scholarly journals Phage Display Functionally Defines Variants in the Von Willebrand Factor Platelet Binding Domain

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1033-1033
Author(s):  
Andrew Yee ◽  
Melda Arslantas Guzel ◽  
Manhong Dai ◽  
Fan Meng ◽  
David Ginsburg

Abstract Missense variants in the von Willebrand factor (VWF) platelet binding domain, A1, may pathologically hyperactivate or weaken interactions with its platelet receptor, GPIbα, and lead to von Willebrand disease (VWD) subtypes 2B or 2M, respectively. Variants identified in VWD patients and tested as recombinant VWF have supported genotype-phenotype associations and subtyping of VWD by genetic analyses. However, novel variants, most classified as variants of uncertain significance (VUS) are poorly defined. To functionally characterize a large subset of VWF A1 variants (P1254-L1460), we screened a phage display library for binding to a recombinant form of GPIbα used to clinically assess VWF platelet binding activity, GPIbM. Comprised of ~5x10 6 independent clones, the phage display library contained 1,427 unique, missense variants (~36% of all possible single amino acid substitutions) which could be scored for significant enrichment, depletion, or no change following selection for GPIbM binding. The enrichment of phage displayed VWD variants previously classified as VWD subtype 2B significantly segregated from reported 2M variants (mean fold change from preselected phage ~1.06 for 2B vs. ~0.68 for 2M, p < 0.005). To further validate these findings, five depleted, four unchanged, and seven enriched VWF A1 variants were introduced into the full length VWF sequence by site-directed mutagenesis and expressed by transient transfection of HEK293T cells. Conditioned media were collected and analyzed for VWF level (VWF:Ag) and activity (VWF:GPIbM). Of the sixteen variants examined, fourteen (87.5%) exhibited a VWF GPIbM:Ag ratio that was concordant with the phage display findings. Furthermore, the VWF GPIbM:Ag ratios were well correlated with the degree of enrichment by phage display (Pearson R = 0.69, p< 0.01). Taken together, these findings demonstrate phage display as a high content approach to measure and functionally define the platelet-binding activity of genetic variants within the VWF A1 domain. Disclosures Ginsburg: Takeda: Patents & Royalties.

2020 ◽  
Vol 18 (10) ◽  
pp. 2513-2523
Author(s):  
Attila Szederjesi ◽  
Luciano Baronciani ◽  
Ulrich Budde ◽  
Giancarlo Castaman ◽  
Paola Colpani ◽  
...  

1987 ◽  
Author(s):  
Edward P Kirby ◽  
Mary Ann Mascelli ◽  
Carol Silverman ◽  
Daniel W Karl

Bovine von Willebrand Factor (vWF) binds directly to human platelets and also to heparin-agarose. Cleavage of vWF with Protease I, a metalloenzyme isolated from the venom of the western diamondback rattlesnake, produces two major fragments with apparent Mr of 250 kD and 200 kD. The 200 kD fragment competes with native vWF for binding to the GPIb-associated vWF receptor on formalin-fixed human platelets and has weak platelet-agglutinating activity. It is composed of three polypeptide chains of apparent Mr of 97 kD, 61 kD, and 35 kD. Monoclonal antibodies #2 and H-9, which inhibit binding of vWF to a GPIb-associated receptor of platelets, recognize the 200 kD fragment.Modification of vWF with ^5x-la.beled. Bolton-Hunter reagent (I*-BHR) causes inhibition of platelet-agglutinating activity at very low levels of incorporation. Modification of less than 2% of the amino groups in vWF causes 50% loss of platelet agglutinating activity and a decreased affinity of vWF for binding to platelets. Labeling with I*-BHR does not block binding to heparin-agarose, even when 5-10% of the amino groups are modified. Differential labeling at pH 7.0 and pH 8.5, followed by proteolytic fragmentation with Protease I, suggests that it is the modification of amino groups on the 200 kD fragment which is responsible fpr the decrease in platelet binding activity. Modification of the 97 kD peptide chain is best correlated with this loss of platelet binding activity.Heparin inhibits the agglutination of human platelets by bovine vWF. The 200 kD fragment of vWF binds both to platelets and to heparin-agarose. These observations suggest that the heparin-binding and platelet-binding domains of vWF, although distinct from one another, reside in the same region of the vWF molecule. The platelet-binding domain contains a small number of very reactive amino groups which are required for vWF binding to human platelets.These studies were supported by a grant from the National Institutes of Health (#HL27993).


