Generation of Cytomegalovirus-Specific T Lymphocytes Using Protein-Spanning Pools of pp65-Derived Over-Lapping Pentadecapeptides for Adoptive Immunotherapy.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2236-2236
Author(s):  
Guenther Koehne ◽  
Deepa Trivedi ◽  
Roxanne Y. Williams ◽  
Richard J. O’Reilly

Abstract Cell-mediated immunity is essential for control of human cytomegalovirus (HCMV) infection. We utilized a pool of 138 synthetic overlapping pentadecapeptides over-spanning the entire pp65 protein to generate polyclonal CMV-specific T-cell lines from 12 CMV-seropositive donors inheriting different HLA genotypes. Autologous monocyte-derived dendritic cells (DCs) pulsed with this complete pool consistently induced highly specific T-cells and in analyses of T-cell lines from 5 separate HLA-A*0201+ individuals demonstrate that this pp65-derived pentadecapeptide-pool selectively induced T-cells specifically reactive against sub-pools of pentadecapeptides which contained the HLA-A*0201 binding epitope NLVPMVATV. The specificity of these T-cells for this immunodominant nonapeptide was confirmed by MHC-tetramer staining and intracellular interferon-γ production, demonstrating that 38 – 60% of the CD8+ cell population were specific for this A*2-restricted peptide after 3 weeks of culture. These T cells also killed both nonapeptide-pulsed and CMV-infected target cells. In subsequent experiments using auotlogous monocyte-derived DC’s pulsed with the pentadecapeptide pool for the stimulation of CMV-specific T-cell lines in individuals other than HLA-A*2, the generated T cells selectively recognized 1–3 pentadecapeptides identified by secondary responses to a mapping grid of pentadecapeptide subpools with single overlaps. Responses against peptide loaded targets sharing single HLA class I or II alleles permitted the identification the restricting HLA alleles. Those T-cell lines from HLA-A*2 neg. donors contained high frequencies of CD4 and/or CD8 T-cells selectively reactive against peptides presented by other HLA alleles including known epitopes such as aa 341–350QYDPVAALF (HLA-A*2402) as well as unreported epitopes such as aa 267–275HERNGFTVL (HLA-B*4001 and B* 4002). In some donors, the peptide-specific IFN-g+ T-cells generated have been predominantly CD4+ T-cells. Like the peptide-specific CD8+ T-cells, we could determine both epitope and HLA-class II restricting element, e.g. aa513–523 FFWDANDIYRI (HLA-DRB1* 1301). These CD4+ T-cells also consistently exhibited cytotoxic activity against infected targets as well as peptide-loaded cells expressing the restricting HLA class II allele. Thus, synthetic overlapping pentadecapeptides spanning the sequence of the immunodominant protein of CMV-pp65, when loaded on DCs can consistently stimulate the in vitro generation of CD8+ and CD4+ T-cell lines from seropositive donors of diverse HLA genotypes. These cell lines are selectively enriched for T-cells specific for a limited number of immunodominant epitopes each presented by a single HLA class I or class II allele. This approach fosters expansion and selection of HLA-restricted CMV-pp65-reactive T-cell lines of high specificity which also lyse CMV-infected targets and may have advantages for generating virus-specific T-cells for adoptive immunotherapy.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3873-3873
Author(s):  
Ekaterina Doubrovina ◽  
Jacob Dupont ◽  
Deepa Trivedi ◽  
Elena Kanaeva ◽  
Richard J. O’Reilly

Abstract The oncofetal protein, WT1, is differentially expressed in 60–80% of acute leukemias and CML. Previously, four peptide epitopes presented by HLA-A0201 or HLA-A2402 have been identified. We used a pool of 15-mers with 10 amino acid overlaps spanning the full sequence of WT1, loaded on autologous monocyte-derived dendritic cells or EBV-transformed BLCL to sensitize and raise T cell lines from a series of normal donors expressing or not expressing HLA-A0201 or HLA-A2402. Specific 15-mers eliciting responses were identified by quantitating IFNg+ CD8+ or CD4+ T cell responses to secondary stimulation with 15-mer subpools organized in a mapping grid with single overlaps. Responses against targets loaded with the identified stimulating 15-mer and sharing single HLA class I or II alleles permitted identification of restricting HLA alleles. Patients inheriting HLA-A0201 have generated CD8+ T cells in response to the complete pool which are selectively reactive against single 15-mers containing the known immunogen 252–260RMFPNAPYL. However, in certain donors, responses to 15-mer 28, containing a heretofore unreported epitope 136–144ALLPAVPSL, (which has a high predicted affinity for HLA-A0201) have been dominant. By mapping responses of T cells sensitized with the complete pool, defining the presenting HLA alleles and delineating immunogenic sequences within specific 15-mers, additional novel epitopes presented by HLA- B0801 and DRB10301 have also been defined. T cells generated by this approach also lyse both peptide-loaded targets as well as primary WT1+ leukemic cells expressing the restricting HLA allele. Thus, sensitization with pools of overlapping synthetic 15-mers spanning WT1 may selectively stimulate WT1-specific CD4+ and CD8+ T cell lines restricted by HLA alleles other than HLA- A0201 or A2402 that are leukemocidal and therefore of potential use for adoptive immunotherapy.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2326-2326
Author(s):  
Nina Khanna ◽  
Claudia Stuehler ◽  
Barbara Conrad ◽  
Carsten Berges ◽  
Sarah Lurati ◽  
...  

