD3/CD28. Sézary cells were identified by antibodies to specific TCR Vβ. For assays of ADCC, αCD20-coated lymphoma B cells were cultured with NK cells from multiple healthy donors for 18 h with inhibitors. In animal studies, mice received control or CPI-818-formulated diet (300 mg/kg/day). C57BL/6 mice were vaccinated with keyhole limpet hemocyanin (KLH) or subcutaneously implanted with the TCL line EL4. MRL/lpr mice began treatment at 9 weeks old. Lymph nodes were calipered weekly. Spleens and lungs were harvested at 22 weeks. Results Mouse models were studied to assess the impact of CPI-818 on normal, autoreactive and malignant T cells in vivo. No changes in total blood cell counts or T, B, NK cell subsets in lymphoid organs were seen in normal mice receiving daily doses of CPI-818 sufficient to continuously inhibit ITK for 28 days. Immune responses to antigen re-challenge were not affected in these mice, as determined by levels of antibody or CD4 T cell response to vaccination with KLH. In mice with established EL4 lymphoma, administration of CPI-818 reduced the growth of tumors at the primary site and in the draining lymph nodes (P values &lt;0.033). CPI-818 also reduced lymphadenopathy and expansion of autoreactive T cells in the spleens of MRL/lpr mice (P values &lt;0.0001), without affecting CD4 or CD8 cells. Sézary cells from 3 of 3 patients tested in vitro were more sensitive to growth inhibition with CPI-818 than autologous normal CD4 or CD8 cells, or T cells from a healthy donor (Figure 1). CPI-818 showed minimal inhibition of NK-mediated ADCC (5%), whereas CP-2193, an ITK/RLK dual inhibitor with an IC50 for ITK comparable to CPI-818, reduced ADCC by 50%. CPI-818 has been administered to two patients at the first dose level cohort (100 mg BID) with no DLTs, and with no changes to B, T, and NK cell counts in blood during the first dosing cycle (21 days). Pharmacokinetic and occupancy studies have revealed 80% and 50% occupancy of ITK at peak and trough drug levels, respectively in peripheral blood T cells. Conclusions CPI-818 is a selective covalent ITK inhibitor that has greater antiproliferative effects on malignant and autoreactive T cells compared to normal T cells. The drug has a minimal impact on NK mediated ADCC compared with a less selective inhibitor that also blocks RLK. Preliminary data from a phase 1/1b study shows CPI-818 at 100 mg BID was tolerable with acceptable bioavailability and ITK occupancy. Further dose escalation is ongoing. Disclosures Ng: Corvus Pharmaceuticals, Inc.: Employment, Equity Ownership. Mobasher:Corvus Pharmaceuticals: Employment, Equity Ownership. Yeung:Corvus Pharmaceuticals: Employment, Equity Ownership. Hotson:Corvus Pharmaceuticals: Employment, Equity Ownership. Hill:Corvus Pharmaceuticals: Employment, Equity Ownership. Madriaga:Corvus Pharmaceuticals: Employment, Equity Ownership. Dao-Pick:Corvus Pharmaceuticals: Employment, Equity Ownership. Verner:Corvus Pharmaceuticals: Employment, Equity Ownership. Radeski:Corvus Pharmaceuticals: Research Funding. Khodadoust:Corvus Pharmaceuticals: Research Funding. Kim:Innate Pharma: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Eisai: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Kyowa Hakko Kirin: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Merck: Research Funding; Horizon: Research Funding; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Seattle Genetics: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Galderma: Research Funding; Elorac: Research Funding; Soligenix: Research Funding; Medivir: Honoraria, Membership on an entity's Board of Directors or advisory committees; miRagen: Research Funding; Forty Seven Inc: Research Funding; Neumedicine: Research Funding; Portola Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Corvus: Honoraria, Membership on an entity's Board of Directors or advisory committees; Trillium: Research Funding. Miller:Corvus Pharmaceuticals: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Buggy:Corvus Pharmaceuticals: Employment, Equity Ownership. Janc:Corvus Pharmaceuticals: Employment, Equity Ownership.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2012-2012 ◽  
Author(s):  
William E. Pierceall ◽  
Nizar Bahlis ◽  
David S Siegel ◽  
Gary J. Schiller ◽  
Christy J. Samaras ◽  
...  

