Suprasynergistic Peripheral Blood Stem Cell Mobilization in Normal and Fanconi Anemia Knockout Mice by the Combination of G-CSF Plus the CXCR4 Antagonist AMD3100 and the CXCR2 Agonist GRO β

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3185-3185
Author(s):  
Louis M. Pelus ◽  
D. Wade Clapp ◽  
Gary Bridger

Abstract In mice, the CXCR4 antagonist AMD3100 and the CXCR2 agonist GROβ rapidly mobilizes short and long term repopulating hematopoietic stem and progenitor cells (HSPC). Synergy in mobilization is observed using GRO plus G-CSF or AMD plus G-CSF, and we have recently shown synergy in rapid mobilization using AMD plus GROβ. In general, a common feature of mobilization is that only a relatively small percentage of HSPC egress from marrow. We therefore evaluated whether added benefit in HSPC mobilization could be attained by using all three mobilizers in combination. Although this alters the paradigm of rapid mobilization, it addresses shortcomings of poor mobilization response, requirements for multiple aphereses and the need for large numbers of HSPC in transplant and gene therapy applications. We mobilized BALB/c mice with AMD (5 mg/kg SC, 60 min), GROβ (2.5 mg/kg SC, 15 min), G-CSF (100 ug/kg/day, bid, SC x 4 days) or the G-CSF regimen followed by GROβ, AMD or GRO+AMD administered on day 5 and harvest of peripheral blood 15 (GRO; GRO+AMD) or 60 (AMD) min later. Significant CFU-GM/mL blood were mobilized by G-CSF (4362±996), GRO (2562±396) and AMD3100 (991±121) used alone as expected. Single administration of GRO or AMD to mice mobilized by G-CSF and harvest of blood 15 (GRO) and 60 (AMD) min later, resulted in synergistic mobilization of (12,246±2751) and (12,379±953) CFU-GM, respectively. Rapid mobilization by simultaneous injection of GRO+AMD was similar in magnitude (10,709±1041) at 15 min post administration to mobilization by GRO or AMD in combination with a multiday G-CSF regimen. Administration of the combination of GRO+AMD to mice mobilized by G-CSF resulted in suprasynergistic mobilization of 32,510±3569 CFU-GM/mL after 15 min, representing ~5% of total marrow CFU-GM, with no adverse effects. Fanconi Anemia patients mobilize poorly to G-CSF. FancC −/− mice present a phenotype similar to FancC patients and mobilize poorly to G-CSF, which can be improved by the addition of AMD. We evaluated mobilization by GRO, AMD and G-CSF alone and in combination in +/+ C57Bl and FancC −/− mice using the regimens described above. Mobilization by G-CSF was 45% lower in FancC −/− mice (858±21) compared to +/+ controls (1451±80) and AMD+G-CSF synergistically mobilized CFU-GM more effectively in FancC −/− mice (5078±597) than controls (2981±267). Similarly, CFU-GM mobilization by GRO was lower in FancC −/− mice and GRO+G-CSF synergistically mobilized CFU-GM more effectively in FancC −/− mice. The combination of GRO+AMD mobilized CFU-GM within 15 min that was similar in magnitude to mobilization by AMD+G-CSF in wild type (2077±541 vs 2511±176) as well as FancC −/− mice (4924±577 vs 5078±1597). Mobilization by addition of the rapid acting combination of GRO+AMD to mice mobilized by G-CSF was suprasynergistic reaching 44,669±2974 and 41,068±5630 CFU-GM/mL blood in wild type and −/− mice, respectively. In preliminary studies, transduction of mobilized blood cells with FancC and transplant in FancC −/−mice demonstrated durable engraftment. These studies identify highly effective, rapid GRO+AMD mobilization regimens for standalone application in normal donors and combination regimens for potential application in patients who respond poorly to G-CSF or when large quantities of HSPC are required, for example in gene therapy applications.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2137-2137 ◽  
Author(s):  
Linda J. Bendall ◽  
Robert Welschinger ◽  
Florian Liedtke ◽  
Carole Ford ◽  
Aileen Dela Pena ◽  
...  