2019 ◽  
Vol 25 ◽  
pp. 107602961987397
Author(s):  
Meaghan E. Colling ◽  
Kenneth D. Friedman ◽  
Walter H. Dzik

Patients with von Willebrand disease (VWD) often require treatment with supplemental von Willebrand factor (VWF) prior to procedures or to treat bleeding. Commercial VWF concentrates and more recently recombinant human VWF (rVWF) have replaced cryoprecipitate as the mainstay of therapy. In comparison with cryoprecipitate, the VWF content and multimer distribution under current manufacturing processes of these commercial products has not been reported. We measured the factor VIII (FVIII:C), VWF antigen (VWF:Ag), VWF collagen-binding activity (VWF:CB), VWF platelet-binding activity by GPIbM enzyme-linked immunosorbent assay (VWF:GPIbM), and percentage of high-molecular-weight (HMWM) VWF in 3 pools of group A and O cryoprecipitate, 3 vials of VWF concentrate (Humate-P), and 1 lot of rVWF (Vonvendi). We found that both group O and group A cryoprecipitate have significantly higher ratios of VWF:GPIbM activity and FVIII:C activity relative to VWF:Ag and have better preservation of HMWM than Humate-P. Although not compared statistically, rVWF appears to have more HMWM VWF and a higher ratio of VWF:GPIbM to VWF:Ag than Humate-P and cryoprecipitate. The estimated acquisition cost for our hospital for treating one major bleeding episode was more than 4-fold higher with Humate-P and 7- to 10-fold higher with rVWF than with cryoprecipitate.


1990 ◽  
Vol 64 (02) ◽  
pp. 326-332 ◽  
Author(s):  
J P Girma ◽  
Y Takahashi ◽  
A Yoshioka ◽  
J Diaz ◽  
D Meyer

SummaryWe have evidence that ristocetin and botrocetin mediate binding of von Willebrand Factor (vWF) to platelet glycoprotein lb (GPIb) through two distinct domains on the vWF molecule. This was established by using monoclonal antibodies (MAbs) to vWF and synthetic peptides derived from the sequence of vWF. MAb 322 and MAb NMC/vW 4 both recognize native vWF as well as fragments containing the GPIb-binding domain of vWF, obtained with the following enzymes: trypsin (116 kDa), V-8 pro tease (Spill, 320 kDa) and V-8 protease plus subtilisin (33-28 kDa). Nevertheless, the lack of reciprocal displacement between the two MAbs in experiments of competitive inhibition for binding to vWF demonstrate that their respective epitopes are separate. Both MAbs inhibit 125I-vWF binding to platelet membrane GPIb and vWF-dependent platelet agglutination induced by ristocetin. However, only MAb NMC/vW4 inhibits these functions in the presence of botrocetin and when ristocetin-induced platelet agglutination is inhibited by MAb 322, botrocetin is still able to restore the agglutination. The involvement of two distinct domains of vWF for binding to GPIb in the presence of ristocetin or botrocetin was confirmed in experiments of binding of 125I-vWF to platelets using as competitor synthetic peptides corresponding to the GPIb binding domain of vWF (Cys 474 to Pro 488 and Ser 692 to Pro 708). At a final concentration of 2.5 mM both peptides inhibit more than 90% of the binding of vWF to ristocetin-treated platelets but are unable to modify this binding in the presence of botrocetin. In conclusion our data suggest that botrocetin and ristocetin involve distinct sites on vWF for binding to GPIb.


1992 ◽  
Vol 68 (04) ◽  
pp. 464-469 ◽  
Author(s):  
Y Fujimura ◽  
S Miyata ◽  
S Nishida ◽  
S Miura ◽  
M Kaneda ◽  
...  

