Selective Activation of STAT5 Unveils Its Role in the Maintenance of Hematopoietic Stem Cells and the Development of Myeloproliferative Disorder.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3549-3549
Author(s):  
Yuko Kato ◽  
Atsushi Iwama ◽  
Hiromitsu Nakauchi

Abstract Recent studies have implicated the janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway in the maintenance of stem cells, such as mouse embryonic stem cells and Drosophila germ cells. We have previously reported that thrombopoietin (TPO) can support in vitro self-renewal division of murine hematopoietic stem cells (HSCs) (CD34−/lowc-Kit+Sca-1+lineage marker-negative; CD34−KSL cells). Signal transducers and activators of transcription 5 (STAT5) is one of the major signaling molecules that mediate TPO signals. All these findings suggest that STAT5 could be an attractive candidate for therapeutic manipulation of HSCs. Cytokines activate JAK/STAT5 pathway along with other signaling pathways, causing difficulty to dissect STAT5-specific functions in hematopoietic stem cells (HSCs). Here we took advantage of constitutively active STAT5 mutants to selectively activate STAT5 signaling pathway in HSCs. The mutants used are STAT5A 1*6 that harbors two amino acid mutations S710F and H298R in the effecter domain, and STAT5A #2 that harbors a point mutation N642H in the SH2 domain. Retroviral transduction of either STAT5 1*6 or STAT5#2 mutant into purified CD34−KSL HSCs caused a drastic expansion of multipotential progenitors in vitro and promoted multi-lineage differentiation in vitro. During 7 days of culture supplemented with SCF and TPO, the number of high proliferative potential colonies (HPPC) increased ten-fold compared with the GFP control and half of them were derived from multipotential progenitor cells. Notably, even in the culture supplemented with SCF only, expression of STAT5 mutants in HSCs supported a similar mode of expansion of progenitors cells and multi-lineage differentiation, indicating that activation of STAT5 can substitute major biological effects of TPO in HSCs. In all in vitro experiments, STAT5 1*6 showed stronger effects than STAT5#2. To evaluate the effect of STAT5A mutants in the maintenance of long-term bone marrow repopulating HSC ex vivo, cultured transduced cells corresponding to 30 initial CD34−KSL HSCs were transplanted into lethally irradiated mice 7 to 10 days after transduction. Although rapid hamatopoietic repopulation was observed with HSCs expressing STAT5A 1*6, mice developed myeloproliferative disease (MPD) and succumbed to death within two months. In contrast, HSCs expressing STAT5A #2 presented significantly higher long-term repopulating capacity than the GFP control. These data indicate that selective activation of STAT5 maintains long-term repopulating ability of HSCs ex vivo. Oncostatin M, a well known STAT5 target gene, has been postulated to be involved in the development of MPD and was actually induced STAT5A 1*6-expressing cells. However, transplantation of OSM−/− HSCs expressing STAT5A 1*6 similarly caused a lethal MPD in wild-type mice, indicating that Oncostatin is not the main target for STAT5 in MPD development. Taken together, our findings establish a role for STAT5 in the self-renewal of HSCs and provide STAT5 as novel target for therapeutic manipulation of HSCs ex vivo.

Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


Blood ◽  
1999 ◽  
Vol 94 (5) ◽  
pp. 1623-1636 ◽  
Author(s):  
Chu-Chih Shih ◽  
Mickey C.-T. Hu ◽  
Jun Hu ◽  
Jeffrey Medeiros ◽  
Stephen J. Forman