Abstract Abstract 2137 The chemokine CXCL12, and its receptor CXCR4, play an essential role in homing and engraftment of normal hematopoietic cells in the bone marrow, with the CXCR4 antagonist AMD3100 inducing the rapid mobilization of hematopoietic stem and progenitor cells into the blood in mice and humans. We have previously demonstrated that AMD3100 similarly induces the mobilization of acute lymphoblastic leukemia (ALL) cells into the peripheral blood. The bone marrow microenvironment is thought to provide a protective niche for ALL cells, contributing to chemo-resistance. As a result, compounds that disrupt leukemic cell interactions with the bone marrow microenvironment are of interest as chemo-sensitizing agents. However, the mobilization of normal hematopoietic stem and progenitor cells may also increase bone marrow toxicity. To better evaluate how such mobilizing agents affect normal hematopoietic progenitors and ALL cells, the temporal response of ALL cells to the CXCR4 antagonist AMD3100 was compared to that of normal hematopoietic progenitor cells using a NOD/SCID xenograft model of ALL and BALB/c mice respectively. ALL cells from all 7 pre-B ALL xenografts were mobilized into the peripheral blood by AMD3100. Mobilization was apparent 1 hour and maximal 3 hours after drug administration, similar to that observed for normal hematopoietic progenitors. However, ALL cells remained in the circulation for longer than normal hematopoietic progenitors. The number of ALL cells in the circulation remained significantly elevated in 6 of 7 xenografts examined, 6 hours post AMD3100 administration, a time point by which circulating normal hematopoietic progenitor levels had returned to baseline. No correlation between the expression of the chemokine receptor CXCR4 or the adhesion molecules VLA-4, VLA-5 or CD44, and the extent or duration of ALL cell mobilization was detected. In contrast, the overall motility of the ALL cells in chemotaxis assays was predictive of the extent of ALL cell mobilization. This was not due to CXCL12-specific chemotaxis because the association was lost when correction for background motility was undertaken. In addition, AMD3100 increased the proportion of actively cells ALL cells in the peripheral blood. This did not appear to be due to selective mobilization of cycling cells but reflected the more proliferative nature of bone marrow as compared to peripheral blood ALL cells. This is in contrast to the selective mobilization of quiescent normal hematopoietic stem and progenitor cells by AMD3100. Consistent with these findings, the addition of AMD3100 to the cell cycle dependent drug vincristine, increased the efficacy of this agent in NOD/SCID mice engrafted with ALL. Overall, this suggests that ALL cells will be more sensitive to effects of agents that disrupt interactions with the bone marrow microenvironment than normal progenitors, and that combining agents that disrupt ALL retention in the bone marrow may increase the therapeutic effect of cell cycle dependent chemotherapeutic agents. Disclosures: Bendall: Genzyme: Honoraria.


Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 4 ◽  
Author(s):  
Eva Danner ◽  
Halvard Bonig ◽  
Eliza Wiercinska

Albumin, the most abundant plasma protein, not only controls osmotic blood pressure, but also serves as a carrier for various small molecules, including pharmaceuticals. Its impact on pharmacological properties of many drugs has been extensively studied over decades. Here, we focus on its interaction with the following mobilizing agents: Granulocyte-colony stimulating factor (G-CSF) and AMD3100, where such analyses are lacking. These compounds are widely used for hematopoietic stem cell mobilization of healthy donors or patients. Using albumin-deficient (Alb−/−) mice, we studied the contribution of albumin to mobilization outcomes. Mobilization with the bicyclam CXCR4 antagonist AMD3100 was attenuated in Alb−/− mice compared to wild-type littermates. By contrast, mobilization with recombinant human G-CSF (rhG-CSF), administered twice daily over a five-day course, was significantly increased in Alb−/− mice. In terms of a mechanism, we show that rhG-CSF bioavailability in the bone marrow is significantly improved in Alb−/− mice, compared to wild-type (WT) littermates, where rhG-CSF levels dramatically drop within a few hours of the injection. These observations likely explain the favorable mobilization outcomes with split-dose versus single-dose administration of rhG-CSF to healthy donors.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 824-824 ◽  
Author(s):  
Stefan Schmitt ◽  
Niels Weinhold ◽  
Klaus Dembowsky ◽  
Kai Neben ◽  
Mathias Witzens-Harig ◽  
...  

