Myelodysplastic Syndrome (MDS) Displays Profound and Functionally Significant Epigenetic Deregulation Compared to Acute Myeloid Leukemia (AML) and Normal Bone Marrow Cells.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 345-345
Author(s):  
Maria E. Figueroa ◽  
Tamer Fandy ◽  
Melanie J. McConnell ◽  
Windy Berkofsky-Fessler ◽  
Chris Nasrallah ◽  
...  

Abstract MDS are a clinically heterogeneous group of clonal disorders, which share a high frequency of progression to secondary AML (MDS-AML). In contrast to de novo AML, MDS and MDS-AML are uniformly resistant to conventional chemotherapy. Among the few active drugs in MDS are the nucleoside analog DNA methyltransferase inhibitors (MTIs) 5-azacytidine and decitabine. Since tumor suppressor genes such as CDKN2B can be silenced by DNA methylation in MDS, it is believed that reversal of DNA methylation by MTIs might contribute to their anti-tumor effects. However, it is not clear whether methylation-dependent silencing of specific genes are predictive of response or even correlate with response to MTIs. Like MDS, AML also presents epigenetic silencing of CDKN2B and other genes; yet appear to not be as sensitive to MTIs. Given the particular sensitivity of MDS to MTIs and its resistance to standard AML chemotherapy, we hypothesized that MDS is a biologically distinct disease from AML due largely to extensive epigenetic deregulation, which is missed by single locus studies. In order to test this we studied DNA methylation levels at 24,000 gene promoters in 13 MDS pts. and 16 de novo normal karyotype AML cases, and compared and contrasted these to CD34+ bone marrow cells from 8 healthy donors. For this we used the HELP (HpaII tiny fragment Enrichment by Ligation-mediated PCR) assay, a robust method for detection of whole-genome DNA methylation, and using MassArray quantitative methylation for single locus validation. Remarkably, MDS was found to have a far greater number of hypermethylated genes than AML or normal CD34+ cells, while AML and CD34+ cells had similar number of methylated genes (MDS vs. AML: 6303 vs. 4177 promoters, p=0.026; MDS vs. normal CD34+ cells: 6303 vs. 4296 promoters, p=0.056). Using a moderated T test, an aberrant methylation signature of 736 genes (p<0.0000001) was identified in MDS vs. normal CD34+ cells, reflecting extensive epigenetic deregulation in this disease, including p16, CEBPZ, MSH2, CHES1, AKT1, Caspase2, BMP3, DAP and MYOD1. A comparison between MDS and de novo AML identified 498 genes (p<0.00005) differentially methylated, with a clear predominance of hypermethylated promoters in MDS vs. de novo AML. These genes included RUNX2 and 3, GFI1, DAPK2, MDM2, TGFA, CEBPZ and SHARP. Finally, a comparison between normal CD34+ cells and de novo AML demonstrated an aberrant pattern of methylation in 341 genes (p<0.00001), including CXCL1 and 5, PPARD, Caspase 2 HOXA4 and HOXA10, GFI1 and the MLL translocation partner Septin11. 7 of the 13 MDS cases were also examined for gene expression using the Affymetrix Hgu133plus2 array. A significant proportion of the genes that had been found to be methylated were also found to be underexpressed, including p16, DAP, BMP3, HOXA2 and HOXB8. Taken together, our data show that MDS is a unique and distinct biological entity than de novo AML featuring profound and functionally significant genome wide epigenetic deregulation. While the de novo AML methylation profile was clearly different from normal CD34+ cells, it was not as severely altered as MDS. These data also suggest that MTIs are most likely uniquely active in MDS due to their DNA methyltransferase activity.

Blood ◽  
2009 ◽  
Vol 114 (16) ◽  
pp. 3448-3458 ◽  
Author(s):  
Maria E. Figueroa ◽  
Lucy Skrabanek ◽  
Yushan Li ◽  
Anchalee Jiemjit ◽  
Tamer E. Fandy ◽  
...  

