Engineering Kunitz Domain of Human Tissue Factor Pathway Inhibitor-2 to Selectively Inhibit Fibrinolysis: An Antifibrinolytic Agent with Potential to Replace Aprotinin

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 24-24
Author(s):  
Madhu S Bajaj ◽  
Godwin I Ogueli ◽  
Amy E Schmidt ◽  
Sreejesh Shanker ◽  
S. Paul Bajaj

Abstract Tissue factor pathway inhibitor-2 (TFPI-2) inhibits factor XIa, plasma kallikrein and factor VIIa/tissue factor; accordingly, it has been proposed for use as an anticoagulant. Full-length TFPI-2 or its isolated first Kunitz domain (KD1) also inhibits plasmin and therefore it has been proposed for use as an antifibrinolytic agent. However, the anticoagulant properties of TFPI-2 or KD1 would diminish its antifibrinolytic function. In this report, structure based investigations and analysis of the serine proteases profiles revealed that coagulation enzymes prefer a hydrophobic residue at the P2′ (nomenclature of Schechter and Berger, BBRC, 27:157–162, 1967) position in their substrates/inhibitors, whereas plasmin prefers a positively charged arginine residue at the corresponding position in its substrates/inhibitors. Based upon this observation, we changed the P2′ residue Leu17 (bovine pancreatic trypsin inhibitor/aprotinin numbering) in KD1 to Arg (KD1-L17R) and compared its inhibitory properties with the wild-type KD1 (KD1-WT). Both WT and KD1-L17R were expressed in E. Coli, folded and purified to homogeneity. Amino-terminal sequences and mass spectra revealed proper folding of the KD1-WT and KD1-L17R. As compared to KD1-WT, the KD1-L17R neither prolonged the activated partial thromboplastin time of normal plasma nor it inhibited factor XIa, plasma kallikrein or factor VIIa/tissue factor. Further, KD1-L17R inhibited plasmin with ~4-fold increased affinity. In a mouse liver laceration model of bleeding from small vessels, KD1-L17R reduced total blood loss by 84% compared with KD1-WT, which reduced total blood loss by 10%. Moreover, in this bleeding model, KD1-L17R was more effective than aprotinin (70% reduction), which has been used as an antifibrinolytic agent to decrease blood loss during major surgery. In this model, KD1-L17R was also more effective than the lysine analogue tranexamic acid (52% reduction). In additional studies, in a tail transection model of bleeding from a large vessel, KD1-L17R reduced total blood loss by 70% and was more effective than KD1-WT (46% reduction), aprotinin (43% reduction) and tranexamic acid (67% reduction). Notably, as compared to aprotinin, renal toxicity manifesting as multifocal tubular necrosis by histopathology was not observed with KD1-L17R or KD1-WT. In conclusion, KD1-L17R is a specific inhibitor of plasmin without anticoagulant properties and is more effective in reducing blood loss compared with known antifibrinolytic agents in clinical use.

Blood ◽  
1997 ◽  
Vol 90 (3) ◽  
pp. 944-951 ◽  
Author(s):  
Zhong-Fu Huang ◽  
Darryl Higuchi ◽  
Nina Lasky ◽  
George J. Broze

Abstract Tissue factor pathway inhibitor (TFPI) is a multivalent Kunitz-type proteinase inhibitor that directly inhibits factor Xa and, in a factor Xa–dependent fashion, produces feedback inhibition of the factor VIIa/TF catalytic complex responsible for the initiation of coagulation. To further define the physiologic role of TFPI, gene-targeting techniques were used to disrupt exon 4 of the TFPI gene in mice. This exon encodes Kunitz domain-1 of TFPI, which is required for factor VIIa/TF inhibition. In mice heterozygous for TFPI gene-disruption, TFPIK1(+/−), an altered form of TFPI lacking Kunitz domain-1, circulates in plasma at a concentration ∼40% that of wild-type TFPI. TFPIK1(+/−) animals have plasma TFPI activity ∼50% that of wild-type mice, based on a functional assay that measures factor VIIa/TF inhibition, and have a normal phenotype. Sixty percent of TFPIK1(−/−) mice die between embryonic days E9.5 and E11.5 with signs of yolk sac hemorrhage. The extent of structural abnormalities within the yolk sac vascular system appears to mirror the condition of the embryo, suggesting that the embryonic and extra-embryonic tissues are both responding to same insult, presumably circulatory insufficiency. Organogenesis is normal in TFPIK1 null animals that progress beyond E11.5, but hemorrhage, particularly in the central nervous system and tail, is evident during later gestation and none of the TFPIK1(−/−) mice survive to the neonatal period. The presence of immunoreactive fibrin(ogen) in the liver and intravascular thrombi is consistent with the notion that unregulated factor VIIa/TF action and a consequent consumptive coagulopathy underlies the bleeding diathesis in these older embryos. Human TFPI-deficient embryos may suffer a similar fate because an individual with TFPI deficiency has not been identified.