Abstract Abstract 824 In multiple myeloma (MM), the second most common hematological malignancy, high-dose therapy followed by autologous CD34+ stem cell transplantation (ABSCT) is therapy of choice for younger patients. Standard treatment to mobilize hematopoietic stem cells (HSC) is either G-CSF alone or combined with chemotherapy. In the last years the antagonism of the CXCR4 receptor has been identified as a potent mechanism of HSC release from the bone marrow compartment. This mobilization by CXCR4 antagonists is more direct and more rapid than by G-CSF given over 4 to 6 days, and the combination of G-CSF plus a CXCR4 antagonist is superior to G-CSF alone. Furthermore, HSC mobilized using G-CSF and a CXCR4 antagonist have been shown to result in a rapid and sustained engraftment post-transplantation. POL6326 is a novel, potent and selective CXCR4 antagonist based on the PEM (Protein Epitope Mimetics) technology for intravenous application. In a previous Phase I study in 52 healthy volunteers POL6326 has been demonstrated to effectively mobilize CD34+ stem cells and was very well tolerated. The goal of the Phase II study in newly diagnosed myeloma patients reported here was to test to what extent POL6326 can be used as monotherapy, infused over 1 or 2h, to mobilize sufficient HSC for subsequent autologous transplantation. In our study the minimum number of HSC required for ABSCT was 2 × 106 CD34+ cells/kg body weight (BW). All patients also received CAD/G-CSF (cyclophosphamide, doxorubicin and dexamethasone) about 10 days after POL6326 and leukapheresis. The second goal was to determine tumour cell mobilization by polymerase chain-reaction after POL6326 or CAD/G-CSF respectively. Here we report the first data of this ongoing study. In all doses tested, up to 1200 μg/kg BW over 2h, POL6326 was safe and very well tolerated. During a total number of 38 infusions the only minor adverse event possibly related to study drug was a discrete pruritus of CTC grade 1 at the infusion site during POL6326 administration on two consecutive days. It resolved spontaneously and did not require any medication. This excellent safety and tolerability profile warrants further dose escalation in the ongoing trial. After first diagnosis, patients received 3 cycles of induction chemotherapy with bortezomib (or thalidomide respectively in one single subject) plus doxorubicin and dexamethasone. 3 weeks after the last injection of induction treatment HSC were mobilized with POL6326 given as a 1 or 2h infusion on up to 4 consecutive days according to an intra-individual dose escalation scheme (from 600 to 1200 μg/kg) with consecutive leukapheresis 30 min after end of infusion. In all patients (n=16) we observed an elevation of leukocytes and HSC compared to baseline. In 66% of patients sufficient stem cells were mobilized with POL6326 for ABSCT (with a mean of 2.5 × 106 CD34+ cells/kg BW). In 75 % of these subjects 2 leukapheresis cycles were sufficient to reach the minimum number of HSC. In all patients undergoing ABSCT with HSC mobilized by POL6326, the engraftment was successful. The time to reconstitution ranged from 10 to 19 days (mean 14 days) and was comparable to ABSCT with CAD/G-CSF-mobilized HSC (historical mean of 14 days and a range from 6 to 31 days). Five patients were evaluated for the presence of tumour cells in peripheral blood before mobilization and in leukapheresis products after treatment with POL6326 and CAD/G-CSF. In 2 of these patients we could not detect any tumour cells, neither in all leukapheresis products nor in all peripheral blood samples. In 2 patients a minor contamination with less than 0.0001% of tumour cells was detected both in the peripheral blood before POL6326 and in the leukapheresis products. Finally, 1 patient showed a similarly minor (<0.0001%) percentage of tumour cells only in the apheresis product after POL6326 treatment. However, a significant mobilization of tumour cells (0.001%) was detected after CAD plus G-CSF in this patient. Due to the excellent safety and tolerability profile observed for POL6326 in this study the next steps include further dose escalation. These initial data with low doses of POL6326 indicate that this novel CXCR4 antagonist holds the promise to be eventually used as a stand alone therapy not requiring the application of G-CSF. The preliminary findings of the absence or very low counts of tumour cells in the leukapheresis product generated with POL6326 warrant further investigation. Disclosures: Off Label Use: POL6326 as new CXCR4 antagonist for experimental CD34+ hematopoietic stem cell mobilization. Dembowsky:Polyphor Ltd: Employment. Braun:Cytonet Heidelberg GmbH: Employment. Ludin:Polyphor Ltd: Employment.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 496-496
Author(s):  
Stefan P. Tarnawsky ◽  
Mervin C. Yoder ◽  
Rebecca J. Chan

