Galactocerebrosides, Essential for Hematopoietic Progenitor Mobilization, Regulate SDF-1 (CXCL12)-Mediated Attraction to Bone.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 665-665 ◽  
Author(s):  
Yoshio Katayama ◽  
Andres Hidalgo ◽  
Paul S. Frenette

Abstract The exact mechanisms mediating G-CSF-induced hematopoietic progenitor cell (HPC) egress from the bone marrow (BM) are incompletely understood. Recent studies have suggested that the degradation of SDF-1 in the BM by G-CSF-induced proteolysis may play an important role. We previously hypothesized that endogenous galactocerebrosides (GCs) might be involved in HPC trafficking since certain sulfogalactolipids share biological properties with fucoidan, a sulfated fucose polymer endowed with mobilization activity, and showed that G-CSF fails to induce HPC mobilization in mice lacking UDP-galactose:ceramide galactosyl transferase (CGT) (Blood 2001 98:811a), the enzyme necessary for GC synthesis. To gain further mechanistic insights, we assessed protease activity and found no difference in elastase release from BM cells and in the degradation of exogenous SDF-1 in BM extracellular fluid (BMEF) between CGT−/− and +/+ littermates. Furthermore, endogenous SDF-1 levels in BMEF of CGT−/− and +/+ mice showed a similar reduction after G-CSF stimulation (>50% in CGT−/− mice, n=7–9, p<0.05) despite a virtual absence of mobilization. These data suggest that the reduction of SDF-1 in bone marrow is not essential for G-CSF-induced mobilization. To evaluate the spacial distribution of SDF-1 expression in mouse BM, we stained SDF-1 using the tyramide amplification system. We found that SDF-1 staining was sparsely distributed in the BM but, surprisingly, strong homogenous staining was observed in the surrounding bone. Staining specificity was confirmed by ELISA (2.6±0.5 vs 5.8±1.0 ng SDF-1 per femur for BMEF and bone protein extracts, respectively, n=8, p<0.05). Following G-CSF stimulation, SDF-1 protein levels were significantly decreased in bone extracts from CGT+/+ littermates (53% reduction, n=4–5, p<0.05), but were virtually unchanged in CGT−/− mice. Quantitative real-time RT-PCR analyses revealed that SDF-1 was transcriptionally downregulated by G-CSF in both BM and bone in CGT+/+ mice but there was no significant reduction in CGT−/− bone. Since osteoblasts may represent a major source of SDF-1, we suspected that osteoblast activity might be altered in CGT−/− mice. We thus measured plasma osteocalcin levels by ELISA and found a significant reduction in CGT−/− mice compared to CGT+/+ littermates (39% reduction, n=6–9, p<0.001). Immunofluorescence experiments revealed that bone lining osteoblasts in CGT−/− mice were flattened and small while in CGT+/+ littermates, these cells displayed a healthy cobblestone-like appearance. Furthermore, there was a trend toward reduction of gene expression in Runx2, a critical transcription factor in osteoblasts, and α1(I) collagen, an osteoblast-specific bone matrix protein, in CGT−/− BM by real-time RT-PCR. These data suggest that dysregulation of bone SDF-1 in CGT−/− mice may be due to constitutive downregulation of osteoblastic activity. Strikingly, Runx2 and α1(I) collagen were dramatically downregulated by G-CSF in CGT+/+ BM (Runx2; 65% reduction, n=4, p<0.001, α1(I) collagen; 92% reduction, n=4, p<0.05 by real-time RT-PCR). G-CSF does not appear to act directly on osteoblasts since G-CSF receptor mRNA was not detectable in primary osteoblast and 4 different osteoblast lineage cell lines. In conclusion, bone SDF-1, rather than that of BM, may regulate HPC mobilization. The abnormal regulation of bone SDF-1 and reduced osteoblastic activity in CGT−/− mice strongly suggest that bone SDF-1 originates from osteoblasts and that a rapid downregulation of osteoblastic activity may play a key role in the egress of stem cells from BM.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 591-591
Author(s):  
Matthew J. Christopher ◽  
Fulu Liu ◽  
Brenton Short ◽  
Paul J. Simmons ◽  
Ingrid Winkler ◽  
...  

