AT9283, A Novel Aurora Kinase/Jak2 Inhibitor Demonstrates Activity against Refractory Infant Leukemia Cells: Studies On Growth Inhibition, Biological Correlates, Drug Synergy and Effects On Leukemia Stem-Like Cells.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3078-3078
Author(s):  
Shamim Lotfi ◽  
Aarthi Jayanthan ◽  
Victor A. Lewis ◽  
Greg Guilcher ◽  
Matthew S Squires ◽  
...  

Abstract Abstract 3078 Poster Board III-15 Leukemia in children less than 1 year of age confers a poor prognosis, despite intensification of therapy. These leukemias possess unique biologic characteristics including the presence of mixed-lineage leukemia (MLL) gene rearrangement and high expression of Fms-like tyrosine kinase 3 (FLT3). AT9283, a potent inhibitor of Aurora A and B kinases, JAK2, JAK3, and mutant Abl Kinase, has demonstrated inhibition of multiple solid tumor cell lines in vitro and in mouse xenograft models. Aurora kinase inhibition has been shown to inhibit cancer cell growth by interfering with the mitotic apparatus. We investigated the activity of AT9283 against cell lines derived from refractory infant leukemia cells to identify its efficacy in a future treatment protocol. Method Five cell lines derived from infant leukemia cells were used (ALL: BEL1, KOPN8, KCCF2, B1 and AML: TIB202). We also included the cell line SEM that was derived from a 5 year old child with t (4;11) MLL-AF4 preB-ALL. Normal bone marrow stromal cells were used to evaluate cytotoxicity against non-malignant cells. AT9283 was provided by Astex Therapeutics Ltd. (Cambridge, UK). Approximately 1×104 cells per well were seeded in 96-well plates and incubated with increasing concentrations of AT9283, alone or in combination with a panel of conventional and novel therapeutic agents. After four days, cell survival was measured by Alamar blue assay and IC50 values and combination indices were calculated. Stem-like cells were quantified by the distribution of ALDH bright cells by Aldefluor assay (Stem cell technologies) and characterized by conventional clonogenic assays. Alterations in cell-signaling pathways and survival proteins were measured by Western blot analysis using total and phospho-specific antibodies. Results AT9283 inhibited the growth of all five cell lines with a 10 fold variation in IC50 within cell lines (IC50 range, 0.1 to 0.01 μM). There was a corresponding increase in the number of cells displaying a polyploid phenotype, an effect of aurora kinase inhibition. No significant cytotoxicity against bone marrow stromal cells was seen under the experimental conditions used in this study (IC50 > 10 μM). Changes in the activation and expression of a variety of intracellular proteins were noted, including the down regulation of activated ERK1/2, MYC and AKT within 10 minutes of exposure to the agent. An increase in the activated form of RAF and ATF2 was observed immediately after drug exposure. Importantly, a significant decrease in the level of constitutive pFLT-3 was demonstrated. A concurrent increase in cleaved PARP was also noted, indicating the initiation of apoptosis. In combination studies, the HDAC inhibitor Apicidin showed synergy across all cell lines (CI range: 0.07 to 0.62). A decrease in ALDH bright stem-like cells was observed in a dose dependent manner, up to 50% over 24 hours at IC50 concentrations. Conclusions Our in vitro studies show that AT9283 significantly decreases the growth and survival of infant leukemia cell lines. Importantly, AT9283 potently induces FLT3 de-phosphorylation, inhibiting a critical growth stimulatory pathway of infant ALL cells. We have identified changes in a number of signaling and apoptotic molecules that can provide a panel of markers for biological correlative analysis for drug activity in vivo. Also, the drug combination studies demonstrate the potential of HDAC inhibition to synergize with the activity of this agent. Finally, the effect on stem-like cells provides a rationale and critical preclinical data for the formulation of an effective clinical trial for the treatment of infants with refractory ALL. Disclosures Squires: AstexTherapeutics Ltd: Employment.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2496-2496 ◽  
Author(s):  
Anne-Sophie Moreau ◽  
Xiaoying Jia ◽  
Garrett O’Sullivan ◽  
Xavier Leleu ◽  
Klaus Podar ◽  
...  