Abstract We have developed a stromal-based in vitro culture system that facilitates ex vivo expansion of transplantable CD34+thy-1+ cells using long-term hematopoietic reconstitution in severe combined immunodeficient-human (SCID-hu) mice as an in vivo assay for transplantable human hematopoietic stem cells (HSCs). The addition of leukemia inhibitory factor (LIF) to purified CD34+ thy-1+ cells on AC6.21 stroma, a murine bone marrow–derived stromal cell line, caused expansion of cells with CD34+ thy-1+ phenotype. Addition of other cytokines, including interleukin-3 (IL-3), IL-6, granulocyte-macrophage colony-stimulating factor, and stem cell factor, to LIF in the cultures caused a 150-fold expansion of cells retaining the CD34+ thy-1+ phenotype. The ex vivo–expanded CD34+ thy-1+ cells gave rise to multilineage differentiation, including myeloid, T, and B cells, when transplanted into SCID-hu mice. Both murine LIF (cannot bind to human LIF receptor) and human LIF caused expansion of human CD34+ thy-1+ cells in vitro, suggesting action through the murine stroma. Furthermore, another human HSC candidate, CD34+ CD38− cells, shows a similar pattern of proliferative response. This suggests thatex vivo expansion of transplantable human stem cells under this in vitro culture system is a general phenomenon and not just specific for CD34+ thy-1+ cells.


Blood ◽  
1999 ◽  
Vol 94 (5) ◽  
pp. 1623-1636 ◽  
Author(s):  
Chu-Chih Shih ◽  
Mickey C.-T. Hu ◽  
Jun Hu ◽  
Jeffrey Medeiros ◽  
Stephen J. Forman

We have developed a stromal-based in vitro culture system that facilitates ex vivo expansion of transplantable CD34+thy-1+ cells using long-term hematopoietic reconstitution in severe combined immunodeficient-human (SCID-hu) mice as an in vivo assay for transplantable human hematopoietic stem cells (HSCs). The addition of leukemia inhibitory factor (LIF) to purified CD34+ thy-1+ cells on AC6.21 stroma, a murine bone marrow–derived stromal cell line, caused expansion of cells with CD34+ thy-1+ phenotype. Addition of other cytokines, including interleukin-3 (IL-3), IL-6, granulocyte-macrophage colony-stimulating factor, and stem cell factor, to LIF in the cultures caused a 150-fold expansion of cells retaining the CD34+ thy-1+ phenotype. The ex vivo–expanded CD34+ thy-1+ cells gave rise to multilineage differentiation, including myeloid, T, and B cells, when transplanted into SCID-hu mice. Both murine LIF (cannot bind to human LIF receptor) and human LIF caused expansion of human CD34+ thy-1+ cells in vitro, suggesting action through the murine stroma. Furthermore, another human HSC candidate, CD34+ CD38− cells, shows a similar pattern of proliferative response. This suggests thatex vivo expansion of transplantable human stem cells under this in vitro culture system is a general phenomenon and not just specific for CD34+ thy-1+ cells.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3704-3704
Author(s):  
Aldona A Karaczyn ◽  
Edward Jachimowicz ◽  
Jaspreet S Kohli ◽  
Pradeep Sathyanarayana

