The SRC/ABL Inhibitor BMS-354825 Overcomes Resistance to Imatinib Mesylate in Chronic Myelogenous Leukemia Cells through Multiple Mechanisms.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1989-1989 ◽  
Author(s):  
Nicholas J. Donato ◽  
Ji Wu ◽  
Ling Y. Kong ◽  
Francis Lee ◽  
Moshe Talpaz

Abstract BCR-ABL is an oncogenic tyrosine kinase expressed in chronic myelogenous leukemia (CML) cells and is the main target of the tyrosine kinase inhibitor imatinib mesylate. Imatinib-based CML therapy induces hematological and cytogenetic remission in early phase CML patients whereas more advanced patients frequently develop resistance to imatinib by multiple mechanisms, including mutations in the BCR-ABL kinase domain and over-expression of tyrosine kinases that are not inhibited by imatinib. These observations suggest that dual inhibition of src and abl kinases may circumvent imatinib resistance and provide more effective therapy for CML. BMS-354825 is a novel tyrosine kinase inhibitor that inhibits both abl and src kinases at low nM concentrations and is currently being clinically evaluated in imatinib resistant or intolerant CML patients. Our earlier studies demonstrated that increased expression of the src-related kinase Lyn in BCR-ABL expressing K562 cells was associated with imatinib resistance in this cell model and some CML patients. To determine whether inhibition of SRC/ABL kinases differentially affects imatinib sensitive K562 (BCR-ABL +, Lyn −) and resistant K562R (BCR-ABL +, Lyn +) cells were treated with imatinib or BMS-354825 before analysis of cell growth, survival and signaling. BMS-354825 induced apoptosis in both K562 and K562R cells which correlated with inhibition of both Lyn activation and BCR-ABL signaling (CrkL). BMS-354825 effectively reduced both K562 and K562R tumor growth in nude mice whereas imatinib had minimal effects on K562R tumors. Clinical specimens from imatinib resistant CML patients (with and without BCR-ABL kinase mutations) were treated with imatinib or BMS-354825 and analyzed for changes in Lyn and Hck activation. While imatinib had minimal inhibitory effects on Lyn/Hck activation, BMS-354825 completely suppressed Lyn/Hck phosphorylation which correlated with its greater anti-tumor activity in CML samples. BCR-ABL tyrosine phosphorylation was not inhibited by imatinib in Cos cells co-expressing BCR-ABL and Lyn kinase and loss of imatinib sensitivity was totally dependent on Lyn kinase activity. BMS-354825 reduced both Lyn and BCR-ABL activation in co-expressing cells, suggesting that Lyn-mediated phosphorylation plays a direct role in imatinib resistance. We conclude that dual inhibition of SRC/ABL kinases in CML cells by BMS-354825 overcomes resistance to imatinib in vitro and in vivo and induces anti-tumor effects in CML patient specimens resistant to imatinib through expression of imatinib-inactivating BCR-ABL kinase mutations as well as other resistance mechanisms.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1087-1087 ◽  
Author(s):  
Nicholas J. Donato ◽  
Ji Wu ◽  
Ling-Yuan Kong ◽  
Feng Meng ◽  
Francis Lee ◽  
...  