Abstract Abstract 2326 In patients undergoing hematopoietic stem cell transplantation (HSCT) infectious complications are frequent causing substantial morbidity and mortality. Adoptive T cell therapy specific for single pathogens has previously shown to efficiently control viral and fungal infections but approaches targeting multiple pathogens are limited to T cells generated with EBV transformed B cells that are genetically modified expressing multiple viral antigens. Infections are often experienced by different viral and fungal pathogens such as cytomegalovirus (CMV), Epstein-Barr virus (EBV), adenovirus (AdV), Aspergillus fumigatus (AF) and Candida albicans (CA) that show a wide spectrum of memory T cell frequencies. Those with a low precursor frequency are not suitable for selection methods based on the secretion of cytokines such as IFN-g. As CMV seropositivity among HSCT donors may range only between 30–40% and immunity to the other pathogens can be detected simultaneously in more than 85% of HSCT donors we focused on the generation of a multi-specific T cell product for EBV, AdV, AF and CA for easy transfer under current regulatory requirements. We aimed to develop a simple protocol which (i) is able to enrich T cells specific for pathogens with low precursor frequency and (ii) allows simultaneous expansion of multiple pathogen-specific T cells in a single culture. We determined if CD154, which is transiently expressed on antigen stimulated CD4+ but also to a lesser extend on CD8+ T cells, would be a potential candidate for selection of pathogen-specific T cells. For stimulation we used peptide pools for AdV hexon protein, EBV latent membrane protein 2 (LMP2) and CA mannose protein 65 (MP65) as well as one AF immune dominant epitope derived from the Crf1 protein. To select and expand antigen-specific T cells, we stimulated PBMC for 16 hours, separated them by CD154+ MicroBead Kit (Miltenyi) and co-cultured them with irradiated autologous PBMC with IL-2, IL-7 and IL-15 for 14 days. The isolated cells were on average 0.62% of the starting fraction and could be expanded 20- to 145-fold. The median frequency of AdV-specific T cells increased from day 1 to day 14 87-fold from 30 to 2620 spot forming counts (SFC)/2×105 cells, for EBV 229-fold from 15 to 3430 SFC/2×105 cells and for CA 960-fold from 3 to 2400 SFC/2×105 cells assessed by IFN-γ ELISPOT. AF-specific T cells that were undetectable in PBMC increased to a median of 2260 SFC/2×105 cells. Although isolation of CD154+ cells favors enrichment of CD4+ T cells, a low fraction of virus-specific CD8+ T cells were simultaneously expanded. Next, we tested the efficacy of the CD154-based enrichment for the generation of multi pathogen-specific T cell lines reactive to all 4 pathogens. Selection and expansion was comparable, there was however a notable shift in the frequencies of T cells specific for different antigens in multi pathogen-specific cultures compared to single lines. The median increase of AdV-and CA- specific T cell lines was comparable (2345 SFC/2×105 and 3205 SFC/2×105 cells) but the frequencies for EBV (575 SFC/2×105 cells) as well as for AF (465 SFC/2×105 cells) were diminished in multi-specific lines. Nevertheless, lysis of LCL pulsed with LMP2 or AdV peptide pools was efficient with 72% and 36% by single and 30% and 45% by multi-specific T cell lines (at an E:T ratio of 20:1) as assessed by 51Cr-release assay. The single and multi pathogen-specific T cell lines generated by peptides responded to endogenously processed antigens and were able to specifically proliferate upon antigen stimulation. In contrast, T cell-mediated allo-reactivity was almost abrogated when compared to the starting population. In conclusion, we established a simple expansion protocol for selection, expansion and enrichment of allo-depleted single and multiple pathogen-specific CD4+ and CD8+ T cells specific for AdV, EBV, AF and CA that may further expand if the T cells are stimulated by their native antigen in vivo. This expansion protocol may form the basis for adoptive immunotherapy trials in HSCT recipients at risk for multiple infectious complications. This study has been supported by a grant of BayImmunet. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 105 (7) ◽  
pp. 2793-2801 ◽  
