scholarly journals Gene Therapy For Hemophilia B Using CB 2679d-GT: A Novel Factor IX Variant With Higher Potency Than Factor IX Padua

Blood ◽  
2021 ◽  
Author(s):  
Nisha Nair ◽  
Dries De Wolf ◽  
Phuong Anh Nguyen ◽  
Quang Hong Pham ◽  
Ermira Samara ◽  
...  

Sustained expression of therapeutic factor IX (FIX) levels has been achieved after adeno-associated viral (AAV) vector-based gene therapy in patients with hemophilia B. Nevertheless, patients are still at risk of vector dose-limiting toxicity, particularly liver inflammation justifying the need for more efficient vectors and a lower dosing regimen. A novel increased potency FIX (designated as CB 2679d-GT), containing three amino acid substitutions (R318Y, R338E, T343R), significantly outperformed the R338L-Padua variant after gene therapy. CB 2679d-GT demonstrated a statistically significant ~3-fold improvement in clotting activity when compared to R338L-Padua after AAV-based gene therapy in hemophilic mice. Moreover, CB 2679d-GT gene therapy showed a significantly reduced bleeding time (~5 to 8-fold) and total blood loss volume (~4-fold) compared with mice treated with the R338L-Padua, thus achieving a more rapid and robust hemostatic correction. FIX expression was sustained for at least 20 weeks with both CB 2679d-GT and R338L-Padua while immunogenicity was not significantly increased. This is a novel gene therapy study demonstrating the superiority of CB 2679d-GT highlighting its potential to obtain higher FIX activity levels and superior hemostatic efficacy following AAV directed gene therapy in hemophilia B patients than what is currently achievable with the R338L-Padua variant.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3751-3751
Author(s):  
Jocelyn A. Schroeder ◽  
Mary A. Jozwiak ◽  
Paul E. Monahan ◽  
Qizhen Shi

Abstract Our previous studies demonstrate that targeting factor IX (FIX) expression to platelets under control of the platelet-specific αIIb promoter (2bF9) can restore hemostasis and induce immune tolerance in hemophilia B (HB) (FIXnull) mice (Chen, et al. Mol Ther 2014). However, functional platelet-FIX activity levels in transduced mice were only around 3% in whole blood even when a lethal 11Gy total body irradiation (TBI) was employed. To reduce potential toxicities associated with this gene therapy protocol from preconditioning and insertion site-mediated mutagenesis, it is desirable to optimize our vector for better clinical efficacy and safety. Recent studies have demonstrated that the combined effect of codon optimization and hyperfunctional FIX Padua can significantly enhance the efficacy of hepatocyte-targeted FIX gene therapy in HB. Thus, we engineered a novel lentiviral vector, 2bCoF9R338L, in which codon-optimized FIX Padua was used to replace the normal FIX expression cassette in our 2bF9 construct. FIXnull mice that we used in this study were originally developed by Lin, et al. (Blood 1997). Platelet-FIX expression was introduced by 2bCoF9R338L lentivirus transduction and syngeneic transplantation under a clinically relevant non-myeloablative preconditioning regimen 6.6Gy TBI. The levels of FIX expression were determined by ELISA for FIX antigen (FIX:Ag) and chromogenic assay for functional FIX activity (FIX:C). Both antigen and activity levels of FIX in platelets from 2bCoF9R338L-transduced recipients were significantly higher than those from normal 2bF9LV-transduced animals. There are approximately a 5.8-fold higher antigen (10.9±3.9 vs. 1.9±1.3 mU/108 platelets) and 28-fold activity (29.1±9.8 vs. 1.1±0.3 mU/108 platelets) levels, respectively, in the 2bCoF9R338L group compared to the 2bF9 group. Flow cytometry analysis showed that 17.7±5.8% of platelets expressed hFIX, which was not significantly different from the 2bF9 group (14.8±10.7%), demonstrating that lentivirus harboring 2bCoF9R338L has similar transduction efficiency as the 2bF9 lentivirus. To assess whether the bleeding phenotype was rescued in FIXnull mice after receiving 2bCoF9R338L-transduced HSCs, we used a 6-hour tail bleeding test. All 2bCoF9R338L-transduced recipients' tail bleeding clotted within 6 hours with a clotting time of 2.5±0.6 hours and the remaining hemoglobin level of 69.3±8.8%, which were not significantly different from those of the wild type controls (1.9±0.3 hours and 67.2±4.2%). In contrast, none of the FIXnull control mice clotted within 6 hours and the remaining hemoglobin level (40.5±1.9%) was significantly lower than in the 2bCoF9R338L group. To investigate whether anti-FIX immune tolerance was induced in 2bCoF9R338L-transduced recipients, 6 months after HSCT, animals were immunized with recombinant human FIX (rhF9) at a dose of 200 U/kg via intraperitoneal injection two times with a 3-week interval, and the anti-FIX inhibitory antibodies (inhibitors) were determined by Bethesda assay. We found that none of the FIXnull mice that received 2bCoF9R338L-transduced HSCs developed anti-FIX inhibitors even after extensive rhF9 immunization in the presence of adjuvant. In contrast, all FIXnull control mice developed anti-FIX inhibitors when the same immunization protocol was employed. Of note, anaphylaxis can occur in these FIXnull mice with rhF9 infusion if the immune system was primed by FIX. To confirm that platelet-FIX expression is sustained in 2bCoF9R338L-transduced recipients, sequential transplantation was carried out using bone marrow from primary recipients that received 2bCoF9R338L-transduced HSCs. Platelet lysate FIX assays showed that hyperfunctional platelet-FIX was sustained in the secondary recipients resulting in phenotypic correction and immune tolerance in the secondary transplantation FIXnull recipients. Together, our data strongly suggest that immune tolerance is induced in FIXnull mice after 2bCoF9R338L gene therapy. In summary, we have demonstrated that we are able to significantly augment platelet-FIX expression utilizing codon-optimized FIX Padua for platelet-specific gene therapy of HB, resulting in phenotypic correction and immune tolerance induction in FIXnull mice. Our data suggest that platelet-targeted codon-optimized gain-of-function FIX gene therapy is a promising approach for gene therapy of HB. Disclosures No relevant conflicts of interest to declare.