Juvenile Myelomonocytic Leukemia (JMML) is a rare childhood myelodysplastic / myeloproliferative overlap disorder. JMML exhibits myeloid populations with mutations in Ras-Erk signaling genes, most commonly PTPN11, which confer growth hypersensitivity to GM-CSF. While allogeneic hematopoietic stem cell transplant (HSCT) is the treatment of choice for children with JMML, 50% of children succumb to leukemia relapse; however, the mechanism leading to this high relapse rate is unknown. We hypothesized that the hyperinflammatory nature of JMML may damage the bone marrow microenvironment, leading to poor engraftment of normal donor cells following transplant, permitting residual leukemia cells to outcompete the normal graft, and thus promoting leukemia relapse. Using Vav1 promoter-directed Cre, we generated a mouse model of JMML that conditionally expresses gain-of-function PTPN11D61Yin utero during development. While PTPN11D61Y/+; VavCre+embryos did not demonstrate in utero lethality, we observed a modest reduction of PTPN11D61Y/+; VavCre+ mice at the time of weaning compared to predicted Mendelian frequencies. Further, surviving PTPN11D61Y/+; VavCre+ mice developed elevated peripheral blood leukocytosis and monocytosis as early as 4 weeks of age compared to PTPN11+/+; VavCre+ controls. To address the hypothesis that an aberrant bone marrow microenvironment in the PTPN11D61Y/+ mice leads to poor engraftment of wild-type donor cells following transplant, we examined engraftment of wild-type hematopoietic stem and progenitor cells (HSPCs) in the PTPN11D61Y/+; VavCre+ mice and monitored animals for disease relapse. 16-24 week-old diseased PTPN11D61Y/+; VavCre+ and control PTPN11+/+; VavCre+ mice were lethally irradiated (11 Gy split dose) and transplanted with 5 x 105 CD45.1+ wild-type bone marrow low density mononuclear cells (LDMNCs), which simulates a limiting stem cell dose commonly available in a human HSCT setting. 6 weeks post-HSCT, PTPN11D61Y/+; VavCre+recipients demonstrated an unexpected elevated CD45.1+ donor cell contribution in peripheral blood compared to the control PTPN11+/+; VavCre+ recipients. However, despite superior engraftment in the PTPN11D61Y/+; VavCre+ recipients, these mice had a significantly shorter median survival post-HSCT due to a resurgence of recipient CD45.2-derived leukemic cells. We repeated the experiment using a high dose of CD45.1+ LDMNCs (10 x 106 cells) to determine if providing a saturating dose wild-type cells could prevent the relapse of recipient-derived leukemogenesis and normalize the survival of the PTPN11D61Y/+; VavCre+recipients. While this saturating dose of wild-type cells resulted in high peripheral blood chimerism in both the PTPN11D61Y/+; VavCre+ and PTPN11+/+; VavCre+ recipients, the PTPN11D61Y/+; VavCre+ animals nevertheless demonstrated significantly reduced overall survival. When we examined the cause of mortality in the HSCT-treated PTPN11D61Y/+; VavCre+mice, we found enlarged spleens, hypercellular bone marrow, and enlarged thymuses. Flow cytometry revealed that the majority of cells in the peripheral blood, bone marrow, and spleen were recipient-derived CD45.2+ CD4+ CD8+ T cells. To verify that the disease was neoplastic in origin, secondary transplants into CD45.1/.2 recipients were performed from two independent primary PTPN11D61Y/+; VavCre+and two independent primary PTPN11+/+; VavCre+ controls. Secondary recipients of bone marrow from PTPN11D61Y/+; VavCre+ animals rapidly succumbed to a CD45.2-derived T-cell acute lymphoid leukemia (T-ALL). Previous studies demonstrated that wild-type PTPN11 is needed to protect the integrity of the genome by regulating Polo-like kinase 1 (Plk1) during the mitosis of the cell cycle (Liu et al., PNAS, 2016). We now demonstrate that even when PTPN11 mutant animals are provided with saturating doses of wild-type HSCs, dysregulated residual recipient cells are able to produce relapsed disease. Collectively, these studies highlight the propensity of residual mutant PTPN11 cells to transform after being subjected to mutagenic agents that are commonly used for conditioning regimens prior to allogeneic HSCT. These findings suggest that modified pre-HSCT conditioning regimens bearing reduced mutagenicity while maintaining adequate cytoreductive efficacy may yield lower post-HSCT leukemia relapse in children with PTPN11mutations. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 94 (6) ◽  
pp. 2151-2158 ◽  
Author(s):  
Kevin P. Battaile ◽  
Raynard L. Bateman ◽  
Derik Mortimer ◽  
Jean Mulcahy ◽  
R. Keaney Rathbun ◽  
...  

