Ras Promotes Production of Reactive Oxygen Species in Normal Human CD34+ Cells: Role in Promoting Cell Survival and Protein Phosphorylation

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3797-3797
Author(s):  
Paul S Hole ◽  
Lorna Pearn ◽  
Philip E James ◽  
Alan Burnett ◽  
Richard L Darley ◽  
...  

Abstract Activating RAS mutations are one of the most frequent molecular abnormalities associated with acute myeloid leukemia (AML) and have also been linked to induction of reactive oxygen species (ROS). ROS play an important role in immune defense but also regulate intracellular signaling and are contributing factors in several cancer models especially those associated with oncogenic Ras activity. Here we report that constitutively active Ras expression strongly promotes production of ROS in human CD34+ cells and that this is linked to growth-factor independent survival and hyper-phosphorylation of kinases in these cells. Expression of H-RasG12V in human CD34+ cells was achieved by retroviral infection using a vector co-expressing green fluorescent protein (GFP). Using luminol-based chemiluminescence, we found that mutant Ras induced constitutive production of superoxide anions (O2−) in CD34+ cells (6.3±2.1 fold greater than controls; p<0.01). Electron paramagnetic resonance spectroscopy confirmed the presence of O2−. Hydrogen peroxide (H2O2) (which forms via dismutation of O2minus;) was also elevated (2.7±0.1μM H2O2 vs <0.5μM in controls, measured using Amplex Red). Superoxide (and H2O2) can be produced via the NOX enzyme family of oxidases. NOX inhibitor treatment dramatically suppressed O2− production induced by mutant Ras (100±0.1% inhibition with diphenyleneiodonium, p<0.001) whereas Rotenone, a mitochondrial O2− inhibitor had no effect, suggesting NOX proteins are the predominant source of ROS in these cells. Consistent with this, Ras expressing cells showed greater accumulation of the NOX2 regulatory proteins Rac, p47phox and p67phox in the plasma membrane. Ras also strongly promoted the survival of human CD34+ cells following incubation for 48 hours in medium without growth factors or serum (Ras 59±3.3% viable vs control 26±3.9%; p<0.001, as determined by Annexin V and 7-AAD staining). Growth factor-independent survival of Ras-expressing (but not control) cells decreased significantly (p<0.001; ANOVA) in a cell density-dependent manner, suggesting the presence of autocrine/paracrine pro-survival factors. In order to determine whether these factors could influence the survival of control cells in a paracrine fashion, control CD34+ progenitors (expressing GFP) were co-cultured with an increasing proportion of cells expressing mutant Ras (co-expressing DsRed), enabling analysis of individual cell populations in mixed culture by flow cytometry. Ras expressing cells significantly promoted survival of co-cultured control cells in a ‘dose’-dependent manner; control cells 33±1.5% viable in 1:1 co-culture vs 21±5.1% when cultured alone (p<0.01, ANOVA). In addition, initial data shows treatment with catalase suppressed control cell survival under co-culture conditions. This suggests that the presence of H2O2 is necessary in mediating this pro-survival effect. Ras-expressing cells also demonstrated constitutive phosphorylation of a wide variety of proteins associated with growth and survival including Akt, PDK-1 and PKC which have previously shown to be a critical effectors of Ras in CD34+cells (Darley et al, Blood, 2007). H2O2 promotes protein phosphorylation via phosphatase inhibition (Rhee, Science, 2007), suggesting that phosphorylation of these molecules could be dependent on the high levels of H2O2 produced by Ras CD34+ cells. In support of this, we found that the phosphorylation of PKC in Ras (but not control) cells increased in a density-dependent manner. Treatment with catalase reduced pPKC levels in mutant Ras expressing cells in a dose-dependent manner, supporting a role for H2O2 in promoting protein phosphorylation. In summary, these data show for the first time that Ras strongly promotes ROS production via NOX family proteins in normal human progenitor cells and that ROS are likely to play a key role in promoting cell survival and phosphorylation of intracellular proteins.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3859-3859
Author(s):  
Li ang Li ◽  
Tinisha McDonald ◽  
Hardik Modi ◽  
Arjun Sehgal ◽  
Ravi Bhatia