1997 ◽  
Vol 77 (05) ◽  
pp. 0944-0948 ◽  
Author(s):  
Darla Liles ◽  
Charles N Landen ◽  
Dougald M Monroe ◽  
Celeste M Lindley ◽  
Marjorie s Read ◽  
...  

SummaryCurrent therapy for hemophilia B requires large intravenous doses of factor IX (F.IX) given in the clinic or at home. Although home therapy is possible for many patients, it is often complicated by factors such as the lack of good venous access. Very little is known about extravascular routes for administering proteins like F.IX (57 kD) or other vitamin K-dependent procoagulant factors into the circulation. Questions about the absorption rate from extravascular administration as well as plasma recovery and bioavailability have arisen recently with the growing availibility of highly purified procoagulant proteins and increased interest in gene therapy of hemophilia B. Therefore, a group of studies were undertaken to determine the absorption rate, plasma recovery, and bioavailability of high purity, human plasma-derived F.IX concentrates administered via extravascular routes in hemophilia B dogs and in one human hemophilia B subject. Five hemophilia B dogs were given human F.IX via either a subcutaneous (SC), intramuscular (IM), intra- peritoneal (IP) or intravenous (IV) route. In a subsequent study, a single SC administration of human F.IX was compared to an identical IV dose of F.IX in the human hemophilia B subject. All extravascular routes of F.IX administration in both the canine and human gave lower levels of circulating plasma F.IX than the IV route, however all routes resulted in measurable F.IX activity. Of the extravascular routes, the IM injection in the canine resulted in a bioavailibility of 82.8%, while the SC injection resulted in a bioavailability of 63.5%. F.IX reached the plasma compartment by all extravascular routes used, confirming that F.IX can be absorbed extravascularly. The duration of measurable F.IX activity following extravascular administration is prolonged beyond that typically seen with IV administration. These data show that significant levels of F.IX may be obtained via SC injection in canine and ‘ human hemophilia B subjects and further highlight the potential of extravascular routes of administration for future experimental and clinical uses of F.IX and other procoagulant proteins.