Fanconi anemia (FA) is an autosomal recessive disorder characterized by birth defects, increased incidence of malignancy, and progressive bone marrow failure. Bone marrow transplantation is therapeutic and, therefore, FA is a candidate disease for hematopoietic gene therapy. The frequent finding of somatic mosaicism in blood of FA patients has raised the question of whether wild-type bone marrow may have a selective growth advantage. To test this hypothesis, a cohort radio-ablated wild-type mice were transplanted with a 1:1 mixture of FA group C knockout (FACKO) and wild-type bone marrow. Analysis of peripheral blood at 1 month posttransplantation showed only a moderate advantage for wild-type cells, but upon serial transplantation, clear selection was observed. Next, a cohort of FACKO mice received a transplant of wild-type marrow cells without prior radio-ablation. No wild-type cells were detected in peripheral blood after transplantation, but a single injection of mitomycin C (MMC) resulted in an increase to greater than 25% of wild-type DNA. Serial transplantation showed that the selection occurred at the level of hematopoietic stem cells. No systemic side effects were observed. Our results show that in vivo selection for wild-type hematopoietic stem cells occurs in FA and that it is enhanced by MMC administration.


Author(s):  
Nicholas Holdreith ◽  
Grace Y Lee ◽  
Vemika Chandra ◽  
Carlo Salas Salinas ◽  
Peter Nicholas ◽  
...  