Abstract BCR-ABL is an unregulated tyrosine kinase expressed as a consequence of a reciprocal chromosomal translocation that is common in chronic myelogenous and acute lymphocytic leukemia. BCR-ABL induces transformation of hematopoetic stem cells through tyrosine phosphorylation of multiple substrates. The src-family kinases (SFKs), Lyn and Hck, are highly activated by BCR-ABL in leukemic cells and recent studies suggest that they are substrates and essential mediators of BCR-ABL signal transduction and transformation. In cells selected for resistance to the BCR-ABL inhibitor, imatinib mesylate, Lyn kinase is overexpressed and its activation is not dependent on or regulated by BCR-ABL, suggesting that autonomous regulation of SFKs may play a role in imatinib resistant. In this report, activation of Lyn and Hck was compared in CML specimens derived from imatinib responsive and resistant patients that did not express a mutant BCR-ABL protein as their primary mediator of resistance. In imatinib sensitive cell lines and specimens derived from imatinib responsive CML patients imatinib effectively reduced activation of both BCR-ABL and SFKs. However, in multiple specimens from resistant patients, imatinib reduced BCR-ABL kinase activation but failed to reduce SFK activation. The dual ABL/SRC inhibitor, BMS-354825, blocked activation of both BCR-ABL and SFKs expressed in leukemic cells and correlated with clinical responsiveness to this agent. Animal models demonstrated that loss of imatinib-mediated inhibition of Lyn kinase activation significantly impaired its anti-tumor activity which was recovered by treatment with BMS-354825. Direct silencing of Lyn or Hck reduced CML cell survival in imatinib resistant patient specimens and cell models, suggesting a direct role for these kinases in cell survival. Our results show that SFK activation is mediated by BCR-ABL in imatinib responsive cells but these kinases escape control by BCR-ABL in CML patients that develop imatinib resistance in the absence of BCR-ABL point mutations. This form of resistance can effectively be overcome by BMS-354825 through its dual SRC and ABL kinase inhibitory activities. Dual specificity kinase inhibitors may be indicated for the treatment and prevention of imatinib resistance in CML when it is associated with constitutively activated src-family kinases.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2132-2132
Author(s):  
Ji Wu ◽  
Feng Meng ◽  
Moshe Talpaz ◽  
Nicholas J. Donato

Abstract The tyrosine kinase inhibitor imatinib mesylate (Gleevec) is effective in controlling BCR-ABL expressing leukemias but resistance occurs in some early phase patients while it is more common in advanced disease. Resistance has been generally associated with mutations in the BCR-ABL kinase that effect drug affinity. However patients are also increasingly reported to fail imatinib therapy while retaining wild-type BCR-ABL expression. Our previous studies suggested a role for Lyn, a Src-related kinase, in imatinib resistance. K562 cells selected for imatinib resistance (K562R) overexpress Lyn kinase and its targeted silencing overcomes imatinib resistance and engages apoptosis. Overexpression of Lyn in K562 cells reduces imatinib sensitivity (3-fold) and patients that fail imatinib therapy in the absence of BCR-ABL mutations express a highly activated Lyn kinase that is not suppressed by imatinib. Silencing Lyn expression in patient specimens induces changes in cell survival that are proportional to the level of Lyn protein reduction. To understand the role of Lyn kinase in imatinib resistance and apoptosis we examined proteins associated with this kinase in imatinib resistant cell lines, leukemic cells overexpressing Lyn and specimens derived from imatinib resistant patients. Lyn overexpression blocked complete suppression of BCR-ABL tyrosine phosphorylation by imatinib and affected BCR-ABL signaling adaptors. Although BCR-ABL forms a stable complex with the leukemogenic-critical adaptor protein Gab2 in imatinib sensitive cells, Lyn overexpression resulted in the formation of Lyn:Gab2 complexed in resistant cells. BCR-ABL kinase inhibition failed to reduce tyrosine phosphorylation of Gab2 in these cells while Lyn silencing or kinase inhibition (with dasatinib) completely suppressed Gab2 tyrosine phosphorylation and correlated with the induction of apoptosis. Lyn silencing in K562R cells also lead to a reciprocal increase in the tyrosine phosphorylation and association with a protein of ~120kDa, identified as the E3 ligase, c-Cbl. Lyn overexpression in K562 cells reduced their imatinib sensitivity and reduced c-Cbl protein levels. Kinase inhibitor and co-transfection studies demonstrated that tyrosine phosphorylation of c-Cbl at a critical signaling site (Y774) is primarily controlled by BCR-ABL and deletion or mutation of the c-Cbl RING domain altered its BCR-ABL phosphorylation. These results suggest that c-Cbl complexes are regulated at both the protein and phosphorylation level by Lyn and BCR-ABL kinase activities, respectively. Overexpression and/or activation of Lyn may disrupt the balance and regulation of critical regulators of leukemogenic signaling (Gab2) or protein trafficking and stability (c-Cbl), resulting in increased cell survival and reduced responsiveness to BCR-ABL kinase inhibition. We conclude that Lyn alters the level and function of critical signaling adaptor proteins in CML cells.


Blood ◽  
2007 ◽  
Vol 110 (10) ◽  
pp. 3540-3546 ◽  
Author(s):  
Hagop M. Kantarjian ◽  
Francis Giles ◽  
Norbert Gattermann ◽  
Kapil Bhalla ◽  
Giuliana Alimena ◽  
...  