Abstract Background: Multiple myeloma clinical trial CC-4047-MM-014 (NCT01946477) is a Phase II study designed to test the safety and efficacy of pomalidomide and low-dose dexamethasone alone (arm A) or in combination with daratumumab, an anti-CD38 antibody, (arm B) subjects with relapsed or refractory multiple myeloma who have received a first or second line treatment of lenalidomide-based therapy. Immunomodulatory agents (IMiD® compounds) continue to be the backbone of multiple myeloma therapy especially when combined with monoclonal antibodies, more specifically pomalidomide had been shown previously to enhance T cell- and NK cell-mediated immunity. We sought to characterize on-treatment pharmacodynamic changes of immune biomarkers associated with POM + LoDEX + DARA administration (arm B) using multicolor flow cytometry panels designed to characterize T-cell subsets and CD38+ expressing cells. IMiD agents are the backbone of combination regimens in the treatment of patients with newly diagnosed or relapsed and/or refractory multiple myeloma. The anti-myeloma properties of these agents derive from a dual mechanism of pro-apoptotic effects on tumor cells as well as enhanced immune stimulation. An understanding of how IMiD agents interact with new monoclonal antibodies to modify patient immune profiles offers key insights into the role of such in innate and adaptive immunity in determining patient outcomes. Methods and Results: Peripheral blood samples were collected at screening, Cycle1 Days 1, 8, and 15, and Cycle 2 Days 1 and 15 to monitor pharmacodynamic changes in populations of T cells, NK cells, monocytes and MDSCs by flow cytometry. From 112 patients enrolled in Arm B, 98 patients had baseline and post-treatment specimens available for these analyses. As expected, combination treatment with POM + LoDEX + DARA led to decreased peripheral counts of CD56+CD16+ NK cells as well as CD4+CD38+ and CD8+CD38+ T cell subpopulations. Decreased counts were also noted in CD3-CD19+ B cells. In contrast, total counts of CD14+ monocytes and CD3+CD4+ or CD3+CD8+ T cells were stably maintained and pronounced increases were observed in proliferating CD4+Ki-67+ and CD8+Ki-67+ T cells. Further, when examined as a percent of total counts, increases were observed in CD14+ monocytes, CD3+CD4+ and CD3+CD8+ T-cells, with decreases in CD3-CD19+ B-cells and CD3-CD56+CD16+ NK cells. Correlation of these pharmacodynamic changes with clinical outcomes will be presented. In addition, baseline immune profiling of specific cell population subsets and associations with best overall response and progression-free survival is currently being analyzed. Conclusions: The triplet regimen POM + LoDEX + DARA has shown notable clinical activity with deep and durable responses in relapsed multiple myeloma patients progressed and are or refractory to lenalidomide. Immune characterization here is consistent with a model for clinical activity in which the loss of CD56+CD16+ NK cells along with a concomitant immune suppression by loss of CD38+CD4+ and CD38+CD8+ T- cells is offset by an increase in proliferating cytotoxic CD4+Ki-67+ and CD8+Ki-67+ T-cell populations. Our results demonstrate that patients treated with the POM + LoDEX + DARA combination do not demonstrate impairment in the innate and adaptive immune compartments and, in contrast, show significant proliferative activity in the subsets of CD4, CD8 and NK cells following treatment. Pomalidomide had been shown previously to enhance T cell- and NK cell-mediated immunity; these data are consistent with a mechanism of action in which pomalidomide administration facilitates the ability to overcome immunosuppressive effects of Dara and LoDex. Potential associations of immune biomarkers with patient outcomes is ongoing and will be updated. Disclosures Pierceall: Celgene Corporation: Employment, Equity Ownership. Bahlis:Janssen: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria, Research