Hematopoietic stem cell transplantation (HSCT) remains the only curative treatment for a variety of hematological diseases. Allogenic HSCT requires hematopoietic stem cells (HSCs) from matched donors and comes with cytotoxicity and mortality. Recent advances in genome modification of HSCs have demonstrated the possibility of using autologous HSCT-based gene therapy to cure monogenic diseases, such as the inherited bone marrow failure (BMF) syndrome Fanconi Anemia (FA). However, for FA and other BMF syndromes insufficient HSC numbers with functional defects results in delayed hematopoietic recovery and increased risk of graft failure. We and others previously identified the adaptor protein Lnk (Sh2b3) as a critical negative regulator of murine HSC homeostasis. However, whether LNK (SH2B3) controls human HSCs has not been studied. Here, we demonstrate that depletion of LNK via lentiviral expression of miR30-based short hairpin RNAs (shRNAs) resulted in robust expansion of transplantable human HSCs that provided balanced multilineage reconstitution in primary and secondary mouse recipients. Importantly, LNK depletion enhanced cytokine mediated JAK/STAT activation in CD34+ hematopoietic stem and progenitor cells (HSPCs). Moreover, we demonstrate that LNK depletion expands primary HSPCs associated with FA. In xenotransplant, engraftment defects of FANCD2-depleted FA-like HSCs were markedly improved by LNK inhibition. Finally, targeting LNK in primary bone marrow HSPCs from FA patients enhanced their colony forming potential in vitro. Together, these results demonstrate the potential of targeting LNK to expand HSCs to improve HSCT and HSCT-based gene therapy.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4920-4920
Author(s):  
Ingmar Bruns ◽  
Johannes C. Fischer ◽  
Akos G. Czibere ◽  
Cangül Kilic ◽  
Roland Fenk ◽  
...  

Abstract Mobilized peripheral blood stem and progenitor cells are nowadays widely used for transplantation of hematopoietic stem and progenitor cells (PBSCT). These cells can be mobilized into the peripheral blood with cytotoxic chemotherapy, cytokines or both. Currently, G-CSF is most frequently used due to its high efficacy and lack of serious toxicity. However, a serious patient-to-patient variation in the yield of peripheral blood stem and progenitor cells is a feature common of all mobilizations schemes. Therefore, factors determining the collection efficacy have been identified for G-CSF mobilization. Recently a polyethylenglycole-conjugated G-CSF (Peg-G-CSF) has been introduced which has a 12-fold longer half-life than the original compound and therefore leads to long-lasting G-CSF serum-levels after a single injection. Studies on Peg-G-CSF included only small cohorts and no attempts have been made to identify factors influencing the mobilization of blood stem and progenitor cells. Therefore, we retrospectively analyzed 101 unselected patients (66 with multiple myeloma, 26 with non-Hodgkin-lymphoma, 7 with Hodgkin’s disease, 1 with Ewing sarcoma, 1 with malignant germ cell tumor). 27% of patients had active disease, while all others where at least in partial remission after conventional chemotherapy. Patients were treated with a broad range of chemotherapy regimens. The number of cytotoxic chemotherapy cycles administered prior to the mobilization therapy ranged from 1 to 11 (median 4). Mobilization chemotherapy was followed by 6 mg or 12 mg Peg-G-CSF (median 6 mg). Median peripheral blood CD34+ cell maximum in all patients was 65.3/μl (range 0.2–1084 per μl). 12 mg Peg-G-CSF led to a significantly earlier CD34+ cell maximum in the peripheral blood compared to 6 mg Peg-G-CSF (median 13 days vs 15 days, respectively; p=0.01). Overall, a median yield of 8.5 x 10^6 CD34+ cells/kg bodyweight (range 0.2–72.4 x 10^6) was reached with a single apheresis (median, range 1–4). To search for predictors of hematopoietic stem and progenitor cell mobilization, multiple regression analysis was used and revealed CD34+ cell count/μl peripheral blood at the day of apheresis and the processed blood volume during apheresis as predictors for the CD34+ cell yield per kilogram bodyweight. Age, sex, disease type and status were not significantly related to the CD34+ cell count/μl peripheral blood nor the CD34+ cell yield. Interestingly, the number of previous chemotherapy cycles was correlated with the CD34+ cell maximum (p=0.027) with fewer chemotherapy cycles leading to a higher peripheral blood CD34+ cell count and vice versa. In contrast, radiation therapy prior to CD34+ cell mobilization led to a significantly later occurrence of the CD34+ cell maximum in the peripheral blood. Our results confirm the feasibility and efficacy of PBPC mobilization with single dose Peg-G-CSF after cytotoxic chemotherapy shown in previous clinical trials analyzing the largest patient cohort to date and predictors for successful stem cell mobilization with Peg-G-CSF could be identified.