Abstract Increasing evidence shows aberrant hypermethylation of genes occurring in and potentially contributing to pathogenesis of myeloid malignancies. Several of these diseases, such as myelodysplastic syndromes (MDSs), are responsive to DNA methyltransferase inhibitors. To determine the extent of promoter hypermethylation in such tumors, we compared the distribution of DNA methylation of 14 000 promoters in MDS and secondary acute myeloid leukemia (AML) patients enrolled in a phase 1 trial of 5-azacytidine and the histone deacetylase inhibitor entinostat against de novo AML patients and normal CD34+ bone marrow cells. The MDS and secondary AML patients displayed more extensive aberrant DNA methylation involving thousands of genes than did the normal CD34+ bone marrow cells or de novo AML blasts. Aberrant methylation in MDS and secondary AML tended to affect particular chromosomal regions, occurred more frequently in Alu-poor genes, and included prominent involvement of genes involved in the WNT and MAPK signaling pathways. DNA methylation was also measured at days 15 and 29 after the first treatment cycle. DNA methylation was reversed at day 15 in a uniform manner throughout the genome, and this effect persisted through day 29, even without continuous administration of the study drugs. This trial was registered at www.clinicaltrials.gov as J0443.


Blood ◽  
2001 ◽  
Vol 97 (5) ◽  
pp. 1172-1179 ◽  
Author(s):  
Shin-ichi Mizuno ◽  
Takahito Chijiwa ◽  
Takashi Okamura ◽  
Koichi Akashi ◽  
Yasuyuki Fukumaki ◽  
...  

Aberrant hypermethylation of tumor suppressor genes plays an important role in the development of many tumors. Recently identified new DNA methyltransferase (DNMT) genes, DNMT3Aand DNMT3B, code for de novo methyltransferases. To determine the roles of DNMT3A, DNMT3B, as well as DNMT1, in the development of leukemia, competitive polymerase chain reaction (PCR) assays were performed and the expression levels of DNMTs were measured in normal hematopoiesis, 33 cases of acute myelogenous leukemia (AML), and 17 cases of chronic myelogenous leukemia (CML). All genes were constitutively expressed, although at different levels, in T lymphocytes, monocytes, neutrophils, and normal bone marrow cells. Interestingly, DNMT3B was expressed at high levels in CD34+ bone marrow cells but down-regulated in differentiated cells. In AML, 5.3-, 4.4-, and 11.7-fold mean increases were seen in the levels of DNMT1, 3A, and3B, respectively, compared with the control bone marrow cells. Although CML cells in the chronic phase did not show significant changes, cells in the acute phase showed 3.2-, 4.5-, and 3.4-fold mean increases in the levels of DNMT1, 3A, and3B, respectively. Using methylation-specific PCR, it was observed that the p15INAK4B gene, a cell cycle regulator, was methylated in 24 of 33 (72%) cases of AML. Furthermore, AML cells with methylatedp15INAK4B tended to express higher levels ofDNMT1 and 3B. In conclusion, DNMTswere substantially overexpressed in leukemia cells in a leukemia type- and stage-specific manner. Up-regulated DNMTs may contribute to the pathogenesis of leukemia by inducing aberrant regional hypermethylation.


Blood ◽  
1997 ◽  
Vol 89 (8) ◽  
pp. 2706-2716 ◽  
Author(s):  
Nobuko Uchida ◽  
Zhi Yang ◽  
Jesse Combs ◽  
Olivier Pourquié ◽  
Megan Nguyen ◽  
...  

Abstract The adhesion molecule BEN/SC1/DM-GRASP (BEN) is a marker in the developing chicken nervous system that is also expressed on the surface of embryonic and adult hematopoietic cells such as immature thymocytes, myeloid progenitors, and erythroid progenitors. F84.1 and KG-CAM, two monoclonal antibodies to rat neuronal glycoproteins with similarity to BEN, cross-react with an antigen on rat hematopoietic progenitors, but F84.1 only also recognizes human blood cell progenitors. We have defined the antigen recognized by F84.1 as the hematopoietic cell antigen (HCA). HCA expression was detected on 40% to 70% of CD34+ fetal and adult bone marrow cells and mobilized peripheral blood cells. Precursor cell activity for long-term in vitro bone marrow cell culture was confined to the subset of CD34+ cells that coexpress HCA. HCA is expressed by the most primitive subsets of CD34+ cells, including all rhodamine 123lo, Thy-1+, and CD38−/lo CD34+ adult bone marrow cells. HCA was also detected on myeloid progenitors but not on early B-cell progenitors. We also describe here the cloning and characterization of cDNAs encoding two variants of the human HCA antigen (huHCA-1 and huHCA-2) and of a cDNA clone encoding rat HCA (raHCA). The deduced amino acid sequences of huHCA and raHCA are homologous to that of chicken BEN. Recombinant proteins produced from either human or rat HCA cDNAs were recognized by F84.1, whereas rat HCA but not human HCA was recognized by antirat KG-CAM. Expression of either form of huHCA in CHO cells conferred homophilic adhesion that could be competed with soluble recombinant huHCA-Fc. The molecular cloning of HCA and the availability of recombinant HCA should permit further evaluation of its role in human and rodent hematopoiesis.