Blood ◽  
1997 ◽  
Vol 90 (3) ◽  
pp. 944-951 ◽  
Author(s):  
Zhong-Fu Huang ◽  
Darryl Higuchi ◽  
Nina Lasky ◽  
George J. Broze

Tissue factor pathway inhibitor (TFPI) is a multivalent Kunitz-type proteinase inhibitor that directly inhibits factor Xa and, in a factor Xa–dependent fashion, produces feedback inhibition of the factor VIIa/TF catalytic complex responsible for the initiation of coagulation. To further define the physiologic role of TFPI, gene-targeting techniques were used to disrupt exon 4 of the TFPI gene in mice. This exon encodes Kunitz domain-1 of TFPI, which is required for factor VIIa/TF inhibition. In mice heterozygous for TFPI gene-disruption, TFPIK1(+/−), an altered form of TFPI lacking Kunitz domain-1, circulates in plasma at a concentration ∼40% that of wild-type TFPI. TFPIK1(+/−) animals have plasma TFPI activity ∼50% that of wild-type mice, based on a functional assay that measures factor VIIa/TF inhibition, and have a normal phenotype. Sixty percent of TFPIK1(−/−) mice die between embryonic days E9.5 and E11.5 with signs of yolk sac hemorrhage. The extent of structural abnormalities within the yolk sac vascular system appears to mirror the condition of the embryo, suggesting that the embryonic and extra-embryonic tissues are both responding to same insult, presumably circulatory insufficiency. Organogenesis is normal in TFPIK1 null animals that progress beyond E11.5, but hemorrhage, particularly in the central nervous system and tail, is evident during later gestation and none of the TFPIK1(−/−) mice survive to the neonatal period. The presence of immunoreactive fibrin(ogen) in the liver and intravascular thrombi is consistent with the notion that unregulated factor VIIa/TF action and a consequent consumptive coagulopathy underlies the bleeding diathesis in these older embryos. Human TFPI-deficient embryos may suffer a similar fate because an individual with TFPI deficiency has not been identified.


2001 ◽  
Vol 86 (10) ◽  
pp. 959-972 ◽  
Author(s):  
Jens Birktoft ◽  
Sarah Steer ◽  
S. Paul Bajaj ◽  
Madhu Bajaj

SummaryHuman tissue factor pathway inhibitor (TFPI) is a modular protein comprised of three Kunitz type domains flanked by peptide segments that are less structured. The sequential order of the elements are: an N-terminal acidic region followed by the first Kunitz domain (K1), a linker region, a second Kunitz domain (K2), a second linker region, the third Kunitz domain (K3), and the C-terminal basic region. The K1 domain inhibits factor VIIa complexed to tissue factor (TF) while the K2 domain inhibits factor Xa. No direct protease inhibiting functions have been demonstrated for the K3 domain. Importantly, the Xa-TFPI complex is a much more potent inhibitor of the VIIa-TF than TFPI by itself. Furthermore, the C-terminal basic region of TFPI is required for rapid physiologic inhibition of coagulation and is needed for the inhibition of smooth muscle cell proliferation. Although a number of additional targets for attachment have been reported, the C-terminal basic region appears to play an important role in binding of TFPI to cell surfaces. A primary site of TFPI synthesis is endothelium and the endothelium-bound TFPI contributes to the antithrombotic potential of the vascular endothelium. Further, increased levels of plasma TFPI under septic conditions may represent endothelial dysfunction. We have proposed that the extravascular cells that synthesize TF also synthesize TFPI providing dual components necessary for the regulation of clotting in their microenvironment. Like the TF synthesis in these cells is augmented by serum, so is the case with the TFPI gene expression. TFPI gene knock out mice reveal embryonic lethality suggesting a possible role of this protein in early development. Since TF-induced coagulation is thought to play a significant role in many disease states, including disseminated intravascular clotting, sepsis, acute lung injury and cancer, recombinant TFPI may be a beneficial therapeutic agent in these disease states to attenuate pathologic clotting. The purpose of this review is to outline recent developments in the field related to the structural specificity and biology of TFPI.