Abstract There is accumulating evidence that interaction of stromal cell derived factor-1 (SDF-1/CXCL12) with its cognate receptor, CXCR4, generates signals that regulate hematopoietic progenitor cell (HPC) trafficking in the bone marrow. During G-CSF induced HPC mobilization, SDF-1 protein expression in the bone marrow decreases, thereby attenuating CXCR4 signaling. We recently reported that G-CSF treatment induced a decrease in bone marrow SDF-1 mRNA that closely mirrored the fall in SDF-1 protein, suggesting that G-CSF targets one or more SDF-1 producing cell population in the bone marrow. However, the identity of cell populations in the bone marrow that express SDF-1 is controversial. In the present study, we address this issue by sorting cells into mature hematopoietic, hematopoietic progenitor, endothelial, and osteoblast cell populations. Real time RT-PCR analyses showed that osteoblasts and to a lesser degree endothelial cells are the major sources of SDF-1 production in the bone marrow. Surprisingly, on a per cell basis, SDF-1 expression per osteoblast was only modestly (less than two-fold) reduced in mice treated with G-CSF. These data raised the possibility that, rather than affecting SDF-1 expression per osteoblast, G-CSF regulated the number of osteoblasts in the bone marrow. To explore this possibility, osteoblast number in the bone marrow was measured by histomorphometry. Indeed, after 5 days of G-CSF treatment, a significant reduction in the number of endosteal osteoblasts was observed [number of osteoblasts per mm bone perimeter ± SEM: 74.8 ± 13.5 (untreated) versus 33.3 ± 3.8 (G-CSF)]. Moreover, expression of osteocalcin (a specific marker of mature osteoblasts) in the bone marrow was sharply reduced during G-CSF treatment: a 47 ± 12 fold reduction in osteocalcin mRNA (relative to b-actin mRNA) was observed in the bone marrow of G-CSF-treated mice compared with untreated mice. Finally, calcein double-labeling experiments showed that the mineral apposition rate was significantly reduced in G-CSF-treated mice. However, RT-PCR analyses showed that the G-CSF receptor is not expressed on osteoblasts. Accordingly, G-CSF had no direct effect on osteoblast activity in vitro. Collectively, these data show that G-CSF potently suppresses osteoblast number/activity in the bone marrow through an indirect mechanism. Since osteoblasts are thought to play a key role in establishing and maintaining the stem cell niche in the bone marrow, these data raise the possibility that G-CSF, by regulating osteoblast function (including SDF-1 expression), may have profound effects on the stem cell niche that ultimately contribute to HPC mobilization.


Blood ◽  
1992 ◽  
Vol 80 (6) ◽  
pp. 1443-1447
Author(s):  
WJ Murphy ◽  
G Tsarfaty ◽  
DL Longo

Recombinant human growth hormone (rhGH) was administered to mice to determine its effect on hematopoiesis. BALB/c mice and mice with severe combined immune deficiency (SCID), which lack T cells and B cells, were administered intraperitoneal injections of rhGH for 7 days. Upon analysis, both strains of mice exhibited an increase in splenic and bone marrow hematopoietic progenitor cell content and cellularity, indicating that rhGH can act as a hematopoietic growth factor. C57BL/6 mice were then placed on azidothymidine (AZT). AZT is a reverse transcriptase inhibitor currently used as a treatment for acquired immune deficiency syndrome (AIDS), but which also produces significant myelotoxic effects. Treatment of mice with rhGH partially counteracted the myelosuppressive properties of AZT. Bone marrow cellularity, hematocrit values, white blood cell counts, and splenic hematopoietic progenitor cell content were all significantly increased if rhGH (20 micrograms injected intraperitoneally every other day) was concurrently administered with AZT. Administration of ovine GH (ovGH), which, unlike rhGH, has no effect on murine prolactin receptors, also prevented the erythroid-suppressive effects of AZT in mice, but had no significant effect on granulocyte counts. Thus, the effects of GH are mediated at least in part through GH receptors in vivo. Additionally, when mice were initially myelosuppressed by several weeks of AZT treatment, the subsequent administration of ovGH resulted in an increase in splenic hematopoietic progenitor cells. No significant pathologic effects were observed in mice receiving either repeated rhGH or ovGH injections. Thus, GH exerts significant direct hematopoietic growth-promoting effects in vivo and may be of potential clinical use to promote hematopoiesis in the face of myelotoxic therapy.