Abstract SHP-2 (ptpn11), a Src homology 2 (SH2) domain-containing protein-tyrosine phosphatase, is expressed at high levels in hematopoietic cells and regulates downstream signaling from growth factor (GF) receptors. SHP-2 has been shown to play an important role in murine hematopoiesis. Moreover, several SHP-2 activating mutations have been identified in myeloid malignancies and there is interest in the development of SHP-2 inhibitors for cancer treatment. On the other hand previous report suggested that SHP-2 inhibition was associated with enhanced GF responsiveness in human hematopoietic cell lines. However the role of SHP-2 signaling in normal human hematopoietic stem and progenitor cell growth has not been studied. Here we investigated the function of SHP-2 in normal human hematopoiesis by inhibiting SHP-2 expression in cord blood (CB) CD34+ cells with stable SHP-2 shRNA expression. We transduced CB CD34+ cells with lentivirus vectors coexpressing SHP-2 specific shRNAs (Si-1 or Si-2) or a control shRNA (Ctrl) and RFP and selected RFP expressing CD34+ cells by flow cytometry sorting. We observed >80% inhibition of SHP-2 expression by Western blotting in Si-1 or Si-2 shRNA transduced cells compared with Ctrl shRNA transduced cells. We observed that culture with increasing concentrations of GF was associated with markedly reduced GF-induced stimulation of proliferation of SHP-2-knockdown CD34+ cells compared to controls. In addition we observed significantly increased apoptosis of SHP-2-knockdown CD34+ cells cultured under low and high GF conditions compared to controls, but little increase in apoptosis in GF-deprived cells, indicating markedly reduced response of SHP-2-knockdown cells to GF-mediated promotion of cell survival. SHP-2-knockdown CD34+ cells also demonstrated significantly reduced expansion in cell numbers following culture in high GF conditions compared with controls (115.3, 25.5 and 10.4 fold expansion for Ctrl, Si-1 and Si-2 at day 7). Analysis of the nature of cells generated in GF culture showed significantly reduced generation of both myeloid (CD33+, CD11b+ and CD14+) and erythroid cells from SHP-2-knockdown CD34+ cells compared with controls, with relatively greater inhibition of myeloid compared with erythroid differentiation. On the other hand CD34+ cell numbers were retained at levels similar to controls after culture. We also observed significantly reduced cell expansion and differentiation and higher apoptotic rates of SHP-2-knockdown cells cultured under either myeloid promoting (IL-3+SCF+G-CSF+GM-CSF) or erythroid promoting (SCF+EPO) GF conditions. SHP-2-knockdown cells demonstrated reduced activation of MAPK and STAT5 but not Akt on Western blotting that was associated with reduced MCL-1 expression, consistent with their reduced GF mediated proliferation and survival. Expression of the transcription factors SCL1, GATA-1, NF-E2 and FOG-1 was increased in SHP-2 knockdown CD34+ cells compared to controls, consistent with the relatively higher retention of CD34+ and erythroid cells compared with myeloid cells after culture. In conclusion, we show that SHP-2 knockdown in human CD34+ cells results in markedly decreased responsiveness to GF stimulation with significantly increased apoptosis, markedly diminished proliferation and reduced generation of differentiated cells during GF culture. A relative retention of the CD34+ cell population was seen despite increased apoptosis, which may be the result of reduced cell turnover and altered transcription factor expression in SHP-2-knockdown cells, and is in contrast to reduced stem cell self-renewal observed following SHP-2 knockdown in murine models. These results indicate a critical role for SHP-2 in GF mediated signaling responses in human hematopoietic stem/progenitor cells. These studies also caution that therapeutic SHP-2 inhibition could be associated with significant hematopoietic toxicity.


Blood ◽  
2010 ◽  
Vol 115 (6) ◽  
pp. 1238-1246 ◽  
Author(s):  
Paul S. Hole ◽  
Lorna Pearn ◽  
Amanda J. Tonks ◽  
Philip E. James ◽  
Alan K. Burnett ◽  
...  