1996 ◽  
Vol 75 (05) ◽  
pp. 796-800 ◽  
Author(s):  
Sanne Valentin ◽  
Inger Schousboe

SummaryIn the present study, the interaction between tissue factor pathway inhibitor (TFPI) and phospholipids has been characterized using a microtitre plate assay. TFPI was shown to bind calcium-independently to an acidic phospholipid surface composed of phosphatidylserine, but not a surface composed of the neutral phosphatidylcholine. The interaction was demonstrated to be dependent on the presence of the TFPI C-terminus. The presence of heparin (1 U/ml, unfractionated) was able to significantly reduce the binding of TFPI to phospholipid. The interaction of TFPI with phosphatidylserine was significantly decreased in the presence of calcium, but this was counteracted, and even enhanced, following complex formation of TFPI with factor Xa prior to incubation with the phospholipid surface. Moreover, a TFPI variant, not containing the third Kunitz domain and the C-terminus, was unable to bind to phospholipid. However, following the formation of a TFPI/factor Xa-complex this TFPI variant was capable of interacting with the phospholipid surface. This indicates that the role of factor Xa as a TFPI cofactor, at least in part, is to mediate the binding of TFPI to the phospholipid surface.


2005 ◽  
Vol 280 (23) ◽  
pp. 22308-22317 ◽  
Author(s):  
Cristina Lupu ◽  
Xiaohong Hu ◽  
Florea Lupu

Tissue factor pathway inhibitor (TFPI) blocks tissue factor-factor VIIa (TF-FVIIa) activation of factors X and IX through the formation of the TF-FVIIa-FXa-TFPI complex. Most TFPI in vivo associates with caveolae in endothelial cells (EC). The mechanism of this association and the anticoagulant role of caveolar TFPI are not yet known. Here we show that expression of caveolin-1 (Cav-1) in 293 cells keeps TFPI exposed on the plasmalemma surface, decreases the membrane lateral mobility of TFPI, and increases the TFPI-dependent inhibition of TF-FVIIa. Caveolae-associated TFPI supports the co-localization of the quaternary complex with caveolae. To investigate the significance of these observations for EC we used RNA interference to deplete the cells of Cav-1. Functional assays and fluorescence microscopy revealed that the inhibitory properties of TFPI were diminished in EC lacking Cav-1, apparently through deficient assembly of the quaternary complex. These findings demonstrate that caveolae regulate the inhibition by cell-bound TFPI of the active protease production by the extrinsic pathway of coagulation.


2001 ◽  
Vol 86 (12) ◽  
pp. 1573-1577 ◽  
Author(s):  
Perenlei Enkhbaatar ◽  
Mitsuhiro Uchiba ◽  
Hirotaka Isobe ◽  
Hiroaki Okabe ◽  
Kenji Okajima

SummaryExcessive production of nitric oxide (NO) by the inducible form of NO synthase (iNOS) plays a key role in the development of endotoxin shock. Tumor necrosis factor-α (TNF-α) induces iNOS, thereby contributing to the development of shock. We recently reported that recombinant tissue factor pathway inhibitor (r-TFPI), an important inhibitor of the extrinsic pathway of the coagulation system, inhibits TNF-α production by monocytes. In this study, we investigated whether r-TFPI could ameliorate hypotension by inhibiting excessive production of NO in rats given lipopolysaccharide (LPS). Pretreatment of animals with r-TFPI prevented LPS-induced hypotension. Recombinant TFPI significantly inhibited the increases in both the plasma levels of NO2 -/NO3 - and lung iNOS activity 3 h after LPS administration. Expression of iNOS mRNA in the lung was also inhibited by intravenous administration of r-TFPI. However, neither DX-9065a, a selective inhibitor of factor Xa, nor an inactive derivative of factor VIIa (DEGR-F.VIIa) that selectively inhibits factor VIIa activity, had any effect on LPS-induced hypotension despite their potent anticoagulant effects. Moreover, neither the plasma levels of NO2 -/NO3 - nor lung iNOS activity were affected by administration of DX-9065a and DEGR-F.VIIa. These results suggested that r-TFPI ameliorates LPS-induced hypotension by reducing excessive production of NO in rats given LPS and this effect was not attributable to its anticoagulant effects, but to the inhibition of TNF-α production.


2013 ◽  
Vol 289 (3) ◽  
pp. 1732-1741 ◽  
Author(s):  
Michael Dockal ◽  
Rudolf Hartmann ◽  
Markus Fries ◽  
M. Christella L. G. D. Thomassen ◽  
Alexandra Heinzmann ◽  
...  