The preservation of hematopoietic stem cell pool in bone marrow (BM) is crucial for sustained hematopoiesis in adults. Studies assessing adult hematopoietic stem cells functionality had been shown that for example loss of quiescence impairs hematopoietic stem cells maintenance. Although, miR-199b is frequently down-regulated in acute myeloid leukemia, its role in hematopoietic stem cells quiescence, self-renewal and differentiation is poorly understood. Our laboratory investigated the role of miR-199b in hematopoietic stem and progenitor cells (HSPCs) fate using miR-199b-5p global deletion mouse model. Characterization of miR-199b expression pattern among normal HSPC populations revealed that miR-199b is enriched in LT-HSCs and reduced upon myeloablative stress, suggesting its role in HSCs maintenance. Indeed, our results reveal that loss of miR-199b-5p results in imbalance between long-term hematopoietic stem cells (LT-HSCs), short-term hematopoietic stem cells (ST-HSCs) and multipotent progenitors (MMPs) pool. We found that during homeostasis, miR-199b-null HSCs have reduced capacity to maintain quiescent state and exhibit cell-cycle deregulation. Cell cycle analyses showed that attenuation of miR-199b controls HSCs pool, causing defects in G1-S transition of cell cycle, without significant changes in apoptosis. This might be due to increased differentiation of LT-HSCs into MPPs. Indeed, cell differentiation assay in vitro showed that FACS-sorted LT-HSCs (LineagenegSca1posc-Kitpos CD48neg CD150pos) lacking miR-199b have increased differentiation potential into MPP in the presence of early cytokines. In addition, differentiation assays in vitro in FACS-sorted LSK population of 52 weeks old miR-199b KO mice revealed that loss of miR-199b promotes accumulation of GMP-like progenitors but decreases lymphoid differentiation, suggesting that miR199b may regulate age-related pathway. We used non-competitive repopulation studies to show that overall BM donor cellularity was markedly elevated in the absence of miR-199b among HSPCs, committed progenitors and mature myeloid but not lymphoid cell compartments. This may suggest that miR-199b-null LT-HSC render enhanced self-renewal capacity upon regeneration demand yet promoting myeloid reconstitution. Moreover, when we challenged the self-renewal potential of miR-199b-null LT-HSC by a secondary BM transplantation of unfractionated BM cells from primary recipients into secondary hosts, changes in PB reconstitution were dramatic. Gating for HSPCs populations in the BM of secondary recipients in 24 weeks after BMT revealed that levels of LT-HSC were similar between recipients reconstituted with wild-type and miR-199b-KO chimeras, whereas miR-199b-null HSCs contributed relatively more into MPPs. Our data identify that attenuation of miR-199b leads to loss of quiescence and premature differentiation of HSCs. These findings indicate that loss of miR-199b promotes signals that govern differentiation of LT-HSC to MPP leading to accumulation of highly proliferative progenitors during long-term reconstitution. Hematopoietic regeneration via repopulation studies also revealed that miR-199b-deficient HSPCs have a lineage skewing potential toward myeloid lineage or clonal myeloid bias, a hallmark of aging HSCs, implicating a regulatory role for miR-199b in hematopoietic aging. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1686-1686
Author(s):  
Hideyuki Oguro ◽  
Atsushi Iwama ◽  
Hiromitsu Nakauchi

Abstract The Polycomb group (PcG) proteins form multiprotein complexes that play an important role in the maintenance of transcriptional repression of target genes. Loss-of-function analyses show abnormal hematopoiesis in mice deficient for PcG genes including Bmi-1, Mph-1/Rae28, M33, Mel-18, and Eed, suggesting involvement of PcG complexes in the regulation of hematopoiesis. Among them, Bmi-1 has been implicated in the maintenance of hematopoietic and leukemic stem cells. In this study, detailed RT-PCR analysis of mouse hematopoietic cells revealed that all PcG genes encoding components of the Bmi-1-containing complex, such as Bmi-1, Mph1/Rae28, M33, and Mel-18 were highly expressed in CD34−c-Kit+Sca-1+Lin− (CD34−KSL) hematopoietic stem cells (HSCs) and down-regulated during differentiation in the bone marrow. These expression profiles support the idea of positive regulation of HSC self-renewal by the Bmi-1-containing complex. To better understand the role of each component of the PcG complex in HSC and the impact of forced expression of PcG genes on HSC self-renewal, we performed retroviral transduction of Bmi1, Mph1/Rae28, or M33 in HSCs followed by ex vivo culture. After 14-day culture, Bmi-1-transduced but not Mph1/Rae28-transduced cells contained numerous high proliferative potential-colony forming cells (HPP-CFCs), and presented an 80-fold expansion of colony-forming unit-neutrophil/macrophage/Erythroblast/Megakaryocyte (CFU-nmEM) compared to freshly isolated CD34−KSL cells. This effect of Bmi-1 was comparable to that of HoxB4, a well-known HSC activator. In contrast, forced expression of M33 reduced proliferative activity and caused accelerated differentiation into macrophages, leaving no HPP-CFCs after 14 days of ex vivo culture. To determine the mechanism that leads to the drastic expansion of CFU-nmEM, we employed a paired daughter cell assay to see if overexpression of Bmi-1 promotes symmetric HSC division in vitro. Forced expression of Bmi-1 significantly promoted symmetrical cell division of daughter cells, suggesting that Bmi-1 contributes to CFU-nmEM expansion by promoting self-renewal of HSCs. Furthermore, we performed competitive repopulation assays using transduced HSCs cultured ex vivo for 10 days. After 3 months, Bmi-1-transduced HSCs manifested a 35-fold higher repopulation unit (RU) compared with GFP controls and retained full differentiation capacity along myeloid and lymphoid lineages. As expected from in vitro data, HSCs transduced with M33 did not contribute to repopulation at all. In ex vivo culture, expression of both p16INK4a and p19ARF were up-regulated. p16INK4aand p19ARF are known target genes negatively regulated by Bmi-1, and were completely repressed by transducing HSCs with Bmi-1. Therefore, we next examined the involvement of p19ARF in HSC regulation by Bmi-1 using p19ARF-deficient and Bmi-1 and p19ARF-doubly deficient mice. Although bone marrow repopulating activity of p19ARF-deficient HSCs was comparable to that of wild type HSCs, loss of p19ARF expression partially rescued the defective hematopoietic phenotypes of Bmi-1-deficient mice. In addition, transduction of Bmi-1 into p19ARF-deficient HSCs again enhanced repopulating capacity compared with p19ARF-deficient GFP control cells, indicating the existence of additional targets for Bmi-1 in HSCs. Our findings suggest that the level of Bmi-1 is a critical determinant for self-renewal of HSC and demonstrate that Bmi-1 is a novel target for therapeutic manipulation of HSCs.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1688-1688 ◽  
Author(s):  
Noriko Miyake ◽  
Ann C.M. Brun ◽  
Mattias Magnusson ◽  
David T. Scadden ◽  
Stefan Karlsson