Blood ◽  
1997 ◽  
Vol 89 (4) ◽  
pp. 1165-1172 ◽  
Author(s):  
Russell S. Taichman ◽  
Marcelle J. Reilly ◽  
Rama S. Verma ◽  
Stephen G. Emerson

Abstract Based on anatomic and developmental findings characterizing hematopoietic cells in close approximation with endosteal cells, we have begun an analysis of osteoblast/hematopoietic cell interactions. We explore here the functional interdependence between these two cell types from the standpoint of de novo cytokine secretion. We determined that, over a 96-hour period, CD34+ bone marrow cells had no significant effect on osteoblast secretion of granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, or transforming growth factor-β1 , but in some experiments minor increases in leukemia inhibitory factor levels were observed. However, when CD34+ bone marrow cells were cocultured in direct contact with osteoblasts, a 222% ± 55% (range, 153% to 288%) augmentation in interleukin-6 (IL-6) synthesis was observed. The accumulation of IL-6 protein was most rapid during the initial 24-hour period, accounting for nearly 55% of the total IL-6 produced by osteoblasts in the absence of blood cells and 77% of the total in the presence of the CD34+ cells. Cell-to-cell contact does not appear to be required for this activity, as determined by coculturing the two cell types separated by porous micromembranes. The identity of the soluble activity produced by the CD34+ cells remains unknown, but is not likely due to IL-1β or tumor necrosis factor-α, as determined with neutralizing antibodies. To our knowledge, these data represent the first demonstration that early hematopoietic cells induce the production of molecules required for the function of normal bone marrow microenvironments, in this case through the induction of hematopoietic cytokine (IL-6) secretion by osteoblasts.


Blood ◽  
2000 ◽  
Vol 95 (2) ◽  
pp. 581-585 ◽  
Author(s):  
Vishwanath Bhattacharya ◽  
Peter A. McSweeney ◽  
Qun Shi ◽  
Benedetto Bruno ◽  
Atsushi Ishida ◽  
...  

The authors have shown accelerated endothelialization on polyethylene terephthalate (PET) grafts preclotted with autologous bone marrow. Bone marrow cells have a subset of early progenitor cells that express the CD34 antigen on their surfaces. A recent in vitro study has shown that CD34+ cells can differentiate into endothelial cells. The current study was designed to determine whether CD34+ progenitor cells would enhance vascular graft healing in a canine model. The authors used composite grafts implanted in the dog's descending thoracic aorta (DTA) for 4 weeks. The 8-mm × 12-cm composite grafts had a 4-cm PET graft in the center and 4-cm standard ePTFE grafts at each end. The entire composite was coated with silicone rubber to make it impervious; thus, the PET segment was shielded from perigraft and pannus ingrowth. There were 5 study grafts and 5 control grafts. On the day before surgery, 120 mL bone marrow was aspirated, and CD34+ cells were enriched using an immunomagnetic bead technique, yielding an average of 11.4 ± 5.3 × 106. During surgery, these cells were mixed with venous blood and seeded onto the PET segment of composite study grafts; the control grafts were treated with venous blood only. Hematoxylin and eosin, immunocytochemical, and AgNO3staining demonstrated significant increases of surface endothelialization on the seeded grafts (92% ± 3.4% vs 26.6% ± 7.6%; P = .0001) with markedly increased microvessels in the neointima, graft wall, and external area compared with controls. In dogs, CD34+ cell seeding enhances vascular graft endothelialization; this suggests practical therapeutic applications.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4902-4902
Author(s):  
Akos Czibere ◽  
Wolf C. Prall ◽  
Sabine Knipp ◽  
Andrea Kuendgen ◽  
Luiz F. Zerbini ◽  
...  