2021 ◽  
Vol 5 (5) ◽  
pp. 1224-1238
Author(s):  
Jocelyn A. Schroeder ◽  
Juan Chen ◽  
Yingyu Chen ◽  
Yuanhua Cai ◽  
Hongyin Yu ◽  
...  

Abstract Gene therapy may lead to a cure for hemophilia B (HB) if it is successful. Data from clinical trials using adeno-associated virus (AAV)–mediated liver-targeted FIX gene therapy are very encouraging. However, this protocol can be applied only to adults who do not have liver disease or anti-AAV antibodies, which occur in 30% to 50% of individuals. Thus, developing a protocol that can be applied to all HB patients is desired. Our previous studies have demonstrated that lentivirus-mediated platelet-specific FIX (2bF9) gene therapy can rescue bleeding diathesis and induce immune tolerance in FIXnull mice, but FIX expression was only ∼2% to 3% in whole blood. To improve the efficacy, we used a codon-optimized hyperfunctional FIX-Padua (2bCoF9R338L) to replace the 2bF9 cassette, resulting in 70% to 122% (35.08-60.77 mU/108 platelets) activity levels in 2bCoF9R338L-transduced FIXnull mice. Importantly, sustained hyperfunctional platelet-FIX expression was achieved in all 2bCoF9R338L-transduced highly immunized recipients with activity levels of 18.00 ± 9.11 and 9.36 ± 12.23 mU/108 platelets in the groups treated with 11 Gy and 6.6 Gy, respectively. The anti-FIX antibody titers declined with time, and immune tolerance was established after 2bCoF9R338L gene therapy. We found that incorporating the proteasome inhibitor bortezomib into preconditioning can help eliminate anti-FIX antibodies. The bleeding phenotype in 2bCoF9R338L-transduced recipients was completely rescued in a tail bleeding test and a needle-induced knee joint injury model once inhibitors dropped to undetectable. The hemostatic efficacy in 2bCoF9R338L-transduced recipients was further confirmed by ROTEM and thrombin generation assay (TGA). Together, our studies suggest that 2bCoF9R338L gene therapy can be a promising protocol for all HB patients, including patients with inhibitors.


2000 ◽  
Vol 1 (2) ◽  
pp. 154-158 ◽  
Author(s):  
Lili Wang ◽  
Timothy C. Nichols ◽  
Marjorie S. Read ◽  
Dwight A. Bellinger ◽  
Inder M. Verma

Blood ◽  
1996 ◽  
Vol 87 (12) ◽  
pp. 5095-5103 ◽  
Author(s):  
G Hortelano ◽  
A Al-Hendy ◽  
FA Ofosu ◽  
PL Chang

A potentially cost-effective strategy for gene therapy of hemophilia B is to create universal factor IX-secreting cell lines suitable for implantation into different patients. To avoid graft rejection, the implanted cells are enclosed in alginate-polylysine-alginate microcapsules that are permeable to factor IX diffusion, but impermeable to the hosts' immune mediators. This nonautologous approach was assessed by implanting encapsulated mouse myoblasts secreting human factor IX into allogeneic mice. Human factor IX was detected in the mouse plasma for up to 14 days maximally at approximately 4 ng/mL. Antibodies to human factor IX were detected after 3 weeks at escalating levels, which were sustained throughout the entire experiment (213 days). The antibodies accelerated the clearance of human factor IX from the circulation of the implanted mice and inhibited the detection of human factor IX in the mice plasma in vitro. The encapsulated myoblasts retrieved periodically from the implanted mice up to 213 days postimplantation were viable and continued to secrete human factor IX ex vivo at undiminished rates, hence suggesting continued factor IX gene expression in vivo. Thus, this allogeneic gene therapy strategy represents a potentially feasible alternative to autologous approaches for the treatment of hemophilia B.