Author(s):  
Deepa Trivedi ◽  
Roxanne Y. Williams ◽  
Richard J. O'Reilly ◽  
Guenther Koehne

Abstract Cell-mediated immunity is essential for control of human cytomegalovirus (HCMV) infection. We used a pool of 138 synthetic overlapping pentadecapeptides overspanning the entire pp65 protein to generate polyclonal CMV-specific T-cell lines from 12 CMV-seropositive donors inheriting different HLA genotypes. Autologous monocyte-derived dendritic cells (DCs) pulsed with this complete pool consistently induced highly specific T cells that selectively recognized 1-3 pentadecapeptides identified by secondary responses to a mapping grid of pentadecapeptide subpools with single overlaps. Responses against peptide-loaded targets sharing single HLA class I or II alleles identified the restricting HLAalleles. HLA-A*0201+ donors consistently responded to pentadecapeptides containing HLA-A*0201-binding epitopeaa495-503NLVPMVATV. T-cell lines from other donors contained high frequencies of CD4 and/or CD8 T cells selectively reactive against peptides presented by other HLA alleles, including both known epitopes such as aa341-350QYDPVAALF (HLA-A*2402) as well as unreported epitopes such as aa267-275HERNGFTVL (HLA-B*4001 and B*4002) and aa513-523FFWDANDIYRI (HLA-DRB1*1301). These T cells consistently lysed CMV-infected target cells. Thus, this approach fosters expansion and selection of HLA-restricted CMV-pp65–reactive T-cell lines of high specificity that also lyse CMV-infected targets, and from a functional and regulatory perspective, may have advantages for generating virus-specific T cells for adoptive immunotherapy.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1252-1252
Author(s):  
J. Joseph Melenhorst ◽  
Ann M. Leen ◽  
Catherine M. Bollard ◽  
Máire F Quigley ◽  
David A Price ◽  
...  

Abstract Abstract 1252 We and others have recently established that T cell reactivity with non-self HLA (HLA alloreactivity) arises not only from naive T cells but also from the antigen-experienced T cell pool, including Epstein-Barr virus (EBV) and cytomegalovirus (CMV)-specific T cells. Virus-specific T cells could therefore mediate graft-versus-host disease (GvHD) if infused into partially HLA mismatched recipients. We reviewed our clinical experience with adoptive transfer of allogeneic hematopoietic stem cell transplant donor-derived virus-specific T cell lines in 153 recipients who received donor-derived EBV-specific CTLs (N=114), bivirus CTLs specific for adenovirus and EBV (n=14), and trivirus CTLs specific for CMV, adenovirus and EBV (n=25). Seventy three donor-recipient pairs were partially HLA-mismatched, with the degree of HLA mismatching varying from one allele to a full haplotype. De novo GvHD did not develop after infusion of cytotoxic T lymphocytes (CTL), and the incidence of GvHD reactivation was 6.5% and not significantly different between recipients of HLA matched or mismatched CTL. Thus, virus-specific CTL did not mediate GvHD, even in recipients of partially matched CTL. Next we analyzed the HLA alloreactivity of four donor-infused bivirus-specific T cell lines, using activated T cells, that are known to lack CMV and EBV antigen expression, as antigen presenting cells (TAPC). We used a panel of 44 TAPC covering the most frequent HLA class I and II alleles. The CTL lines were labeled with CFSE and stimulated with TAPC for 6 hours, after which production of TNFα and IFNγ/IL-2 by CD4+ and CD8+ T cells in the CFSE-positive fraction was analyzed by flow cytometry. All CTLs responded to a number of TAPC, with some APC being recognized strongly. The majority elicited only weak or no response from the CTLs. We then assessed whether the CTLs recognized TAPC expressing the recipient's HLA alleles. We found moderate reactivity of the CTL with 1–5 TAPC expressing recipient HLA alleles. Taken together, our data indicate that reactivity of virus-specific CTLs with hematopoietic APC does not correlate with the risk of developing GvHD, and that virus-specific CTL can safely be infused into HLA class I and/or II mismatched recipients. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 109 (8) ◽  
pp. 3325-3332 ◽  
Author(s):  
Anders Woetmann ◽  
Paola Lovato ◽  
Karsten W. Eriksen ◽  
Thorbjørn Krejsgaard ◽  
Tord Labuda ◽  
...  