Abstract Excessive production of reactive oxygen species (ROS) is a feature of human malignancy and is often triggered by activation of oncogenes such as activated Ras. ROS act as second messengers and can influence a variety of cellular process including growth factor responses and cell survival. We have examined the contribution of ROS production to the effects of N-RasG12D and H-RasG12V on normal human CD34+ progenitor cells. Activated Ras strongly up-regulated the production of both superoxide and hydrogen peroxide through the stimulation of NADPH oxidase (NOX) activity, without affecting the expression of endogenous antioxidants or the production of mitochondrially derived ROS. Activated Ras also promoted both the survival and the growth factor–independent proliferation of CD34+ cells. Using oxidase inhibitors and antioxidants, we found that excessive ROS production by these cells did not contribute to their enhanced survival; rather, ROS promoted their growth factor–independent proliferation. Although Ras-induced ROS production specifically activated the p38MAPK oxidative stress response, this failed to induce expression of the cell-cycle inhibitor, p16INK4A; instead, ROS promoted the expression of D cyclins. These data are the first to show that excessive ROS production in the context of oncogene activation can promote proliferative responses in normal human hematopoietic progenitor cells.


Tumor Biology ◽  
2017 ◽  
Vol 39 (5) ◽  
pp. 101042831770163 ◽  
Author(s):  
Niharika Sinha ◽  
Prashanta Kumar Panda ◽  
Prajna Paramita Naik ◽  
Tapas K Maiti ◽  
Sujit K Bhutia

The accumulating evidences show that Abrus agglutinin, a plant lectin, displays a broad range of anticancer activity including cancer-specific induction of apoptosis; however, the underlying molecular mechanism of Abrus agglutinin–induced oral cancer stem cell elimination remains elusive. Our data documented that Abrus agglutinin effectively downregulated the CD44+ expression with the increased CD44− population in different oral cancer cells. After 24-h Abrus agglutinin treatment, FaDu cells were quantified for orosphere formation in ultra-low attachment plates and data showed that Abrus agglutinin inhibited the number and size of orosphere in a dose-dependent manner in FaDu cells. Furthermore, Abrus agglutinin hindered the plasticity of FaDu orospheres as supported by reduced sphere formation and downregulated the self-renewal property via inhibition of Wnt-β-catenin signaling pathway. Introduction of LiCl, a glycogen synthase kinase 3β inhibitor, rescued the Abrus agglutinin–stimulated inhibition of β-catenin and phosphorylated glycogen synthase kinase 3β in FaDu cell–derived orospheres confirming importance of Wnt signaling in Abrus agglutinin–mediated inhibition of stemness. In this connection, our data showed that Abrus agglutinin restrained proliferation and induced apoptosis in FaDu-derived cancer stem cells in dose-dependent manner. Moreover, western blot data demonstrated that Abrus agglutinin increased the Bax/Bcl-2 ratio with activation of poly(adenosine diphosphate–ribose) polymerase and caspase-3 favoring apoptosis induction in orospheres. Abrus agglutinin induced reactive oxygen species accumulation in orospheres and pretreatment of N-acetyl cysteine, and a reactive oxygen species scavenger inhibited Abrus agglutinin–mediated caspase-3 activity and β-catenin expression indicating reactive oxygen species as a principal regulator of Wnt signaling and apoptosis. In conclusion, Abrus agglutinin has a potential role as an integrative therapeutic approach for combating oral cancer through targeting self-renewability of orospheres via reactive oxygen species–mediated apoptosis.


1981 ◽  
Vol 97 (4) ◽  
pp. 503-507 ◽  
Author(s):  
Avivah Silbergeld ◽  
Rivka Mamet ◽  
Zvi Laron ◽  
Zvi Nevo

Abstract. Embryonic chick pelvic cartilages were incubated in the presence of insulin like growth factor (IGF) (1–100 μU/ml), as well as normal human serum (5%), with radiolabelled precursors of proteoglycan (PG) synthesis: L-[3-3H]serine, D-[6-3H]glucosamine and [35S]Na2SO4. IGF alone (1–15 μU/ml), stimulated in a dose-dependent manner D-[6-3H]glucosamine incorporation into tissue-bound and soluble isolated glycosaminoglycan (GAG) chains. L-[3-3H]serine incorporation into PG molecules was not stimulated by IGF (1–100 μU/ml), despite the increase in the uptake of this precursor into intact cartilage. [35S]Na2SO4 incorporation was unaffected by IGF. Serum promoted the uptake of all three precursors into tissue-bound glycosaminoglycans. It was postulated that IGF could stimulate proteoglycan synthesis not only by elongating existing chondroitin sulphate chains but also by increased synthesis of other sugar chains e.g. keratan sulphate and oligosaccharides.