Funding. Siegel:Merck: Consultancy, Honoraria, Speakers Bureau; Celgene: Consultancy, Honoraria, Research Funding, Speakers Bureau; Karyopharm: Consultancy, Honoraria; Amgen: Consultancy, Honoraria, Speakers Bureau; BMS: Consultancy, Honoraria, Speakers Bureau; Novartis: Honoraria, Speakers Bureau; Janssen: Consultancy, Honoraria, Speakers Bureau; Takeda: Consultancy, Honoraria, Speakers Bureau. Schiller:Astellas Pharma: Membership on an entity's Board of Directors or advisory committees, Research Funding; bluebird bio: Research Funding. Sebag:Amgen Canada: Membership on an entity's Board of Directors or advisory committees; Takeda Canada: Membership on an entity's Board of Directors or advisory committees; Janssen Inc.: Membership on an entity's Board of Directors or advisory committees; Celgene Canada: Membership on an entity's Board of Directors or advisory committees. Berdeja:Takeda: Research Funding; Genentech: Research Funding; Sanofi: Research Funding; Bristol-Myers Squibb: Research Funding; Celgene: Research Funding; Janssen: Research Funding; Glenmark: Research Funding; Amgen: Research Funding; Novartis: Research Funding; Poseida Therapeutics, Inc.: Research Funding; Bluebird: Research Funding; Teva: Research Funding. Ganguly:Amgen: Consultancy; Daiichi Sankyo: Research Funding; Janssen: Consultancy; Seattle Genetics: Speakers Bureau. Matous:Celgene: Consultancy, Honoraria, Speakers Bureau. Srinivas:VAHCSNJ: Employment. Bar:Celgene: Consultancy. Quick:CTI BioPharma: Research Funding. Fonseca:Celgene: Speakers Bureau. Reece:Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria, Research Funding; Merck: Honoraria, Research Funding; Otsuka: Research Funding. Serbina:Celgene: Employment. Zafar:Celgene: Employment. Agarwal:Celgene Corporation: Employment, Equity Ownership. Thakurta:Celgene Corporation: Employment, Equity Ownership.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4534-4534
Author(s):  
Joanne Shaw ◽  
Xiaoou Zhou ◽  
An Lu ◽  
Valentina Bertaina ◽  
Daria Pagliara ◽  
...  

Abstract Background: Adoptive transfer of allogeneic donor T cells can be an effective treatment for hematological malignancies through recognition of leukemia-associated antigens (LAAs) on tumor cells or through alloreactivity. However, alloreactive T cells can also cause graft-versus-host disease (GvHD) limiting their use as an immunotherapy. To leverage the anti-tumor effects of allogeneic polyclonal T cells while minimizing GvHD, we have genetically modified donor T cells with the inducible caspase-9 (iC9) safety switch, which induces apoptosis following exposure to the small molecule ligand rimiducid. Here we show that iC9-modified allogeneic T cells (BPX-501) persist, expand and contain functional LAA-specific T cells in children receiving an alpha/beta TCR and CD19-depleted HLA-haploidentical hematopoietic stem cell transplant (haplo-HSCT) for the treatment of myeloid malignancies. Methods: Pre-infusion products (BPX-501: donor T cells modified with the bicistronic retroviral vector encoding iC9 and truncated CD19 (ΔCD19)) and patient peripheral blood mononuclear cells (PBMCs) were analyzed from twelve patients (AML (10), MDS (1), JMML (1)) receiving BPX-501 (1x106 cells/kg) following an alpha/beta T cell and CD19 B cell-depleted haplo-HSCT (BP-004U: NCT03301168). Engraftment and persistence were measured by coexpression of CD3 and CD19 by flow-cytometry. Endogenous and gene-modified T cells were also phenotyped for CD4:CD8 ratios, memory cell composition (TN, TCM, TEM, TEMRA; CD45RA and CD62L) and T cell receptor Vβ diversity. BPX-501 products and post-treatment samples were characterized for LAA-specific T cells using IFN-γ ELISpot against peptide pools (15 aa overlapping by 5 aa) derived from WT1, PRAME, MAGE (A1, C1, C3), NE and PR3, with and without exposure to 10 nM rimiducid to determine the anti-leukemic contribution of BPX-501. Results: BPX-501 was infused at a median time of 22.5 