AbstractBacterial toxins including staphylococcal enterotoxins (SEs) have been implicated in the pathogenesis of cutaneous T-cell lymphomas (CTCLs). Here, we investigate SE-mediated interactions between nonmalignant T cells and malignant T-cell lines established from skin and blood of CTCL patients. The malignant CTCL cells express MHC class II molecules that are high-affinity receptors for SE. Although treatment with SE has no direct effect on the growth of the malignant CTCL cells, the SE-treated CTCL cells induce vigorous proliferation of the SE-responsive nonmalignant T cells. In turn, the nonmalignant T cells enhance proliferation of the malignant cells in an SE- and MHC class II–dependent manner. Furthermore, SE and, in addition, alloantigen presentation by malignant CTCL cells to irradiated nonmalignant CD4+ T-cell lines also enhance proliferation of the malignant cells. The growth-promoting effect depends on direct cell-cell contact and soluble factors such as interleukin-2. In conclusion, we demonstrate that SE triggers a bidirectional cross talk between nonmalignant T cells and malignant CTCL cells that promotes growth of the malignant cells. This represents a novel mechanism by which infections with SE-producing bacteria may contribute to pathogenesis of CTCL.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3249-3249
Author(s):  
Avital L. Amir ◽  
Lloyd J.A. D’Orsogna ◽  
Marleen M. van Loenen ◽  
Dave L. Roelen ◽  
Ilias I.N. Doxiadis ◽  
...  

Abstract Graft versus host disease (GVHD) in allogeneic stem cell transplantation (SCT) and graft rejection is caused by alloreactive T-cells. Alloreactivity can be exerted by naïve as well as by memory T-cells. Persistent latent viral infections, like those with herpes viruses, have a profound impact on the repertoire of memory T-cells. This implies that virus specific memory T-cells are also potentially alloreactive. Previously it has been shown that virus specific T-cell clones can cross react against allo-HLA. We investigated the frequency of alloreactivity mediated by virus specific T-cells. Mixed lymphocyte reactions, previously used to determine precursor frequencies of alloreactive T-cells, give an underestimation of the total frequency of alloreactive T-cells, due to limited number of allo-HLA alleles tested in this system. Therefore, in this study multiple CD8+ virus specific T-cells lines and clones were tested for alloreactivity against almost all frequent HLA class I and II alleles. From different healthy individuals we derived CD8+ virus specific T-cell lines, specific for Epstein Barr virus (EBV), Cytomegalovirus (CMV), Varicella Zoster virus (VZV) and Influenza virus (Flu) which were restricted to different HLA molecules. The generation of the T-cell lines and clones was performed by bulk sorting and single cell sorting, based on staining with viral peptide/MHC complex specific tetramers. The viral specificity of the expanded lines and clones was confirmed by tetramer staining and cytotoxicity and cytokine production assays. Polyclonality of the T-cell lines and monoclonality of the T-cell clones was confirmed by TCR Vβ analysis. Next, the T-cell lines and clones were screened for alloreactivity by testing against a panel of 29 different EBV transformed LCLs, together covering almost all frequent HLA class I and II molecules. 90% of tested virus specific T-cell lines and 40% of virus specific T-cell clones were found to be alloreactive, recognizing at least one of the allo-HLA alleles. For several lines and clones the specific recognized allo-HLA molecule was further identified using a panel of HLA typed target cells in combination with HLA specific blocking antibodies. Additionally, single HLA antigen expressing cell lines were used as target cells. Thus far we found EBV EBNA3A specific, HLA-A3 restricted T-cell clones to recognize HLA-A31. A CMV pp50 specific, HLA-A1 restricted T-cell line recognized HLA-A68. One VZV IE62 specific, HLA-A2 restricted clone showed recognition of HLA-B57, while another clone with the same specificity but with a different TCR Vβ recognized HLA-B55. An EBV BMLF specific, HLA-A2 restricted T-cell line showed recognition of HLA-A11. Finally an EBV BRLF specific, HLA-A3 restricted clone recognized HLA-A2. Our results show that a high percentage of virus specific T-cells can exert alloreactivity against allo- HLA molecules. Previously it was assumed that virus specific T-cells are not alloreactive against foreign HLA, allowing safe application of virus specific T-cell lines derived from HLA disparate donors in patients without the risk of inducing GVHD. Our data indicate that applying virus specific T-cell lines over HLA barriers does give a significant risk of GVHD and suggest that lines should be tested for alloreactivity against patient specific HLA alleles prior to application. A substantial part of the memory T-cell pool consists of virus specific T-cells, which are dominated by a limited repertoire of virus specific T-cell clones, present in high frequencies. Thus, virus specific T-cells recognizing allo-HLA alleles may also play an essential role in graft rejection.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2222-2222
Author(s):  
Maarten L. Zandvliet ◽  
J.H. Frederik Falkenburg ◽  
Inge Jedema ◽  
Roelof Willemze ◽  
Henk-Jan Guchelaar ◽  
...  