2017 ◽  
Vol 377 (23) ◽  
pp. 2215-2227 ◽  
Author(s):  
Lindsey A. George ◽  
Spencer K. Sullivan ◽  
Adam Giermasz ◽  
John E.J. Rasko ◽  
Benjamin J. Samelson-Jones ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3287-3287
Author(s):  
Ellen F. Cohn ◽  
Meagan E. Kelly ◽  
Jiacai Zhuo ◽  
Hengjun Chao

Abstract Hemophilia B is an X-linked recessive genetic disease resulting from deficiency in coagulation factor IX (FIX). The current therapy for hemophilia B is life-long replacement of FIX through recombinant FIX or purified blood products in response to bleeding events. However, this replacement therapy is non-prophylactic, costly, and can be complicated by formation of inhibitory anti-FIX antibodies in up to 5% of patients. While somatic gene therapy is expected to provide a final cure for hemophilia B, it may also cause high incidence of FIX antibodies formation and other adverse immune responses following gene delivery. Direct intramuscular injection of adeno-associated virus (AAV) is a safe and promising procedure for hemophilia B gene therapy. This treatment, however, elicits anti-FIX antibodies in immune competent animal models. We have previously reported that intramuscular injection of AAV1 expressed high levels of canine FIX and induced FIX tolerance in a mouse model of hemophilia B, but AAV2 elicited anti-FIX antibodies. Here, we report efficient induction of human FIX (hFIX) tolerance in naive as well as FIX-pre-immunized animals by direct intramuscular injection of AAV1 vectors. Following injection of 1×1011 of AAV1 expressing hFIX per mouse in hemostatically-normal and FIX knock out mice, we detected close to 1000ng/ml of hFIX antigen by ELISA 8 weeks post AAV injection (n=5). No significant level of anti-FIX antibodies could be detected in these mice, by either ELISA or modified Bethesda inhibitor assay. In addition, subsequent challenge with recombinant hFIX in complete Freund’s adjuvant did not cause anti-FIX antibodies to be produced and the level of hFIX in the blood remained constant. However, anti-FIX antibodies, but not hFIX antigen, were measured in the mice injected with the same dose of AAV2 (n=7). Subsequent injection of AAV1 vector into the skeletal muscle of these AAV2-injected mice resulted in the disappearance of anti-FIX antibodies and emergence of FIX antigen at similar levels to AAV1-injected naive mice in the circulation of these mice. In addition, direct intramuscular injection of AAV1 also induced FIX tolerance in mice that developed anti-FIX antibodies after exposure to recombinant FIX proteins (n=6). Similar experiments in mice with different genetic and MHC backgrounds have also demonstrated efficient induction of tolerance to FIX, implying that AAV1-hFIX can induce tolerance regardless of MHC haplotype. We hypothesize that the immediate expression of high levels of FIX from the non-pathogenic AAV1 induces FIX tolerance. To elucidate the mechanism of different immune responses to FIX following intramuscular injection of AAV1 and AAV2, we are examining variations in antigen presentation, interaction between antigen presenting cells and antigen-specific T cells, and fate of antigen-specific T cells following intramuscular injection of AAV1 and AAV2 vectors. In summary, our results demonstrate efficient induction of FIX following direct intramuscular injection of AAV1 vectors. Investigations to elucidate the underlying mechanism are ongoing in our lab.


Blood ◽  
2002 ◽  
Vol 99 (8) ◽  
pp. 2670-2676 ◽  
Author(s):  
Jane D. Mount ◽  
Roland W. Herzog ◽  
D. Michael Tillson ◽  
Susan A. Goodman ◽  
Nancy Robinson ◽  
...  

Abstract Hemophilia B is an X-linked coagulopathy caused by absence of functional coagulation factor IX (FIX). Using adeno-associated virus (AAV)–mediated, liver-directed gene therapy, we achieved long-term (> 17 months) substantial correction of canine hemophilia B in 3 of 4 animals, including 2 dogs with an FIX null mutation. This was accomplished with a comparatively low dose of 1 × 1012 vector genomes/kg. Canine FIX (cFIX) levels rose to 5% to 12% of normal, high enough to result in nearly complete phenotypic correction of the disease. Activated clotting times and whole blood clotting times were normalized, activated partial thromboplastin times were substantially reduced, and anti-cFIX was not detected. The fourth animal, also a null mutation dog, showed transient expression (4 weeks), but subsequently developed neutralizing anti-cFIX (inhibitor). Previous work in the canine null mutation model has invariably resulted in inhibitor formation following treatment by either gene or protein replacement therapies. This study demonstrates that hepatic AAV gene transfer can result in sustained therapeutic expression in a large animal model characterized by increased risk of a neutralizing anti-FIX response.


Sign in / Sign up

Export Citation Format

Share Document