days after HSCT (range 12-34, one patient was infused at day 89 and one patient was infused at day 147). BPX-501 cells (CD3+CD19+) were detectable in the peripheral blood at 1-2 weeks after infusion in all 12 patients, reaching a peak expansion frequency of a median of 24% ± 17% of total CD3+ T cells, and an absolute cell number of 66.9 ± 112 cells/µl at 2 months post-infusion and could be detected for up to 24 months. BPX-501 T cells showed a CD8-skewed phenotype whereas endogenous T cells exhibited a more balanced CD4:CD8 ratio. BPX-501 were predominantly CD45RA-CD62L+ and CD45RA-CD62L- central and effector memory T cells, respectively. In BPX-501 products, we detected LAA-specific T cells by ELISpot using overlapping peptide pools to WT1, PRAME, MAGE, NE and PR3, and in peripheral blood samples obtained 2 to 5 months post-T cell infusion. Importantly, LAA-reactivity was greatly diminished with exposure to iC9-activating rimiducid. Further, we measured the TCR Vβ usage and observed highly-skewed TCR repertoire in BPX-501 T cells compared to endogenous T cells in 6 months after HSCT indicating selection and expansion of TCR clones. Three patients engrafted BPX-501 were treated with rimiducid to control GvHD resulting in a rapid decrease (62% ± 12%) of CD3+CD19+ T cells in the peripheral blood. In patients treated with rimiducid, CD3+CD19+ T cells recover without further instances of GvHD suggestive of in vivo depletion of alloreactive T cell clones using iC9. Summary: Allogeneic T cells engineered with the iC9 safety switch engraft, expand and demonstrate long-term persistence following adoptive transfer into patients receiving a haplo-HSCT. LAA-specific T cells and alloreactive T cells within the BPX-501 product are detectable in the peripheral blood following infusion and likely contribute to elimination of myeloid malignancies. Disclosures Shaw: Bellicum Pharmaceuticals: Employment, Equity Ownership. Zhou:Bellicum Pharmaceuticals: Employment, Equity Ownership. Lu:Bellicum Pharmaceuticals: Employment, Equity Ownership. Aldinger:Bellicum Pharmaceuticals, Inc.: Employment. Spencer:Bellicum Pharmaceuticals: Employment, Equity Ownership. Locatelli:Bellicum: Consultancy, Membership on an entity's Board of Directors or advisory committees; bluebird bio: Consultancy; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Miltenyi: Honoraria; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees. Foster:Bellicum: Employment, Equity Ownership.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2693-2693
Author(s):  
Swati Naik ◽  
Premal Lulla ◽  
Ifigeneia Tzannou ◽  
Robert A. Krance ◽  
George Carrum ◽  
...  

Abstract Background: Leukemic relapse remains the major cause of treatment failure in hematopoietic stem cell transplant (HSCT) recipients. While the infusion of donor lymphocytes to prevent and treat relapse has been clinically implemented this strategy does not provide durable remissions and carries the risk of life-threatening graft-versus-host disease (GVHD). More recently the adoptive transfer of T cells that have been engineered to express CD19-targeted chimeric antigen receptors (CARs), has shown potent anti-leukemic activity in HSCT recipients with recurrent disease. However, disease relapse with the emergence of CD19 negative tumors is an emerging clinical issue post-administration of these mono-targeted T cells. To overcome these limitations, we developed a protocol for the generation of donor-derived T cell lines that simultaneously targeted a range of tumor associated antigens (multiTAAs) that are frequently expressed by B- and T-cell ALL including PRAME, WT1 and Survivin for adoptive transfer to high risk recipients transplanted for ALL. Methods/Results: We were consistently able to generate donor-derived multiTAA-specific T cells by culturing PBMCs in the presence of a Th1-polarizing/pro-proliferative cytokine cocktail, using autologous DCs as APCs and loading them with pepmixes (15 mer peptides overlapping by 11 amino acids) spanning all 3 target antigens. The use of whole antigen increases the range of patient HLA polymorphisms that can be exploited beyond those matched to single peptides, while targeting multiple antigens simultaneously reduces the risk of tumor immune evasion. To date, we have generated 14 clinical grade multiTAA-specific T cell lines comprising CD3+ T cells (mean 94±9%) with a mixture of CD4+ (mean 21±28%) and CD8+ (mean 52±24 %) cells, which expressed central [CD45RO+/CD62L+: 14±9%] and effector memory markers [CD45RO+/CD62L-: 80±11%] associated with long term in vivo persistence. The expanded lines recognized the targeted antigens WT1, PRAME and Survivin by IFNg ELIspot with activity against >1 targeted antigens in all cases. None of the lines reacted against non-malignant patient-derived cells (4±3% specific lysis; E: T 20:1) - a study release criterion. Thus far we have treated 8 high risk ALL patients with donor derived TAA T cells post-transplant to prevent disease relapse (Table 1). Infusions were well tolerated with no dose-limiting toxicity, GVHD, CRS or other adverse events. Two patients were not evaluable per study criteria as they received >0.5mg/kg of steroids within 4 weeks of infusion and were replaced. Five of the 6 remaining patients infused remain in CR a median of 11.2 months post-infusion (range 9-22 months). We detected the expansion of tumor-reactive T cells in patient peripheral blood post-infusion against both targeted (WT1, Survivin, PRAME) and non-targeted antigens (SSX2, MAGE-A4, -A1, -A2B, -C1, MART1, AFP and NYESO1) reflecting epitope and antigen spreading. The single patient who relapsed showed no evidence of tumor-directed T cell expansion despite receiving 3 additional infusions at 4 week intervals. Conclusion: In summary, infusion of donor multi-TAA-specific T cells to patients with ALL post allogeneic HSCT is feasible, safe and as evidenced by expansion and antigen spreading in patients, may contribute to disease control. This strategy may present a promising addition to current immunotherapeutic approaches for prophylaxis for leukemic relapse in HSCT recipients. Table 1. Table 1. Disclosures Vera: Marker: Equity Ownership. Heslop:Marker: Equity Ownership; Cytosen: Membership on an entity's Board of Directors or advisory committees; Cell Medica: Research Funding; Gilead Biosciences: Membership on an entity's Board of Directors or advisory committees; Tessa Therapeutics: Research Funding; Viracyte: Equity Ownership. Leen:Marker: Equity Ownership.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 488-488 ◽  
Author(s):  
Nina Shah ◽  
Melissa Alsina ◽  
David S Siegel ◽  
Sundar Jagannath ◽  
Deepu Madduri ◽  
...  

Abstract Introduction: Immunomodulatory chimeric antigen receptor (CAR) T cell therapy directed against B-cell maturation antigen (BCMA) has shown promising results for the treatment of relapsed refractory multiple myeloma (RRMM) in several phase 1 clinical studies in patients with advanced disease. Persistence of CAR T cells post infusion may be one determinant of duration of response. bb21217 is a next-generation anti-BCMA CAR T cell therapy based on investigational therapy bb2121 (Friedman 2018, Hum Gene Ther 29:585). It uses the same scFv, 4-1BB costimulatory motif and CD3-zeta T cell activation domain as bb2121 with the addition of phosphoinositide 3 kinase inhibitor bb007 during ex vivo culture to enrich the drug product for T cells displaying a memory-like phenotype. Evidence suggests that CAR T cells with this phenotype may be more persistent and more potent than unselected CAR T cells. CRB-402 is a first-in-human clinical study of bb21217 in patients with RRMM designed to assess the safety, pharmacokinetics, efficacy and duration of effect of bb21217. Methods: CRB-402 (NCT03274219) is an ongoing, multi-center phase 1 dose escalation trial of bb21217 in approximately 50 patients with RRMM who have