Abstract Hox transcription factors have emerged as important regulators of hematopoiesis. In particular, enforced expression of HOXB4 is a potent stimulus for murine hematopoietic stem cell (HSC) self-renewal. Murine HSCs engineered to overexpress HoxB4 expand significantly more than control cells in vivo and ex vivo while maintaining a normal differentiation program. HSCs are regulated by the cell proliferation machinery that is intrinsically controlled by cyclin-dependent kinase inhibitors such as p21Cip1/Waf1(p21) and p27Kip1 (p27). The p21 protein restricts cell cycling of the hematopoietic stem cell pool and maintains hematopoietic stem cell quiescence. In order to ask whether enhanced proliferation due to HOXB4 overexpression is mediated through suppression of p21 we overexpressed HOXB4 in hematopoietic cells from p21−/− mice. First, we investigated whether human HOXB4 enhances in vitro expansion of BM cells from p21−/− mice compared to p21+/+ mice. 5FU treated BM cells from p21−/− or p21+/+ mice were pre-stimulated with SCF, IL-6, IL-3 for 2 days followed by transduction using retroviral vector expressing HOXB4 together with GFP (MIGB4) or the control GFP vector (MIG). The cells were maintained in suspension cultures for 13 days and analyzed for GFP positive cells by flow-cytometry. Compared to MIG transduced BM cells from p21+/+ mice (MIG/p21+), the numbers of GFP positive cells were increased 1.1-fold in MIG/p21−, 3.2-fold in MIGB4/p21+ and 10.0-fold in MIGB4/p21− respectively (n=5). CFU assays were performed after 13 days of culture. The numbers of CFU were increased 4.8-fold in MIG/p21−, 19.5-fold in MIG/p21+ and 33.9 -fold in MIGB4/p21− respectively. Next, we evaluated level of HSCs expansion by bone marrow repopulation assays. After 12-days of culture, 1.5 x 105 MIGB4 or MIG-transduced cells (Ly5.2) were transplanted into lethally irradiated mice in combination with 8 x 105 fresh Ly5.1 bone marrow cells. Sixteen weeks after transplantation, no Ly5.2 cells could be detected in MIG/p21+ or MIG/p21− transplanted mice (n=6). In contrast, Ly5.2 positive cells were detected in both MIGB4/p21+/+ and MIGB4/p21−/− cells. The % of Ly5.2 positive cells in MIGB4/p21− transplanted mice was 9.9-fold higher than MIGB4/p21+ transplanted mice. (38.4 % vs 3.9 %, P<0.02, n=5). These Ly5.2 positive cells differentiated into all lineages, as determined by proportions of Mac-1, B-220, CD3 and Ter119 positive populations. Currently, we are enumerating the expansion of HOXB4 transduced HSCs in p21 deficient BM cells using the CRU assay. Our findings suggest that HOXB4 increases the self-renewal of hematopoietic stem cells by a mechanism that is independent of p21. In addition, the findings demonstrate that deficiency of p21 in combination with enforced expression of HOXB4 can be used to rapidly and effectively expand hematopoietic stem cells.