Abstract Nilotinib, an orally bioavailable, selective Bcr-Abl tyrosine kinase inhibitor, is 30-fold more potent than imatinib in pre-clinical models, and overcomes most imatinib resistant BCR-ABL mutations. In this phase 2 open-label study, 400 mg nilotinib was administered orally twice daily to 280 patients with Philadelphia chromosome–positive (Ph+) chronic myeloid leukemia in chronic phase (CML-CP) after imatinib failure or intolerance. Patients had at least 6 months of follow-up and were evaluated for hematologic and cytogenetic responses, as well as for safety and overall survival. At 6 months, the rate of major cytogenetic response (Ph ≤ 35%) was 48%: complete (Ph = 0%) in 31%, and partial (Ph = 1%-35%) in 16%. The estimated survival at 12 months was 95%. Nilotinib was effective in patients harboring BCR-ABL mutations associated with imatinib resistance (except T315I), and also in patients with a resistance mechanism independent of BCR-ABL mutations. Adverse events were mostly mild to moderate, and there was minimal cross-intolerance with imatinib. Grades 3 to 4 neutropenia and thrombocytopenia were observed in 29% of patients; pleural or pericardial effusions were observed in 1% (none were severe). In summary, nilotinib is highly active and safe in patients with CML-CP after imatinib failure or intolerance. This clinical trial is registered at http://clinicaltrials.gov as ID no. NCT00109707.


Blood ◽  
2008 ◽  
Vol 111 (4) ◽  
pp. 1834-1839 ◽  
Author(s):  
Philipp le Coutre ◽  
Oliver G. Ottmann ◽  
Francis Giles ◽  
Dong-Wook Kim ◽  
Jorge Cortes ◽  
...  

Patients with imatinib-resistant or -intolerant accelerated-phase chronic myelogenous leukemia (CML-AP) have very limited therapeutic options. Nilotinib is a highly selective BCR-ABL tyrosine kinase inhibitor. This phase 2 trial was designed to characterize the efficacy and safety of nilotinib (400 mg twice daily) in this patient population with hematologic response (HR) as primary efficacy endpoint. A total of 119 patients were enrolled and had a median duration of treatment of 202 days (range, 2–611 days). An HR was observed in 56 patients (47%; 95% confidence interval [CI], 38%-56%). Major cytogenetic response (MCyR) was observed in 35 patients (29%; 95% CI, 21%-39%). The median duration of HR has not been reached. Overall survival rate among the 119 patients after 12 months of follow-up was 79% (95% CI, 70%-87%). Nonhematologic adverse events were mostly mild to moderate. Severe peripheral edema and pleural effusions were not observed. The most common grade 3 or higher hematologic adverse events were thrombocytopenia (35%) and neutropenia (21%). Grade 3 or higher bilirubin and lipase elevations occurred in 9% and 18% of patients, respectively, resulting in treatment discontinuation in one patient. In conclusion, nilotinib is an effective and well-tolerated treatment in imatinib-resistant and -intolerant CML-AP. This trial is registered at www.clinicaltrials.gov as NCT00384228.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 553-553 ◽  
Author(s):  
John S. Tokarski ◽  
John Newitt ◽  
Francis Y. Lee ◽  
Louis Lombardo ◽  
Robert Borzilleri ◽  
...  