received ≥ 3 prior regimens, including a proteasome inhibitor and an immuno-modulatory agent, or are double-refractory. During dose escalation, enrollment is restricted to patients with ≥ 50% BCMA expression by IHC on malignant plasma cells. Peripheral blood mononuclear cells are collected via leukapheresis and sent to a central facility for transduction, expansion and release testing prior to being returned to the site for infusion. Patients undergo lymphodepletion with fludarabine (30 mg/m2) and cyclophosphamide (300 mg/m2) daily for 3 days, then receive bb21217 as a single infusion. Planned dose levels are 150, 450, 800, and 1,200 x 106 CAR+ T cells. The primary outcome measure is incidence of adverse events (AEs), including dose-limiting toxicities (DLTs). Additional outcome measures are quality and duration of clinical response assessed according to the IMWG Uniform Response Criteria for MM, evaluation of minimal residual disease (MRD), progression-free and overall survival, and quantification of CAR+ cells in blood. Results: Asof June 15, 2018, 8 patients (median age 64 [min;max 54 to 70]) have received bb21217. All patients to date received a dose of 150 x 106 CAR+ T cells. Four had high tumor burden, defined as ≥ 50% bone marrow plasma cells pre-infusion. Patients had a median of 9 (min;max 4 to 17) prior lines of therapy and 7/8 had prior autologous stem cell transplant; 50% had high-risk cytogenetics. Four of 8 (50%) had previously received Bort/Len/Car/Pom/Dara. Median follow-up after bb21217 infusion was 16 weeks (2 to 27 weeks) and 7 patients were evaluable for initial (1-month) clinical response. As of data cut-off, 5 of 8 patients developed cytokine release syndrome (CRS; 1 Grade 1, 3 Grade 2, 1 Grade 3) and responded to supportive care or tocilizumab. This included 1 patient with high tumor burden who experienced DLTs consisting of grade 3 CRS and grade 4 encephalopathy with signs of posterior reversible encephalopathy syndrome on MRI. This patient received tocilizumab, corticosteroids and cyclophosphamide, improved neurologically and achieved a sCR. Following this event, the dose escalation cohort was divided into two groups based on tumor burden and dosing continued at 150x106 CAR+ T cells. No deaths occurred. With 1 to 6 months since treatment, 6 of 7 patients had demonstrated clinical response per IMWG criteria: currently 1 sCR, 3 VGPR, 2 PR. MRD negative results at 10-5 nucleated cells were obtained by next-generation sequencing in 3 of 3 evaluable responders. Robust CAR+ T cell expansion during the first 30 days was observed in 7 of 7 evaluable patients. Two of 2 patients evaluable at 6 months had detectable CAR vector copies. Conclusions: Early efficacy results with bb21217 CAR T therapy in RRMM at a dose of 150 x 106 CAR+ T cells are encouraging, with 6 of 7 patients demonstrating clinical responses. The adverse events observed to date are consistent with known toxicities of CAR T therapies. CAR+ T cells were measurable at 6 months post treatment in both evaluable patients. Enrollment in the study is ongoing; longer follow-up and data in more patients will establish whether treatment with bb21217 results in sustained CAR+ T cell persistence and responses. Disclosures Shah: Kite: Consultancy; Indapta Therapeutics: Consultancy; University of California San Francisco: Employment; Nekktar: Consultancy; Teneobio: Consultancy; Sanofi: Consultancy; Janssen: Research Funding; Indapta Therapeutics: Equity Ownership; Amgen: Consultancy; Bluebird: Research Funding; Celgene: Research Funding; Bristol Myers Squibb: Consultancy; Takeda: Consultancy; Sutro Biopharma: Research Funding; Nkarta: Consultancy. Siegel:Takeda: Consultancy, Honoraria, Speakers Bureau; Novartis: Honoraria, Speakers Bureau; Karyopharm: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding, Speakers Bureau; Amgen: Consultancy, Honoraria, Speakers Bureau; BMS: Consultancy, Honoraria, Speakers Bureau; Merck: Consultancy, Honoraria, Speakers Bureau; Janssen: Consultancy, Honoraria, Speakers Bureau. Jagannath:Multiple Myeloma Research Foundation: Speakers Bureau; Merck: Consultancy; Novartis: Consultancy; Bristol-Myers Squibb: Consultancy; Celgene: Consultancy; Medicom: Speakers Bureau. Kaufman:Karyopharm: Other: data monitoring committee; BMS: Consultancy; Janssen: Consultancy; Abbvie: Consultancy; Roche: Consultancy. Turka:bluebird bio, Inc: Employment, Equity Ownership. Lam:bluebird bio, Inc: Employment, Equity Ownership. Massaro:bluebird bio, Inc: Employment, Equity Ownership. Hege:Celgene Corporation: Employment, Equity Ownership, Patents & Royalties: multiple; Mersana: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; SITC: Membership on an entity's Board of Directors or advisory committees; Arcus Biosicences: Membership on an entity's Board of Directors or advisory committees. Petrocca:bluebird bio, Inc: Employment, Equity Ownership. Berdeja:Glenmark: Research Funding; Novartis: Research Funding; Genentech: Research Funding; Janssen: Research Funding; Bristol-Myers Squibb: Research Funding; Bluebird: Research Funding; Amgen: Research Funding; Celgene: Research Funding; Poseida Therapeutics, Inc.: Research Funding; Takeda: Research Funding; Teva: Research Funding; Sanofi: Research Funding. Raje:AstraZeneca: Research Funding; Takeda: Consultancy; Merck: Consultancy; Janssen: Consultancy; Celgene: Consultancy; BMS: Consultancy; Amgen Inc.: Consultancy; Research to Practice: Honoraria; Medscape: Honoraria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 758-758 ◽  
Author(s):  
Pieternella Lugtenburg ◽  
Rogier Mous ◽  
Michael Roost Clausen ◽  
Martine E.D. Chamuleau ◽  
Peter Johnson ◽  
...  

Introduction: CD20-specific monoclonal antibodies (mAbs) have demonstrated efficacy in the treatment of B-cell non-Hodgkin lymphomas (B-NHL); however, a significant proportion of patients (pts) present with refractory disease or will experience relapse. GEN3013 (DuoBody®-CD3×CD20) is the first subcutaneously administered IgG1 bispecific antibody (bsAb) that targets the T-cell surface antigen CD3 and the B-cell surface antigen CD20, triggering T-cell-mediated killing of B cells. In vitro, GEN3013 efficiently activates and induces cytotoxic activity of CD4+ and CD8+ T cells in the presence of B cells (Hiemstra et al. Blood 2018), and results in long-lasting depletion of B cells in cynomolgus monkeys. Subcutaneous (SC) GEN3013 in cynomolgus monkeys resulted in lower plasma cytokine levels, and similar bioavailability and B-cell depletion, compared with intravenous administration. GEN3013 has higher potency in vitro than most other CD3×CD20 bsAbs in clinical development (Hiemstra et al. HemaSphere 2019). SC GEN3013 in pts with B-NHL is being evaluated in a first-in-human, Phase 1/2 trial (NCT03625037), which comprises a dose-escalation part and a dose-expansion part. Here we report preliminary dose-escalation data. Methods: Pts with CD20+ B-NHL with relapsed, progressive, or refractory disease following anti-CD20 mAb treatment, and ECOG PS 0-2 were included. During dose escalation, pts received SC GEN3013 flat dose in 28-day cycles (q1w: cycle 1-2; q2w: cycle 3-6; q4w thereafter) until disease progression or unacceptable toxicity. Risk of cytokine release syndrome (CRS) was mitigated with the use of a priming dose and premedication with corticosteroids, antihistamines, and antipyretics. Primary endpoints were adverse events (AEs) and dose-limiting toxicities (DLTs). Secondary endpoints included pharmacokinetics (PK), immunogenicity (anti-drug antibodies [ADA]), pharmacodynamics (PD) (cytokine measures; laboratory parameters), and anti-tumor activity (tumor size reduction; objective and best response). Results: At data cut-off (June 28, 2019), 18 pts were enrolled into the dose-escalation part of the trial, with safety data available for pts receiving doses starting at 4 µg. Most pts had diffuse large B-cell lymphoma (DLBCL; n=14) and were heavily pre-treated; 10 pts had received ≥3 prior lines of therapy (overall median [range]: 3 [1-11]). The median age was 58.5 years (range: 21-80), and 13 pts were male. At a median follow-up of 1.9 months, pts received a median of 5 doses (range: 1-14); treatment is ongoing in 6 pts. Twelve pts discontinued treatment due to progressive disease. Six pts died (2 during treatment, 4 during survival follow-up), all due to disease progression and unrelated to treatment. The most common (n≥5) treatment-emergent AEs were pyrexia (n=8), local injection-site reactions (n=7), diarrhea (n=5), fatigue (n=5), and increased aspartate aminotransferase (n=5). The most common Grade (G) 3/4 AEs were anemia (n=3) and neutropenia (n=3). Despite increasing GEN3013 doses, all CRS events were non-severe (initial observation: 3/8 pts, G1: n=1, G2: n=2; following modification of premedication plan [corticosteroids for 3 days]: 6/10 pts, G1: n=4, G2: n=2). Increases in peripheral cytokine (IL6, IL8, IL10, IFNγ, TNFα) concentrations after GEN3013 dosing correlated with clinical symptoms of CRS in most pts. No pts had tumor lysis syndrome or neurological symptoms. No DLTs were observed. GEN3013 PK profiles reflect SC dosing; Cmax occurred 2-4 days after dosing. No ADAs were detected. PD effects following GEN3013 dosing were observed at dose levels as low as 40 µg and included rapid, complete depletion of circulating B cells (if present after prior anti-CD20 therapy) and peripheral T-cell activation and expansion. The first evidence of clinical activity was observed at a dose level of 120 µg, with complete metabolic response observed in a pt with DLBCL. Conclusions: Subcutaneously administered GEN3013, a potent CD3×CD20 bsAb, shows good tolerability and early evidence of clinical activity at low dose levels in heavily pretreated pts with relapsed or refractory B-NHL. All CRS events were non-severe and did not lead to discontinuation. No DLTs were observed. Dose escalation is ongoing; updated data will be presented. Dose expansion will begin upon determining the recommended Phase 2 dose (RP2D) (NCT03625037). Disclosures Lugtenburg: Janssen Cilag: Honoraria; Roche: Consultancy, Honoraria, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria; Servier: Consultancy, Honoraria, Research Funding; Genmab: Consultancy, Honoraria; BMS: Consultancy; Takeda: Consultancy, Honoraria, Research Funding. Mous:Bristol-Myers Squibb: Honoraria; Celgene: Honoraria; Sandoz: Honoraria; Roche: Honoraria; Abbvie: Honoraria; Takeda: Honoraria, Research Funding; Janssen Cilag: Consultancy, Honoraria; MSD: Honoraria; Gilead: Consultancy, Honoraria, Research Funding. Clausen:Abbvie: Other: Travel grant to attend ASH 2019. Johnson:Boehringer Ingelheim: Honoraria; Janssen: Consultancy, Honoraria, Research Funding; Celgene: Honoraria; Epizyme: Honoraria, Research Funding; Incyte: Honoraria; Takeda: Honoraria; Genmab: Honoraria; Bristol-Myers Squibb: Honoraria; Kite: Honoraria; Novartis: Honoraria. Rule:Janssen: Consultancy, Honoraria, Research Funding; Roche: Consultancy, Honoraria, Research Funding; Astra-Zeneca: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; Pharmacyclics: Consultancy, Honoraria; Gilead: Consultancy, Honoraria; Sunesis: Consultancy, Honoraria; TG Therapeutics: Consultancy, Honoraria; Napp: Consultancy; Kite: Consultancy. Oliveri:Genmab: Employment, Equity Ownership. DeMarco:Genmab: Employment, Equity Ownership. Hiemstra:Genmab: Employment, Equity Ownership, Other: Warrants. Chen:Genmab: Employment. Azaryan:Genmab: Employment. Gupta:Genmab: Employment, Equity Ownership. Ahmadi:Genmab Inc: Employment, Other: stock and/or warrants. Hutchings:Incyte: Research Funding; Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Research Funding; Genmab: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Research Funding; Janssen: Research Funding; Pfizer: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document