Tissue factor pathway inhibitor (TFPI) is a Kunitz-type protease inhibitor that inhibits activated factor X (FXa) via a slow-tight binding mechanism and tissue factor-activated FVII (TF-FVIIa) via formation of a quaternary FXa-TFPI-TF-FVIIa complex. Inhibition of TFPI enhances coagulation in hemophilia models. Using a library approach, we selected and subsequently optimized peptides that bind TFPI and block its anticoagulant activity. One peptide (termed compound 3), bound with high affinity to the Kunitz-1 (K1) domain of TFPI (Kd ∼1 nm). We solved the crystal structure of this peptide in complex with the K1 of TFPI at 2.55-Å resolution. The structure of compound 3 can be segmented into a N-terminal anchor; an Ω-shaped loop; an intermediate segment; a tight glycine-loop; and a C-terminal α-helix that is anchored to K1 at its reactive center loop and two-stranded β-sheet. The contact surface has an overall hydrophobic character with some charged hot spots. In a model system, compound 3 blocked FXa inhibition by TFPI (EC50 = 11 nm) and inhibition of TF-FVIIa-catalyzed FX activation by TFPI (EC50 = 2 nm). The peptide prevented transition from the loose to the tight FXa-TFPI complex, but did not affect formation of the loose FXa-TFPI complex. The K1 domain of TFPI binds and inhibits FVIIa and the K2 domain similarly inhibits FXa. Because compound 3 binds to K1, our data show that K1 is not only important for FVIIa inhibition but also for FXa inhibition, i.e. for the transition of the loose to the tight FXa-TFPI complex. This mode of action translates into normalization of coagulation of hemophilia plasmas. Compound 3 thus bears potential to prevent bleeding in hemophilia patients.


1994 ◽  
Vol 303 (3) ◽  
pp. 923-928 ◽  
Author(s):  
T J Girard ◽  
D Gailani ◽  
G J Broze

Tissue factor pathway inhibitor (TFPI) is a factor Xa-dependent inhibitor of the factor VIIa-tissue factor complex of blood coagulation. The primary amino acid sequence of canine TFPI has been deduced from cDNA sequences obtained using the techniques of reverse transcription followed by amplification using PCR and conventional screening of a canine endothelial cell cDNA library. The open reading frame for canine TFPI encodes a signal peptide of 28 amino acids followed by a 40.7 kDa protein of 368 amino acids. Similar to human, rat and rabbit TFPI, canine TFPI contains a negatively-charged cluster of amino acids at its mature amino-terminus, followed by three Kunitz-type proteinase inhibitory domains and a cluster of positively-charged amino acids near its carboxy-terminus. In contrast to other TFPIs, following its second Kunitz-type proteinase inhibitory domain canine TFPI contains an additional amino acid insert which includes a nanomeric peptide-sequence repeated six times. Recombinant canine TFPI was expressed in both bacterial- and insect cell-expression systems for functional analysis and the generation of antibodies. The recombinant canine TFPI inhibits tissue factor-induced coagulation in an in vitro canine system. Immunoprecipitation of TFPI from canine plasma, followed by Western-blot analysis, tentatively identifies canine TFPI as an 80,000 kDa protein. Anti-peptide antibodies raised to the nanomeric peptide repeat immunoprecipitate an identical, cross-reactive, 80,000 kDa protein.


1997 ◽  
Vol 78 (03) ◽  
pp. 1138-1141 ◽  
Author(s):  
Yuichiro Sato ◽  
Yujiro Asada ◽  
Kousuke Marutsuka ◽  
Kinta Hatakeyama ◽  
Yuichi Kamikubo ◽  
...  

SummaryTissue factor (TF), a transmembrane glycoprotein, forms a high affinity complex with factor Vll/VIIa (FVIIa) and thereby initiates blood coagulation. Tissue factor pathway inhibitor (TFPI) is an endogenous protease inhibitor of TF/FVIIa-initiated coagulation. We previously reported that TF was a strong chemotactic factor for cultured vascular smooth muscle cells (SMCs). In this study, we examined the contribution of FVIIa and the effect of TFPI to TF-induced cultured SMC migration. TF/FVIIa complex showed a strong migration ability, however, neither TF alone nor FVIIa induced SMC migration. TF/FVIIa treated by a serine protease inhibitor and the complex of TF and inactivated FVIIa (DEGR-FVIIa) did not stimulate SMC migration. Pretreatment with hirudin and the antibodies to a-thrombin and factor X had no effect on TF/FVIIa-induced SMC migration, although a-thrombin and factor Xa also induced SMC migration respectively. TFPI markedly inhibited TF/FVIIa-induced SMC migration in a concentration-dependent manner, but did not affect the SMC migration induced by platelet-derived growth factor (PDGF)-BB, basic fibro blast-growth factor (bFGF), or a-thrombin. These results indicate that the catalytic activity of TF/FVIIa complex is important on SMC migration, and TFPI can reduce SMC migration as well as thrombosis.


Sign in / Sign up

Export Citation Format

Share Document