Abstract Chronic myeloid leukemia (CML) is a stem cell disorder caused by a constitutively activated tyrosine kinase, the BCR-ABL oncoprotein. Imatinib (STI571, Gleevec) is a small-molecule inhibitor of this kinase that produces clinical remissions in CML patients and is now frontline therapy for this disease. While this agent has a high rate of clinical success in early phases of CML, development of resistance to this drug becomes increasingly problematic in later stages of the disease. BMS-354825, a small-molecule dual-function SRC/ABL tyrosine kinase inhibitor, appears to overcome many of the limitations associated with imatinib therapy. BMS-354825 is 500-fold more potent than imatinib against BCR-ABL and more importantly retains activity against 14 of 15 imatinib-resistant BCR-ABL mutants (Shah et al., Science, 2004;305(5682):399). In addition, BMS-354825 proved to be equally effective against several pre-clinically and clinically derived tumor models of imatinib resistance (Lee et al., Proceedings of the AACR, Volume 45, March 2004 abstract number 3937). In order to better understand the molecular basis of the relationship between inhibitor chemistry and biological activity, the three-dimensional structure of the kinase domain of Abl kinase complexed with BMS-354825 was determined by X-ray crystallography. The structure reveals that BMS-354825 binds in the ATP-binding site. A comparison with the imatinib-Abl complex (PDB entry 1IEP) reveals that the central cores of BMS-354825 and imatinib occupy overlapping regions but that these two inhibitors extend in opposite directions. The activation loop is observed to be in the active conformation in the presence of bound BMS-354825 in contrast to bound imatinib. There do not appear to be any steric clashes that would preclude BMS-354825 from also binding to the inactive conformation of the activation loop. This observation suggests that the increased binding affinity of BMS-354825 over imatinib is at least partially due to its apparent ability to recognize multiple states of the enzyme. The P-loop is partially disordered as indicated by high B-factors and broken electron density which suggests that interactions between this part of the protein and BMS-354825 are less critical for binding. Interestingly, several imatinib-resistant mutations occur in the P-loop. The structure was analyzed for the 15 imatinib-resistant BCR-ABL mutants and attempts are made to rationalize the activity of BMS-354825 against these mutants.


Blood ◽  
2008 ◽  
Vol 111 (7) ◽  
pp. 3821-3829 ◽  
Author(s):  
Ji Wu ◽  
Feng Meng ◽  
Henry Lu ◽  
Ling Kong ◽  
William Bornmann ◽  
...  

Abstract Lyn kinase functions as a regulator of imatinib sensitivity in chronic myelogenous leukemia (CML) cells through an unknown mechanism. In patients who fail imatinib therapy but have no detectable BCR-ABL kinase mutation, we detected persistently activated Lyn kinase. In imatinib-resistant CML cells and patients, Lyn activation is BCR-ABL independent, it is complexed with the Gab2 and c-Cbl adapter/scaffold proteins, and it mediates persistent Gab2 and BCR-ABL tyrosine phosphorylation in the presence or absence of imatinib. Lyn silencing or inhibition is necessary to suppress Gab2 and BCR-ABL phosphorylation and to recover imatinib activity. Lyn also negatively regulates c-Cbl stability, whereas c-Cbl tyrosine phosphorylation is mediated by BCR-ABL. These results suggest that Lyn exists as a component of the BCR-ABL signaling complex and, in cells with high Lyn expression or activation, BCR-ABL kinase inhibition alone (imatinib) is not sufficient to fully disengage BCR-ABL–mediated signaling and suggests that BCR-ABL and Lyn kinase inhibition are needed to prevent or treat this form of imatinib resistance.


Blood ◽  
2005 ◽  
Vol 106 (12) ◽  
pp. 3948-3954 ◽  
Author(s):  
Shinya Kimura ◽  
Haruna Naito ◽  
Hidekazu Segawa ◽  
Junya Kuroda ◽  
Takeshi Yuasa ◽  
...  

Although the Abelson (Abl) tyrosine kinase inhibitor imatinib mesylate has improved the treatment of breakpoint cluster region–Abl (Bcr-Abl)–positive leukemia, resistance is often reported in patients with advanced-stage disease. Although several Src inhibitors are more effective than imatinib and simultaneously inhibit Lyn, whose overexpression is associated with imatinib resistance, these inhibitors are less specific than imatinib. We have identified a specific dual Abl-Lyn inhibitor, NS-187 (elsewhere described as CNS-9), which is 25 to 55 times more potent than imatinib in vitro. NS-187 is also at least 10 times as effective as imatinib in suppressing the growth of Bcr-Abl–bearing tumors and markedly extends the survival of mice bearing such tumors. The inhibitory effect of NS-187 extends to 12 of 13 Bcr-Abl proteins with mutations in their kinase domain but not to T315I. NS-187 also inhibits Lyn without affecting the phosphorylation of Src, Blk, or Yes. These results suggest that NS-187 may be a potentially valuable novel agent to combat imatinib-resistant Philadelphia-positive (Ph+) leukemia.


Sign in / Sign up

Export Citation Format

Share Document