Blood ◽  
2009 ◽  
Vol 113 (25) ◽  
pp. 6342-6350 ◽  
Author(s):  
David G. Kent ◽  
Michael R. Copley ◽  
Claudia Benz ◽  
Stefan Wöhrer ◽  
Brad J. Dykstra ◽  
...  

Abstract Hematopoietic stem cells (HSCs) are generally defined by their dual properties of pluripotency and extensive self-renewal capacity. However, a lack of experimental clarity as to what constitutes extensive self-renewal capacity coupled with an absence of methods to prospectively isolate long-term repopulating cells with defined self-renewal activities has made it difficult to identify the essential components of the self-renewal machinery and investigate their regulation. We now show that cells capable of repopulating irradiated congenic hosts for 4 months and producing clones of cells that can be serially transplanted are selectively and highly enriched in the CD150+ subset of the EPCR+CD48−CD45+ fraction of mouse fetal liver and adult bone marrow cells. In contrast, cells that repopulate primary hosts for the same period but show more limited self-renewal activity are enriched in the CD150− subset. Comparative transcriptome analyses of these 2 subsets with each other and with HSCs whose self-renewal activity has been rapidly extinguished in vitro revealed 3 new genes (VWF, Rhob, Pld3) whose elevated expression is a consistent and selective feature of the long-term repopulating cells with durable self-renewal capacity. These findings establish the identity of a phenotypically and molecularly distinct class of pluripotent hematopoietic cells with lifelong self-renewal capacity.


Blood Science ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 92-101 ◽  
Author(s):  
Shanshan Zhang ◽  
Maiko Morita ◽  
Zhao Wang ◽  
Jun Ooehara ◽  
Sen Zhang ◽  
...  

2005 ◽  
Vol 202 (1) ◽  
pp. 169-179 ◽  
Author(s):  
Yuko Kato ◽  
Atsushi Iwama ◽  
Yuko Tadokoro ◽  
Kazuya Shimoda ◽  
Mayu Minoguchi ◽  
...  

Although the concept of a leukemic stem cell system has recently been well accepted, its nature and the underlying molecular mechanisms remain obscure. Constitutive activation of signal transducers and activators of transcription 3 (STAT3) and STAT5 is frequently detected in various hematopoietic tumors. To evaluate their role in normal and leukemic stem cells, we took advantage of constitutively active STAT mutants to activate STAT signaling selectively in hematopoietic stem cells (HSCs). Activation of STAT5 in CD34–c-Kit+Sca-1+ lineage marker– (CD34–KSL) HSCs led to a drastic expansion of multipotential progenitors and promoted HSC self-renewal ex vivo. In sharp contrast, STAT3 was demonstrated to be dispensable for the HSC maintenance in vivo, and its activation facilitated lineage commitment of HSCs in vitro. In a mouse model of myeloproliferative disease (MPD), sustained STAT5 activation in CD34–KSL HSCs but not in CD34+KSL multipotential progenitors induced fatal MPD, indicating that the capacity of STAT5 to promote self-renewal of hematopoietic stem cells is crucial to MPD development. Our findings collectively establish a specific role for STAT5 in self-renewal of normal as well as leukemic stem cells.


2018 ◽  
Vol 64 ◽  
pp. S113
Author(s):  
Shanshan Zhang ◽  
Maiko Morita ◽  
Zhao Wang ◽  
Jun Ooehara ◽  
Sen Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document