2019 ◽  
Vol 316 (4) ◽  
pp. L644-L655 ◽  
Author(s):  
Hidekata Yasuoka ◽  
Sara M. Garrett ◽  
Xinh-Xinh Nguyen ◽  
Carol M. Artlett ◽  
Carol A. Feghali-Bostwick

Insulin-like growth factor binding protein-5 (IGFBP-5) induces production of the extracellular matrix (ECM) components collagen and fibronectin both in vitro and in vivo and is overexpressed in patients with fibrosing lung diseases, such as idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc). However, the mechanism by which IGFBP-5 exerts its fibrotic effect is incompletely understood. Recent reports have shown a substantial role of reactive oxygen species (ROS) in fibrosis; thus we hypothesized that IGFBP-5 induces production of ROS to mediate the profibrotic process. In vitro analyses revealed that ROS production was induced by recombinant and adenoviral vector-mediated IGFBP-5 (AdBP5) in a dose- and time-dependent manner, regulated through MEK/ERK and JNK signaling, and primarily mediated by NADPH oxidase (Nox). Silencing IGFBP-5 in SSc and IPF fibroblasts reduced ROS production. The antioxidants diphenyleneiodonium and N-acetylcysteine blocked IGFBP-5-stimulated ECM production in normal, SSc, and IPF human primary lung fibroblasts. In murine fibroblasts lacking critical components of the Nox machinery, AdBP5-stimulated ROS production and fibronectin expression were reduced compared with wild-type fibroblasts. IGFBP-5 stimulated transcriptional expression of Nox3 in human fibroblasts while selective knockdown of Nox3 reduced ROS production by IGFBP-5. Thus IGFBP-5 mediates fibrosis through production of ROS in a Nox-dependent manner.


2002 ◽  
Vol 46 (10) ◽  
pp. 3113-3117 ◽  
Author(s):  
Daisuke Kobayashi ◽  
Kei Kondo ◽  
Nobuyuki Uehara ◽  
Seiko Otokozawa ◽  
Naoki Tsuji ◽  
...  

ABSTRACT We investigated the significance of endogenous reactive oxygen species (ROS) produced by fungi treated with miconazole. ROS production in Candida albicans was measured by a real-time fluorogenic assay. The level of ROS production was increased by miconazole at the MIC (0.125 μg/ml) and was enhanced further in a dose-dependent manner, with a fourfold increase detected when miconazole was used at 12.5 μg/ml. This increase in the level of ROS production was completely inhibited by pyrrolidinedithiocarbamate (PDTC), an antioxidant, at 10 μM. In a colony formation assay, the decrease in cell viability associated with miconazole treatment was significantly prevented by addition of PDTC. Moreover, the level of ROS production by 10 clinical isolates of Candida species was inversely correlated with the miconazole MIC (r = −0.8818; P < 0.01). These results indicate that ROS production is important to the antifungal activity of miconazole.


2001 ◽  
Vol 31 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Tobias W. Fischer ◽  
Georg Scholz ◽  
Brunhilde Knöll ◽  
Uta-Christina Hipler ◽  
Peter Elsner

2007 ◽  
Vol 85 (2) ◽  
pp. 265-271 ◽  
Author(s):  
Xu-Bin Jing ◽  
Xian-Bin Cai ◽  
Hui Hu ◽  
Su-Zuan Chen ◽  
Bin-Ming Chen ◽  
...  

cis-Diamminedichloroplatinum (CDDP), commonly know as cisplatin, is a well known DNA-damaging agent, which is highly active in suppressing the proliferation of tumor cells. However, it is not clear that CDDP can induce growth inhibition of esophagus cancer cells. Using the cell line EC-109 from the esophagus, we found that CDDP would induce apoptotic responses. The addition of CDDP to cells led to the inhibition of growth in a time- and dose-dependent manner. CDDP generated reactive oxygen species (ROSs) in cells, which brought about a reduction in the intracellular mitochondrial transmembrane potential (Δψm), leading to apoptosis. Our findings demonstrate that ROSs, and the resulting oxidative stress, play a pivotal role in apoptosis. Preincubation of EC-109 cells with the hydrogen-peroxide-scavenging enzyme catalase partially inhibited the following: (i) the production of ROS; (ii) the disruption of the Δψm; and (iii) apoptosis. These results indicate that the enhancement of the generation of ROS and the disruption of Δψm are events involved in the apoptotic pathway of EC-109 induced by CDDP.


Sign in / Sign up

Export Citation Format

Share Document