SummaryWe have recently shown the existence of two distinct forms of botrocetin (one-chain and two-chain), and demonstrated that the two-chain species is approximately 30 times more active than the one-chain in promoting von Willebrand factor (vWF) binding to platelet glycoprotein (GP) Ib. The N-terminal sequence of two-chain botrocetin is highly homologous to sea-urchin Echinoidin and other Ca2+-dependent lectins (Fujimura et al., Biochemistry 1991; 30: 1957–64).Present data indicate that purified two-chain botrocetin binds to vWF from plasmas of patients with type IIA or IIB von Willebrand disease and its interaction is indistinguishable from that with vWF from normal individuals. However, an “activated complex” formed between botrocetin and IIB vWF expresses an enhanced biological activity for binding to GP Ib whereas the complex with IIA vWF has a decreased binding activity. Among several anti-vWF monoclonal antibodies (MoAbs) which inhibit ristocetin-induced platelet aggregation and/or vWF binding to GPIb, only two MoAbs (NMC-4 and RFF-VIII RAG:1) abolished direct binding between purified botrocetin and vWF. This suggests that they recognize an epitope(s) on the vWF molecule in close proximity to the botrocetin binding site.


1995 ◽  
Vol 73 (02) ◽  
pp. 309-317 ◽  
Author(s):  
Dorothy A Beacham ◽  
Miguel A Cruz ◽  
Robert I Handin

SummaryIntroduction of single amino acid substitutions into the C-terminal Arg-Gly-Asp-Ser (RGDS) site of von Willebrand Factor, referred to as RGD mutant vWF, selectively abrogated vWF binding to platelet glycoprotein IIb/IIIa (GpIIb/IIIa, αIIbβ3 and abolished human umbilical vein endothelial cell (HUVEC) spreading, but not attachment, to RGD mutant vWF (Beacham, D. A., Wise, R. J., Turci, S. M. and Handin, R. I. 1992. J. Biol. Chem. 167, 3409-3415). These results suggested that in addition to the vitronectin receptor (VNR, αvβ3), a second endothelial membrane glycoprotein can mediate HUVEC adhesion to vWF. HUVEC attachment to wild-type (WT) and RGD-mutant vWF was reduced by two proteins known to block the vWF-platelet glycoprotein Ib/IX (GpIb/IX) interaction, the monoclonal antibody AS-7 and the recombinant polypeptide, vWF-A1. The addition of cytochalasin B or DNase I to disrupt potential GPIbα-cytoskeletal interactions enhanced the immunoprecipitation of endothelial GPIbα, caused HUVEC to round up, and increased HUVEC adhesion to RGD mutant vWF. These results indicate that while the VNR is the primary adhesion receptor for vWF, endothelial GPIbα can mediate HUVEC attachment to vWF. GpIb-dependent attachment could contribute to HUVEC adhesion under conditions when cell surface expression of the VNR is downregulated, and VNR-dependent adhesion is reduced.


1997 ◽  
Vol 78 (02) ◽  
pp. 930-933 ◽  
Author(s):  
Ping Chang ◽  
D L Aronson

SummaryFive plasma preparations (11 lots) used in the treatment of von Willebrand’s disease (vWD) were evaluated. The collagen binding function of von Willebrand factor (vWF) containing preparations was compared with the ristocetin cofactor activity and the vWF antigen. Some preparations have higher ratio of functional activity (ristocetin cofactor and collagen binding) relative to the antigen than is found in normal plasma. The ristocetin cofactor activity and the collagen binding activity are tightly correlated (r = .95). Ultracentrifugal (UCF) analysis was used to compare the size distribution of vWf antigen, ristocetin cofactor and collagen binding activity. The sedimentation of all of the vWF parameters in the plasma products was slower than in plasma. In plasma products the ristocetin cofactor activity sediments the most rapidly, the collagen binding activity is slower and the antigen the slowest. The collagen/antigen ratio decreases with decreasing vWF size. Assignment of potency to vWF containing preparations utilizing the collagen binding activity may be more precise and as accurate as with the traditional ristocetin cofactor assay.


Sign in / Sign up

Export Citation Format

Share Document