Abstract Background: Waldenstrom’s Macroglobulinemia is an incurable lymphoplasmacytic lymphoma with limited options of therapy. We have previously demonstrated upregulation of PKCβ protein in WM using protein array techniques, and confirmed increased expression in WM using immunohistochemistry. PKCβ regulates cell survival and growth, as well as migration and homing in many B-cell malignancies. We therefore hypothesized that inhibition of PKCβ will induce cytotoxicity in WM. Methods: In this study, we examined the effect of serial dilutions of the PKCβ enzastaurin (2.5 uM to 20 uM) on WM cell lines (BCWM1 and WM-WSU), IgM secreting low-grade lymphoma cell lines (MEC-1, RL), as well as primary CD19+ WM cells and WM cells adherent to bone marrow stromal cells (BMSCs), which induce resistance to conventional therapy. Cytotoxicity was measured by MTT assay and inhibition of cell proliferation was determined by thymidine uptake assay. Apoptosis was measured by flow cytometry using Annexin V and DAPI staining at 48 h. Cell DNA content analysis was performed using DAPI staining on fresh cells. Cell signaling pathways targeted by enzastaurin were determined using immunoblotting at 6 h (2.5 to 10 uM) and at 7.5 uM (10 min to 12 h). The effect of enzastaurin in vivo was determined using a subcutaneous WM model in SCID mice. Enzastaurin was given by oral gavage (80mg/kg twice daily). Results: Enzastaurin demonstrated time and dose-dependent inhibition of PKCβ in WM cells. It induced a significant decrease of proliferation at 24 and 48 h in all cell lines tested with an IC50 of 2.5 to 10 uM, even in the presence of DOPPA, a specific PKCβ stimulator. Similar effects were demonstrated in primary CD19+ WM cells, with no cytotoxicity on peripheral blood mononuclear cells indicating selective toxicity on malignant cells. Enzastaurin induced dose-dependent apoptosis at 24 and 48 h with induction of caspases 3, 8, 9 and PARP cleavage as well as a decrease in Bcl-xL. Analysis of cell DNA content confirmed apoptosis at low doses of enzastaurin (5 uM). To further determine the mechanism of action of enzastaurin in WM, we examined downstream molecules. It significantly inhibited AKT phosphorylation and AKT kinase activity, as determined by inhibition of phosphorylation of GSKα/β fusion protein. In addition, enzastaurin inhibited p-MARCK, and ribosomal p-S6. Enzastaurin overcame resistance induced by co-culture of WM cells with bone marrow stromal cells. In addition, enzastaurin (2.5 to 5 uM) in combination with bortezomib (2.5 to 10 nM), another active agent in WM, demonstrated strong synergistic activity using the Calcusyn software for synergy. Given that PKCβ regulates migration and homing of B-cells, we next determined the effect of enzastaurin on in vitro migration of WM cells. In the transwell migration assay, enzastaurin inhibited migration in a dose-dependent fashion (p=0.041). Finally, in vivo animal studies demonstrated significant inhibition of WM tumor growth in the enzastaurin treated mice (n=11), compared to control mice (n=8) (p=0.028). Conclusion: Enzastaurin has significant antitumor activity in WM in vitro and in vivo, providing the framework for clinical trials evaluating enzastaurin as a new therapeutic agent in patients with WM.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1373-1373
Author(s):  
Kristine Misund ◽  
Katarzyna Anna Baranowska ◽  
Toril Holien ◽  
Christoph Rampa ◽  
Dionne Klein ◽  
...  