Blood ◽  
1999 ◽  
Vol 94 (6) ◽  
pp. 2151-2158 ◽  
Author(s):  
Kevin P. Battaile ◽  
Raynard L. Bateman ◽  
Derik Mortimer ◽  
Jean Mulcahy ◽  
R. Keaney Rathbun ◽  
...  

Abstract Fanconi anemia (FA) is an autosomal recessive disorder characterized by birth defects, increased incidence of malignancy, and progressive bone marrow failure. Bone marrow transplantation is therapeutic and, therefore, FA is a candidate disease for hematopoietic gene therapy. The frequent finding of somatic mosaicism in blood of FA patients has raised the question of whether wild-type bone marrow may have a selective growth advantage. To test this hypothesis, a cohort radio-ablated wild-type mice were transplanted with a 1:1 mixture of FA group C knockout (FACKO) and wild-type bone marrow. Analysis of peripheral blood at 1 month posttransplantation showed only a moderate advantage for wild-type cells, but upon serial transplantation, clear selection was observed. Next, a cohort of FACKO mice received a transplant of wild-type marrow cells without prior radio-ablation. No wild-type cells were detected in peripheral blood after transplantation, but a single injection of mitomycin C (MMC) resulted in an increase to greater than 25% of wild-type DNA. Serial transplantation showed that the selection occurred at the level of hematopoietic stem cells. No systemic side effects were observed. Our results show that in vivo selection for wild-type hematopoietic stem cells occurs in FA and that it is enhanced by MMC administration.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1400-1400
Author(s):  
Randolf Forkert ◽  
Yon Ko ◽  
Thomas Neuhaus ◽  
Elisabeth Gruenewald ◽  
Silke Schoeneborn ◽  
...  

Abstract Stem cells reside in a physical microenvironment or niche where a balance of signals controls their proliferation, differentiation and death. Components of the specialized microenvironment have generally been defined in terms of cells and signaling pathways affecting stem cell maintenance or expansion. We have defined a role for a matrix glycoprotein that provides a constraining function on hematopoietic stem cells within the bone marrow microenvironment. Osteopontin (OPN) is an abundant glycoprotein in bone that modifies primitive hematopoietic cell number and function in a stem cell non-autonomous manner. Here we analyzed the role of OPN for regulating stem cell mobilization and pool size in times of G-CSF induced marrow stress, a context close to the clinical setting of stem cell mobilization not well understood so far. Bone marrow stromal cells show an enhanced expression of OPN under stimulation with G-CSF, which prompted us to analyze the role of OPN in G-CSF mediated activation of the stem cell niche. First we treated OPN deficient mice and their wild-type littermates with G-CSF for 5 days. We could observe a significant increased stem cell fraction in the peripheral blood and in the bone marrow in the absence of OPN in comparison to the wild-type controls. To evaluate, if this effect is stroma dependent, we first transplanted wild-type bone marrow into wild-type or OPN-deficient recipients. 6 weeks after transplantation we treated these mice with G-CSF for 5 days and analyzed the peripheral blood and the bone marrow for the contents of primitive hematopoietic cells. Here we could detect a significantly increased stem cell fraction in peripheral blood and bone marrow of the OPN−/− recipients in comparison to wild type controls detected by FACS and functional in vitro stem cell assays. We then transplanted the stressed bone marrow in a competitive repopulation assay into wild-type recipients and observed a significant increase of CD45.2 cells from OPN−/− recipient mice up to 12 weeks after transplantation in comparison to wild-type controls, demonstrating an enhanced G-CSF induced expansion of hematopioetic stem cells in the OPN-deficient stem cell niche. Furthermore, we could observe an enhanced expression of Angiopoietin and N-Cadherin in OPN-deficient bone marrow stromal cells after stimulation with G-CSF in comparison to wild-type controls, supporting the stroma dependent expansion of stem cells in the absence of OPN in the G-CSF stimulated stem cell niche. Therefore, OPN is a restricting element of the stem cell niche limiting the size of the stem cell pool and may provide a dynamic mechanism by which excess stem cell expansion is prevented during times of niche stimulation. These findings may provide new insight into expansion and mobilization of hematopoietic stem cells by G-CSF mediated by components of the stem cell niche.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 993-993
Author(s):  
Jakub Tolar ◽  
Margaret L. MacMillan ◽  
Sat Dev Batish ◽  
Cindy Eide ◽  
Yeva Flit ◽  
...  