Abstract Treatment of patients suffering from myelodysplastic syndromes (MDS) is difficult and frustrating, particularly when in progression or already progressed to secondary acute myeloid leukemia (sAML). In these cases, the bone marrow contains an increasing number of immature cells, which are characterized by reduced apoptotic and increased proliferative activity. Therefore, pro-apoptosis has recently been proposed as a novel therapeutic approach. Exisulind is a potentially pro-apoptotic agent, and therefore, we investigated its influence on proliferation, differentiation, cell cycle and apoptosis in peripheral blood-derived CD34+ stem cells (PBSC) obtained from 10 patients suffering from refractory anaemia with excess of blasts in transformation (RAEB-T), two sAML/MDS cell lines, one de-novo AML cell line and healthy CD34+ bone marrow cells. Incubation of sAML/MDS cells with Exisulind clearly inhibited colony formation in the CFU-assays. Interestingly, Exisulind did not alter the percentages of sAML/MDS cells in G1-, S-, G2-, M-phase, but reduced proliferation and induced apoptosis in this cell type. Likewise, in 8 out of 10 RAEB-T samples Exisulind significantly inhibited proliferation and increased the rate of apoptotic cells. Exisulind had no effect on de-novo AML or normal CD34+ cells. We detected increased c-Jun NH2-terminal kinase activity in sAML/MDS cells treated with Exisulind. Adding a specific JNK-inhibitor to Exisulind-treated sAML/MDS and RAEB-T cells partly abrogated apoptosis, thus proving that Exisulind-mediated apoptosis in sAML/MDS and RAEB-T cells is dependent on JNK activation. We conclude that JNK is one mediator of apoptosis in MDS cells treated with Exisulind. Moreover, our data strongly suggests to explore the potential use of Exisulind as a novel, pro-apoptotic therapy for patients with RAEB-T and sAML/MDS.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1406-1406
Author(s):  
Matthew J Boyer ◽  
Feng Xu ◽  
Hui Yu ◽  
Tao Cheng

Abstract DNA methylation is an epigenetic means of gene regulation and is carried out by a family of methyltransferases of which DNMT1 acts to maintain methylation marks following DNA replication and DNMT3a and DNMT3b methylate DNA de novo. DNMT3b has been shown to be essential for mammalian development and necessary for differentiation of germline and neural progenitor cells. Mutations of DNMT3b in humans lead to a rare autosomal recessive disorder characterized by immunodeficiency, centromeric instability, and facial abnormalities. We have shown by real-time, RT-PCR that DNMT3b mRNA is uniquely over-expressed by approximately 30-fold in immunophenotypically-defined longterm repopulating hematopoietic stem cells (HSCs) that are CD34−lineage−c-kit+Sca-1+ as compared to progenitor and differentiated cell types within the bone marrow and with respect to the other members of the DNMT family, namely DNMT1 and DNMT3a. To determine DNMT3b’s function in HSCs competitive bone marrow transplantation was undertaken. Isolated lineage− enriched bone marrow cells were transduced with a retroviral backbone based on the Murine Stem Cell Virus (MSCV) carrying either GFP and a short, hairpin RNA (shRNA) targeting DNMT3b or GFP alone. Following transduction 1×105 GFP+ cells along with 1×105 competitor cells were transplanted into 9.5 Gray irradiated congenic recipients. Two months following transplantation mice receiving bone marrow cells transduced with DNMT3b shRNA showed a significantly lower engraftment of donor cells as a percentage of total competitor cell engraftment in the peripheral blood as compared to those receiving cells transduced with GFP alone (24.8 vs 3.7, p&lt;0.05) which persisted at 3 months (22.8 vs 1.5, p&lt;0.05). Similarly, within the donor derviced cells in the peripheral blood there was a lower percentage of myeloid (CD11b+) cells at 2 and 3 months in the recipients of DNMT3b shRNA transduced cells as compared to controls. However there was no observed difference in the percentage of peripheral B (CD45R+) or T (CD3+) cells within the donor-derived cells. To determine the mechanism behind the observed engraftment defect with DNMT3b knockdown we cultured GFP+ transduced bone marrow cells in vitro with minimal cytokine support. As a control for our targeting methodology we also transduced bone marrow cells from mice harboring two floxed DNMT3b alleles with a MSCV carrying Cre recombinase and GFP. While lineage− bone marrow cells transduced with GFP alone increased 10-fold in number over two weeks of culture, cells in which DNMT3b was down regulated by shRNA or Cre-mediated recombination only doubled. Culture of lineage− bone marrow cells in methylcellulose medium by the colony-forming cell (CFC) assay revealed increases in the granulocytic and total number of colonies with DNMT3b knockdown or Cre-mediated recombination of DNMT3b similar to the increased myeloid engraftment of DNMT3b shRNA transduced cells observed 1 month following competitive bone marrow transplantation. However when 5,000 of these cells from the first CFC assay were sub-cultured there was a significant loss of colony forming ability within all lineages when DNMT3b was targeted by shRNA or Cre-mediated recombination. Taken together with the decreased engraftment of DNMT3b shRNA cells following competitive bone marrow transplantation, the observed limited proliferation in liquid culture and loss of colony forming ability during serial CFC assays is suggestive of a self-renewal defect of HSCs in the absence of DNMT3b, that was previously only reported in the absence of both DNMT3a and DNMT3b. Further elucidation of this proposed self-renewal defect is being undertaken and results of ongoing studies including long-term culture initiating cell (LTC-IC) assays and identification of genomic sites of DNA methylation within different hematopoietic subsets will also be presented.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 477-477
Author(s):  
Christopher B Cole ◽  
Angela M. Verdoni ◽  
David H Spencer ◽  
Timothy J. Ley