Abstract Reactivation of adenovirus (ADV), cytomegalovirus (CMV) and Epstein-Barr virus (EBV) can cause serious morbidity and mortality during the prolonged period of immune deficiency following allogeneic stem cell transplantation. It has been shown that adoptive transfer of donor-derived virus-specific T cells can be a successful strategy to control viral reactivation. To provide safe and effective anti-viral immunotherapy, we aimed to generate combined CD8+ and CD4+ T cell lines with high specificity for a broad range of viral epitopes. Isolation by the IFNg capture assay of virus-specific T cells that produce IFNg upon activation allows the generation of highly specific T cell lines without the need for extensive culture. However, it has been recently shown that specific upregulation of the co-stimulatory molecule CD137 upon antigen-specific activation of CD8+ and CD4+ T cells can also be used for isolation. We therefore analyzed IFNg production and CD137 expression by CD8+ and CD4+ T cells upon incubation of peripheral blood mononuclear cells (PBMC) from seropositive donors with peptides corresponding to 17 defined MHC class I restricted minimal epitopes from 10 different ADV, CMV, EBV and influenza (FLU) proteins, and 15-mer or 30-mer peptides containing MHC class II restricted epitopes from CMV pp65 or ADV hexon. Using tetramer and intracellular IFNg staining we first determined the fraction of CD8+ T cells that produced IFNg upon activation with the minimal epitopes. Specific IFNg production was observed for 58–100% of tetramer+ CD8+ T cells specific for CMV pp65 (n=6), and 83% for FLU (n=1), but only 18–58% for CMV pp50 (n=3) or IE-1 (n=3), 4–91% for EBV latent (n=3) and lytic (n=3) epitopes, and 41–63% for ADV hexon (n=2). In contrast to the variation in the fraction of IFNg-producing cells, we observed homogeneous upregulation of CD137 by the virus-specific tetramer+ T cell populations upon activation. In 2 cases where no CD137 expression by tetramer+ T cells could be detected, no IFNg production was observed either. These data suggest that the majority of CD8+ T cells specific for CMV pp65 or FLU can be isolated on basis of IFNg production, but only part of CD8+ T cell populations specific for other viral proteins, while complete virus-specific CD8+ T cell populations may be isolated on basis of CD137 expression. Activation of CD4+ T cells specific for CMV pp65 or ADV hexon with 15-mer or 30-mer peptides induced both specific IFNg production and CD137 expression. To investigate whether multiple virus-specific T cell populations could be isolated simultaneously, we next determined the kinetics of IFNg production after activation with defined MHC class I epitopes or peptides containing MHC class II epitopes. CMV- and EBV-specific CD8+ T cells and CMV-specific CD4+ T cells showed a rapid induction of IFNg production, which peaked after 4 hours and decreased thereafter. In contrast, ADV- and FLU-specific CD8+ T cells and ADV-specific CD4+ T cells, predominantly having a more early differentiation phenotype (CD27+CD28+) compared to CMV- and EBV-specific T cells, showed peak IFNg production after 8 hours that continued for more than 48 hours. This difference in phenotype and IFNg kinetics may suggest that the persistent and frequent presentation of CMV and EBV epitopes in vivo, in contrast to an intermittent exposure to ADV and FLU epitopes, drives differentiation and shapes the kinetics of the IFNg response of specific T cells. Kinetic analysis of CD137 expression showed uniform upregulation by virus-specific CD8+ T cell populations from day 1 to day 4 after activation, which peaked at day 2, suggesting that this may be the optimal time point for CD137-based isolation. In a limited number of experiments, virus-specific CD8+ and CD4+ T cells could be isolated based on CD137 expression within the same timeframe. These data indicate that virus-specific T cell populations can be more efficiently isolated at one time point on basis of CD137 expression than on basis of IFNg production, due to differences in IFNg kinetics. In conclusion, this study shows that T cell lines generated by CD137 isolation may comprise a significant number of virus-specific T cells which do not produce IFNg, but may have other effector functions. Furthermore, CD137-based enrichment may be more robust and allows the efficient simultaneous isolation of multiple virus-specific T cell populations due to uniform kinetics of CD137 expression.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2048-2048
Author(s):  
Wesley Huisman ◽  
Didier A.T. Leboux ◽  
Lieve E. van der Maarel ◽  
Lois Hageman ◽  
Derk Amsen ◽  
...  