Abstract Abstract 1373 The aim of this work was to establish a robust and simple method for the measurement of drug sensitivity in myeloma cells under conditions mimicking aspects of the bone marrow microenvironment. In particular we wanted to measure drug sensitivity in myeloma cells cultivated in the presence of stromal cells. The tumor microenvironment can profoundly affect tumor cell survival as well as alter antitumor drug activity, and it is generally believed that growth and survival of myeloma cells is critically dependent on the bone marrow microenvironment. Bone marrow stromal cells (BMSC) have been shown to protect myeloma cells from common cytostatic or cytotoxic drugs in vitro. Common in vitro assays used for high-throughput drug screening cannot easily discriminate between stromal and tumor cell responses in co-cultures. Although a few recent studies have overcome this problem (Ramasamy K. et al., 157(5):564–79,2012, McMillin D. et al., 16(4):483–9, 2010), the application of stable transfection for labeling of cells limits the practical application of these co-culture studies to cell lines, excluding primary myeloma cells that inherently may be hard to transduce even by retroviral vectors. Here, we analyzed survival of myeloma cells co-cultured with BMSC using an automated fluorescence microscope, ScanR. ScanR is a microscope based screening station. By staining the cell nuclei with DRAQ5, we were able to discriminate between BMSC and myeloma cells, based on their staining intensity and nuclear shape. Using the apoptotic marker YO-PRO-1, the effects of drug treatment on the viability of the myeloma cells in the presence of stromal cells could be measured. The main advantages of this method are the non-necessity of cell manipulation before co-culture and the low number of myeloma cells (5000 primary cells) that are needed per measurement, which makes the method ideal for experiments with primary myeloma cells. In fact, the analysis was easier and more robust when using slowly growing cells, i.e. by using primary myeloma cells compared to more rapidly proliferating myeloma cell lines. This method should be well-suited for high throughput analysis, as the cells are stained in situ with no washing, centrifugation, or fixation steps before analysis. The method was compared to a conventional method for detecting cell viability; flow cytometry where annexin V labeling was used to detect apoptotic cells. As shown in figure 1, the dose-response curves obtained for ANBL-6 cells treated with different doses of melphalan were similar and showed the same trends for both methods. However, the effects of melphalan treatment were more evident analyzed by the ScanR system than by flow cytometry (EC50 YO-PRO-1 = 11μM versus EC50Annexin V= 15μM). The stromal cell population applied in this study was able to support IL-6 dependent myeloma cell lines without addition of IL-6. This as IL-6 dependent INA-6 cells cultivated in the presence of BMSC survived in the absence of added IL-6. This study shows the importance of stromal cell support for primary myeloma cell survival in vitro, as half of the cell samples had a marked increase in their viability when cultured in the presence of BMSC. Stromal cell-induced protection against common myeloma drugs was also observed with this method. For instance, experiments with primary myeloma cells from patient MM7, showed that in the presence of BMSC, the EC50 for the common myeloma drug cyclophosphamide was increased from 5 μM to approximately 10 μM (figure 2). Figure 1 Figure 1. Figure 2 Figure 2. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Vol 18 (6) ◽  
pp. 637-646 ◽  
Author(s):  
Kristine Misund ◽  
Katarzyna A. Baranowska ◽  
Toril Holien ◽  
Christoph Rampa ◽  
Dionne C. G. Klein ◽  
...  

The tumor microenvironment can profoundly affect tumor cell survival as well as alter antitumor drug activity. However, conventional anticancer drug screening typically is performed in the absence of stromal cells. Here, we analyzed survival of myeloma cells co-cultured with bone marrow stromal cells (BMSC) using an automated fluorescence microscope platform, ScanR. By staining the cell nuclei with DRAQ5, we could distinguish between BMSC and myeloma cells, based on their staining intensity and nuclear shape. Using the apoptotic marker YO-PRO-1, the effects of drug treatment on the viability of the myeloma cells in the presence of stromal cells could be measured. The method does not require cell staining before incubation with drugs, and less than 5000 cells are required per condition. The method can be used for large-scale screening of anticancer drugs on primary myeloma cells. This study shows the importance of stromal cell support for primary myeloma cell survival in vitro, as half of the cell samples had a marked increase in their viability when cultured in the presence of BMSC. Stromal cell–induced protection against common myeloma drugs is also observed with this method.


2021 ◽  
Vol 363 ◽  
pp. 109340
Author(s):  
Abeer Sallam ◽  
Thangirala Sudha ◽  
Noureldien H.E. Darwish ◽  
Samar Eghotny ◽  
Abeer E-Dief ◽  
...  

2005 ◽  
Vol 25 (12) ◽  
pp. 5183-5195 ◽  
Author(s):  
Taisuke Mori ◽  
Tohru Kiyono ◽  
Hideaki Imabayashi ◽  
Yukiji Takeda ◽  
Kohei Tsuchiya ◽  
...  

ABSTRACT Murine bone marrow stromal cells differentiate not only into mesodermal derivatives, such as osteocytes, chondrocytes, adipocytes, skeletal myocytes, and cardiomyocytes, but also into neuroectodermal cells in vitro. Human bone marrow stromal cells are easy to isolate but difficult to study because of their limited life span. To overcome this problem, we attempted to prolong the life span of bone marrow stromal cells and investigated whether bone marrow stromal cells modified with bmi-1, hTERT, E6, and E7 retained their differentiated capability, or multipotency. In this study, we demonstrated that the life span of bone marrow stromal cells derived from a 91-year-old donor could be extended and that the stromal cells with an extended life span differentiated into neuronal cells in vitro. We examined the neuronally differentiated cells morphologically, physiologically, and biologically and compared the gene profiles of undifferentiated and differentiated cells. The neuronally differentiated cells exhibited characteristics similar to those of midbrain neuronal progenitors. Thus, the results of this study support the possible use of autologous-cell graft systems to treat central nervous system diseases in geriatric patients.


2015 ◽  
Vol 97 (21) ◽  
pp. 1792-1798 ◽  
Author(s):  
Kosuke Uehara ◽  
Chunfeng Zhao ◽  
Anne Gingery ◽  
Andrew R. Thoreson ◽  
Kai-Nan An ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document