2021 ◽  
Vol 32 (4) ◽  
pp. 491-496
Author(s):  
Prihartini Widiyanti ◽  
Hartmut Kuehn ◽  
Soetjipto Soetjipto

Abstract Objectives Iron is essential for cell growth, differentiation, electron transfer, and oxygen transport. Hyperoxia may increase the turnover of bone matrix components with a net effect of accelerated bone growth. Although hyperoxia was claimed could increase osteoblast activity, but expression level in possible genes which play role in proliferation is still unclear. This research aims to prove the differences of expression level of transferrin receptor gene and iron regulated transporter and other genes of 7F2 under 24 h normoxia, 24 h hyperoxia, and 48 h hyperoxia and the effect of hyperoxia by using osteoblast cell culture 7F2. Methods Reverse transcriptase, real time Polymerase Chain Reaction (PCR), and microarray is used to qualitatively detect gene expression. The computer softwares such as National Center for Biotechnology Information (NCBI) data base, Software Affymetrix, DNA Strider program, Genomatix – DiAlign program, Oligo 5.0 program (Software primer design) from Wojciech & Piotr Rychlik, and Genetyx-Mac version 8.0 have been used to analyze the PCR result. Results Under 24 h hyperoxia, there were 3,884 copies of transferrin receptor mRNA per 1,000,000 copies of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA. After 24 h hyperoxia, 8,325 copies of transferrin receptor mRNA per 1,000,000 GAPDH mRNA copies were found showing 2.1-fold up regulation. After 48 h hyperoxia, there was no significant increase at the level of expression of transferrin receptor mRNA, 8,079 mRNA copies per 1,000,000 copies of mRNA were found (2.0-fold up regulation compared with 24 h normoxia). Conclusions It can be concluded that hyperoxia might have an effect on upregulating the expression of some osteoblast genes which might have an impact on osteoblast activity.


2000 ◽  
Vol 18 (5) ◽  
pp. 947-947 ◽  
Author(s):  
Ivana N. M. Micallef ◽  
Debra M. Lillington ◽  
John Apostolidis ◽  
John A. L. Amess ◽  
Michael Neat ◽  
...  

PURPOSE: To evaluate the incidence of and risk factors for therapy-related myelodysplasia (tMDS) and secondary acute myelogenous leukemia (sAML), after high-dose therapy (HDT) with autologous bone marrow or peripheral-blood progenitor-cell support, in patients with non-Hodgkin’s lymphoma (NHL). PATIENTS AND METHODS: Between January 1985 and November 1996, 230 patients underwent HDT comprising cyclophosphamide therapy and total-body irradiation, with autologous hematopoietic progenitor-cell support, as consolidation of remission. With a median follow-up of 6 years, 27 (12%) developed tMDS or sAML. RESULTS: Median time to development of tMDS or sAML was 4.4 years (range, 11 months to 8.8 years) after HDT. Karyotyping (performed in 24 cases) at diagnosis of tMDS or sAML revealed complex karyotypes in 18 patients. Seventeen patients had monosomy 5/5q−, 15 had −7/7q−, seven had −18/18q−, seven had −13/13q−, and four had −20/20q−. Twenty-one patients died from complications of tMDS or sAML or treatment for tMDS or sAML, at a median of 10 months (range, 0 to 26 months). Sixteen died without evidence of recurrent lymphoma. Six patients were alive at a median follow-up of 6 months (range, 2 to 22 months) after diagnosis of tMDS or sAML. On multivariate analysis, prior fludarabine therapy (P = .009) and older age (P = .02) were associated with the development of tMDS or sAML. Increased interval from diagnosis to HDT and bone marrow involvement at diagnosis were of borderline significance (P = .05 and .07, respectively). CONCLUSION: tMDS and sAML are serious complications of HDT for NHL and are associated with very poor prognosis. Alternative strategies for reducing their incidence and for treatment are needed.