Abstract Reactivations of cytomegalovirus (CMV), Epstein Bar virus (EBV) and adenovirus (AdV) are frequently seen in immune compromised patients after allogeneic stem cell transplantation (alloSCT), and are associated with high morbidity and mortality. T cell immunity is essential for anti-viral protection, but a fully competent T cell repertoire generally does not develop until 3-6 months after transplantation. Especially patients transplanted with a virus non- experienced donor are at risk of developing severe complications. Adoptive transfer of partially HLA-matched virus specific T cells from healthy third party donors is a potential strategy to temporarily provide anti-viral immunity to these patients. However, these partially HLA-matched T cells harbor a risk of mediating allo-HLA cross-reactivity. Here, we investigated whether virus specificity and HLA restriction of the virus specific T cells influence the risk of allo-HLA cross-reactivity, and thus the development of GVHD. To determine the occurrence and diversity of allo-HLA cross-reactivity, virus specific CD8 T cells from homozygous HLA-A*01:01/B*08:01 and HLA-A*02:01/B*07:02 donors were isolated by cell sorting using tetramers for various peptides from CMV, EBV and AdV. Allo-HLA cross-reactivity was tested using an allogeneic EBV-LCL panel covering 116 different HLA molecules and confirmed using K562 cells retrovirally transduced with single HLA alleles of interest. A significant proportion of the virus specific T cell populations (n=174; 20 specificities) isolated from 27 healthy donors exerted allo-HLA cross-reactivity, as measured by recognition of 1 or more HLA mismatched EBV-LCLs from the panel. Similar frequencies were found for the various viral specificities showing 30% of the CMV, 46% of the EBV and 36% of the AdV-specific T cell populations to be allo-HLA cross-reactive. However, for some specificities (e.g. HLA-A*0201-restricted EBV-LMP2-FLY) allo-HLA cross-reactivity was infrequent (n=1/11), whereas for other specificities (e.g. HLA-B*08:01-restricted EBV-BZLF1-RAK) the majority of the T cell populations (n=9/13) was allo-HLA reactive. Surprisingly, a much larger fraction of HLA-B*08:01 restricted virus specific T cell populations showed allo-HLA cross-reactivity (72%, 36 out of 50 T cell lines), compared to the other HLA restricted virus specific T cell populations (29% of HLA-A*01:01, 30% of HLA-A*02:01 and 26% of HLA-B*07:02 restricted virus specific T cell lines). HLA-B*08:01 restricted virus specific T cells also exhibited the broadest allo-HLA reactivity, reacting to a median of 5 allo EBV-LCLs (range 1-17). In contrast, HLA-A*01:01, HLA-A*02:01 and HLA-B*07:02 restricted virus specific T cells reacted to a median of 1, 2 and 3 (ranges 1-7) allo EBV-LCLs, respectively. Dissection of the diversity/specificity of the allo-HLA reactivity using the panel of 40 different single HLA transduced K562 cells further illustrated the extensive allo-HLA cross-reactivity for HLA-B*08:01 restricted T cells isolated from homozygous HLA-A*01/B*08 donors compared to virus specific T cells restricted by other HLA alleles. These data show that allo-HLA cross-reactivity by virus specific T cells is highly influenced by the HLA restriction and not by the viral specificity of the T cell populations. Of the HLA-A*01, A*02, B*07 and B*08-restricted virus specific T cell populations isolated from homozygous donors, HLA-B*08:01 restricted virus specific T cells showed the highest frequency and diversity of allo-HLA cross-reactivity. Our results indicate that selection of virus specific T cells with specific HLA restrictions may decrease the risk of developing GVHD after infusion of third-party virus specific T cells to patients with uncontrolled viral reactivation after alloSCT. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document