We previously identified recurrent mutations in the DNA methyltransferase DNMT3A in patients with acute myeloid leukemia (AML). DNMT3A and the highly homologous gene DNMT3B encode the two methyltransferases that are primarily responsible for mediating de novo methylation of specific CpG residues during differentiation. Loss of Dnmt3a in hematopoietic stem cells impairs their ability to differentiate into committed progenitors (Challen et al Nat Gen 44:23, 2011). Importantly, DNMT3A mutations are mutually exclusive of the favorable prognosis AML-initiating translocations, including the t(15;17) translocation (which creates the PML-RARA fusion gene), and translocations involving MLL. PML-RARA has been shown to interact with DNMT3A in vitro (Di Croce et al Science 295:1079,2002), and to require DNMT3A to induce methylation and transcriptional silencing of a subset of specific target genes. These findings, and the lack of DNMT3A mutations in APL patients, suggest that PML-RARA may require functional DNMT3A to initiate leukemia. To investigate this possibility, we utilized a well-characterized transgenic mouse model (in a pure B6 background) in which expression of PML-RARA is driven in hematopoietic stem/progenitor cells by the mouse Cathepsin G locus (Ctsg-PML-RARA+/- mice). These mice spontaneously develop acute promyelocytic leukemia (APL) with high penetrance and long latency, and also exhibit a preleukemic phenotype marked by the accumulation of myeloid cells in bone marrow and spleen. In addition, myeloid progenitor cells derived from these mice have the ability to serially replate in methylcellulose cultures, demonstrating aberrant self-renewal. We generated Ctsg-PML-RARA+/- mice lacking Dnmt3a (PML-RARA+/- x Dnmt3a-/-) as well as mice in which conditional ablation of Dnmt3b in hematopoietic cells is driven by Vav-Cre (PML-RARA+/- x Dnmt3b fl/fl x Vav-Cre+). Loss of Dnmt3a completely abrogated the ex vivo replating ability of PML-RARA bone marrow (Figure 1). Although colonies from both PML-RARA+/- and PML-RARA+/- x Dnmt3a-/- mice appeared similar in morphology and number on the first plating, PML-RARA+/- x Dnmt3a-/- marrow ceased to form colonies with subsequent replating (see Figure), and cultured cells lost the expression of the myeloid marker CD11b. The same phenotype was also observed using bone marrow from both genotypes that was secondarily transplanted into wild type recipients, indicating that it is intrinsic to transplantable hematopoietic progenitors. Reintroduction of DNMT3A into bone marrow cells derived from PML-RARA+/- x Dnmt3a-/- mice with retroviral transduction restored replating ability and CD11b expression. Competitive repopulation experiments with PML-RARA+/- x Dnmt3a-/- marrow revealed a decreased contribution to peripheral lymphoid and myeloid cells at 4 weeks, relative to PML-RARA+/- or WT control animals. Finally, 12 weeks after transplantation, recipients of PML-RARA+/- x Dnmt3a-/- bone marrow did not display an accumulation of myeloid cells in the bone marrow and spleen. Importantly, bone marrow from PML-RARA+/- x Dnmt3b fl/fl x Vav-Cre+/- mice displayed no replating deficit or loss of CD11b expression ex vivo, indicating different functions for Dnmt3a versus Dnmt3b in this model. Finally, we interrogated the effect of Dnmt3a loss on bone marrow DNA methylation patterns using a liquid phase DNA capture technique that sampled ∼1.9 million mouse CpGs at >10x coverage. Loss of Dnmt3a caused a widespread loss of DNA methylation in whole bone marrow cells, with 36,000 CpGs that were highly methylated (methylation value >0.7) in the PML-RARA+/- and WT mice, but hypomethylated (methylation value <0.4) in Dnmt3a-/- and PML-RARA+/- x Dnmt3a-/- mice. Characterization of the effect of Dnmt3a loss on leukemia latency, penetrance, and phenotype in PML-RARA+/- mice is currently being defined in a tumor watch. In summary, we have demonstrated that PML-RARA requires functional Dnmt3a (but not Dnmt3b) to drive aberrant self-renewal of myeloid progenitors ex vivo, and that loss of Dnmt3a leads to widespread DNA hypomethylation in bone marrow cells, and abrogates preleukemic changes in mice expressing PML-RARA. This data may explain why DNMT3A mutations are not found in patients with APL initiated by PML-RARA. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 686-686
Author(s):  
Terrence Neal Wong ◽  
Jeffery M. Klco ◽  
Ryan Demeter ◽  
Christopher A. Miller ◽  
Allegra Petti ◽  
...  