2014 ◽  
Vol 181 (1) ◽  
pp. 76 ◽  
Author(s):  
Hebist Berhane ◽  
Michael W. Epperly ◽  
Julie Goff ◽  
Ronny Kalash ◽  
Shaonan Cao ◽  
...  

Author(s):  
Tetsuo Shikata ◽  
Toshihiko Shiraishi ◽  
Shin Morishita ◽  
Ryohei Takeuchi

This paper describes the effects of the frequency and acceleration amplitude of mechanical vibration on osteoblasts, the bone cells that generate the bone matrix. Their cell proliferation and bone matrix generation were investigated when sinusoidal inertia force was applied to the cells. Bone formation is subject in vivo to mechanical stimulation. Although many researches for bone cells of osteoblastic lineage sensing and responding to mechanical stimulation have been reported mainly in the biochemical field, effects of mechanical stimulation on bone cells are not well understood. After the cells were cultured in culture plates in a CO2 incubator for one day and adhered on the cultured plane, vibrating groups of the culture plates were set on an aluminum plate attached to a exciter and cultured under sinusoidal excitation in another incubator separated from non-vibrating groups of the culture plates. Acceleration amplitude and frequency were set to several kinds of conditions. The time evolution of cell density was obtained by counting the number of cells with a hemocytometer. Calcium salts generated by the cells were observed by being stained with alizarin red S solution and their images were captured with a CCD camera. The vibrating groups for the cell proliferation and the calcium salts staining were sinusoidally excited for 24 hours a day during 28 days of culture. Gene expression of alkaline phosphatase (ALP) and runt-related gene 2 (Runx2) was measured by a real-time reverse transcription polymerase chain reaction (real-time RT-PCR) method. After the vibrating groups for the PCR were excited for 4 days, the total RNAs were extracted. After reverse transcription, real-time RT-PCR was performed. Gene expression for ALP, Runx2, and a housekeeping gene were determined simultaneously for each sample. ALP and Runx2 gene level in each sample was normalized to the measured housekeeping gene level. The following experimental results of sinusoidal excitation of osteoblasts have been shown: (a) Cell density decreased at 0.5 G with increasing frequency in the range from 12.5 to 1000 Hz and increased at 25 Hz with increasing acceleration amplitude from 0 to 0.5 G at 14 days of culture. (b) No calcium salts were observed in the non-vibrating group and the areas of calcium salts observed in the 0.5 G vibration group were larger than those in the 0.25 G group at 25 Hz at 21 days of culture. (c) The mRNA level of ALP at 0.5 G showed the peak at 50 Hz in the range from 12.5 to 1000 Hz and that at 50 Hz showed the peak at 0.5 G in the range from 0.25 to 1 G at 4 days of culture. In the case of Runx2, the same tendency was found. It has been shown that it is important to consider mechanical vibration as well as biochemical aspects in studies of the functional adaptation of cells to mechanical stimulation.


2000 ◽  
Vol 192-195 ◽  
pp. 317-320
Author(s):  
Kunitaka Ohsawa ◽  
Masashi Neo ◽  
Hiroyuki Matsuoka ◽  
H. Akiyama ◽  
H. Ito ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document