Abstract Determination of the degree of somatic mosaicism providing functional correction of Fanconi anemia (FA) hematopoiesis has direct implications for gene therapy for FA: it may help assess the percentage of FA hematopoietic cells corrected by gene therapy approaches that are needed to achieve clinically meaningful effects. Hypersensitivity to DNA interstrand cross-linking agents, such as diepoxybutane (DEB) and mitomycin C (MMC), is a cellular marker for diagnosis of FA. However, in some FA patients a population of DEB-resistant PHA-stimulated lymphoblasts (PHA-L) was observed, and this population sometimes varied over time. To assess the significance of this finding on hematopoietic function, we evaluated the MMC sensitivity of bone marrow mononuclear cells (BMMC) and DEB sensitivity of PHA-L and cultured lymphoblastoid cell lines (LCL) in 42 consecutive FA patients referred to the University of Minnesota. In cases where LCL were DEB-resistant, cultured fibroblasts were also studied. BMMC were cultured in the presence of increasing concentrations of MMC. PHA-L and LCL were cultured in DEB at 0.1 mcg/ml. Wild type BM progenitors (N = 17 subjects) proliferated regardless of increasing MMC concentrations (albeit at decreased efficiency at the highest concentrations) as follows: 0 MMC (normalized to 100%), 5 nM MMC (99% [standard deviation, SD, 16%]), 10 nM MMC (90% [SD 22%]), 25 nM MMC (77% [SD21%]), and 50 nM MMC (44% [SD 30%]). Of the 42 FA patients, BMMC failed to proliferate at 0 nM MMC in 10 patients and at 5 nM MMC in 20 patients. Twelve FA patients had MMC resistant BMMC: cells cultured in 5, 10, 25 and 50 nM MMC grew 44% (SD 28%), 35% (SD 24%), 24% (SD 30%) and 17% (SD 32%) of colony numbers in MMC free culture, respectively. Six of these 12 subjects were PHA-L mosaics as determined by DEB sensitivity testing. Four patients with no growth of BMMC at 0 or 5 nM MMC were also somatic mosaics in their PHA-L and LCL. Thus there was no clear correlation between somatic mosaicism as demonstrated by DEB testing in peripheral blood and sensitivity of BMMC to growth in MMC. Clinically, two patients with hematopoietic somatic mosaicism developed severe marrow aplasia, one of which received hematopoietic stem cell transplantation. Four of the mosaic patients had normal or near normal peripheral blood counts with one patient having clonal hematopoiesis by HUMARA assay and only low levels of metaphases with multiple breaks in multiple DEB studies. While patients with hematopoietic somatic mosaicism had mixed populations of DEB sensitive cells in their peripheral blood, all their fibroblast cultures were DEB sensitive. In summary, these data show that the presence of somatic mosaicism per se does not necessarily prevent bone marrow failure. Moreover, the data suggest that patients with stigmata of FA may have chromosomal breakage studies showing few cells (or no cells) with the characteristic changes of FA; in these cases, skin fibroblasts should be tested as well.


Sign in / Sign up

Export Citation Format

Share Document