Abstract Our group (Welch, Cell 2012) previously showed that hematopoietic stem and progenitor cells (HSPCs) acquire somatic mutations with age. This produces a genetically heterogeneous HSPC population with each HSPC possessing its own unique set of mutations. Later work from our group (Xie, Nature Medicine 2014) and others (Genovese, Jaiswal, NEJM 2014) demonstrated that some these mutations may provide HSPCs with a fitness advantage, allowing them to clonally expand over time in healthy individuals. We recently published data (Wong, Nature 2015) suggesting that cytotoxic therapy can select for HSPC clones with TP53 mutations, resulting in their clonal expansion and contributing to the subsequent development of therapy-related AML/MDS. From these data, we hypothesized that the intensive cytoreductive chemotherapy used to treat AML poses a significant selection pressure on a patient's non-malignant HSPC population, favoring HSPCs with specific somatic mutations and potentially resulting in oligoclonal hematopoiesis even after elimination of the founding AML clone. To test this hypothesis, we performed enhanced exome sequencing on cryopreserved bone marrow cells from 25 adult de novo AML patients (who received a "7+3" regimen for induction of remission) at time of their initial diagnosis, at first morphologic remission (~day 30), and at long-term follow up (at first relapse or during a prolonged first remission) (Klco, JAMA, in press). In 15 patients, we observed genetic clearance of the AML founding clone at the time of first morphologic remission (defined as all AML founding clone mutations declining to a variant allele frequency (VAF) < 2.5%). Surprisingly, in 5 of the 15 patients exhibiting clearance of their AML founding clone, we observed a concomitant expansion of a non-malignant clonal population during cytoreductive therapy, resulting in long-lived clonal hematopoiesis. Somatic mutations harbored by these expanding hematopoietic clones were validated with a high-coverage PCR-based sequencing approach. In contrast to the studies highlighting clonal hematopoiesis in individuals unexposed to chemotherapy, patients with evidence of persistent clonal hematopoiesis after cytoreductive therapy (median age = 52.2 years) were similar in age to patients without such evidence (median age = 54.1 years). The majority of these "rising clones" harbored somatic mutations in genes frequently mutated in AML such as DNMT3A, TET2 and TP53. Using next-generation sequencing and droplet digital PCR, we determined that in all of the patients with an expanding non-malignant clone, the clone was, in fact, present in the initial AML diagnosis sample at very low VAFs (0.007-0.75%). These populations rapidly expanded with chemotherapy, comprising 13-57% of the total hematopoietic population upon its completion. In all 4 of cases with sample availability, these clones remained at an expanded level a year or more after initial chemotherapy exposure. These results suggest that certain non-malignant HSPCs, having previously acquired specific aging-related somatic mutations, may gain a competitive fitness advantage after cytoreductive therapy, expand, and persist long after the completion of chemotherapy. Two of the five patients with clonal non-leukemic hematopoiesis post-chemotherapy relapsed. In both patients, the relapsed AML clone evolved from the original AML founding clone and did not involve the non-malignant clonal population, which also persisted at relapse. Both patients re-achieved morphologic remission with salvage therapy. A post-salvage therapy bone marrow sample was available in one of the cases. Interestingly, it showed that the patient's non-malignant clonal population expanded even further with salvage therapy, eventually comprising almost 80% of the total bone marrow cells. These results show that non-malignant oligoclonal hematopoiesis is common in AML patients after cytoreductive chemotherapy, with non-malignant HSPCs carrying certain somatic mutations often gaining a fitness advantage and expanding. The long-term clinical consequences of oligoclonal hematopoiesis after cytoreductive chemotherapy are unknown but are likely to be different from oligoclonal hematopoiesis developing in healthy elderly individuals. Additional studies will be required to define the mechanisms by which certain HSPCs gain a fitness advantage after cytoreductive chemotherapy. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document