Novel Mechanistic Insight Into Mobilization of Hematopoietic Stem/Progenitor Cells (HSPCs): Complement Cascade and Membrane Attack Complex Activated in Bone Marrow Sinusoids During Mobilization Release From Erythrocytes Sphingosine-1 Phosphate – An Underappreciated Chemoattractant Executing Egress of HSPCs.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 31-31 ◽  
Author(s):  
HakMo Lee ◽  
Marcin Wysoczynski ◽  
Wan Wu ◽  
Rui Liu ◽  
Magdalena Kucia ◽  
...  

Abstract Abstract 31 We reported that complement cascade (CC) is activated in bone marrow (BM) during mobilization of hematopoietic stem/progenitor cells (HSPCs) and that CC clevage fragments direct egress of HSPCs from BM into peripheral blood (PB) (Blood 2003;101,3784; Blood 2004;103,2071; Blood 2005;105,40). We also reported that C5 cleavage fragments play a crucial role in the mobilization process by: i) inducing proteolytic activity in the BM environment; ii) directing BM egress of granulocytes that “pave a road” for HSPCs; and iii) inducing secretion of cationic peptides from activated granulocytes that prime HSPC egress (Leukemia 2009; in press). In this study, we sought to determine which major chemottractant is present in PB that is responsible for egress of HSPCs and whether activation of CC plays some role in its level/expression. We noticed that plasma derived from normal and mobilized PB strongly chemoattracts murine and human HSPCs. This chemotactic effect was not dependent on plasma SDF-1 levels because: i) it occurs unaffectedly in the presence of CXCR4 antagonist AMD3100; ii) it was still robust to heat-inactivated sera; and iii) ELISA studies revealed negligible concentrations of SDF-1, which did not correlate with good or poor mobilizer status. However, to our surprise, we noticed that plasma isolated from G-CSF-mobilized mice and patients contains traces of free hemoglobin, which suggests some level of hemolysis occurs in mobilized PB. As such, we performed chemotactic assays in the presence of different concentrations of lysed erythrocytes and noticed that such diluted lysates are potent chemoattractants for HSPCs. The chemotactic activities of these lysates were resistant to heat inactivation similarly as patient sera. Based on this, we focused on S1P, a thermo-resistant lipid that, as reported, chemoattracts HSPCs and whose major reservoirs are erythrocytes (FASEB J 2007:21;1202). In fact we found by ELISA that S1P level increases during mobilization in PB and that SP1 is the most potent chemoattractant for BM-residing HSPCs, much stronger than SDF-1 - if both compounds are compared in physiologically relevant concentrations. Furthermore, activation of S1P receptors on BM-derived HSPCs augmented responsiveness to SDF-1 gradient up to 50%. However, these chemotactic effects of S1P were not visible for previously mobilized PB or umbilical cord blood HSPCs, which we explain by a fact that these mobilized cells are already desensitized to S1P gradient. Therefore, we propose the following scenario. First, a mobilizing agent (e.g., G-CSF) induces activation of CC in BM that subsequently contributes to the release of protelolytic enzymes from granulocytes that perturb SDF-1-CXCR4/VLA-4-VCAM1 interactions and stimulate egress of activated granulocytes from BM that “pave a road” for egress of HSPCs. Simultaneously, the final product of CC activation (C5b-C9), the membrane attack complex (MAC), induces in BM sinusoids the release of S1P from erythrocytes. S1P accumulating in BM sinusoids and cationic peptides released from activated granulocytes, but not changes in plasma SDF-1 levels, are crucial executors of HSPCs egress from BM into PB. Thus, our results provide novel evidence that CC activation/membrane attack complex (MAC)-induced elevated plasma S1P level is essential for egress/mobilization of HSPCs. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 367-367
Author(s):  
Marcin Wysoczynski ◽  
HakMo Lee ◽  
Rui Liu ◽  
Wan Wu ◽  
Janina Ratajczak, ◽  
...  

Abstract Abstract 367 We reported that complement cascade (CC) becomes activated in bone marrow (BM) during mobilization of hematopoietic stem/progenitor cells (HSPCs) by immunoglobulin (Ig)-dependent pathway and/or by alternative Ig-independent pathway as seen during G-CSF- or Zymosan mobilization, respectively. As a result, several potent bioactive CC anaphylatoxins (C3 and C5 cleavage fragments) are released that regulate egress of HSPCs (Blood 2003;101,3784; Blood 2004;103,2071; Blood 2005;105,40, Leukemia 2009; in press.). This explains why: i) NOD/SCID and RAG-/- animals that do not activate the Ig-dependent CC classical pathway; ii) C2fB-/- and C3-/- mice that do not activate the classical and alternative CC pathways; and iii) C5-/- mice that do not activate the distal pathway of CC are all poor G-CSF- and/or Zymosan mobilizers. In this study, we evaluated the role of CC in mobilization induced by CXCR4 antagonist AMD3100. We noticed that all CC activation-deficient mice mentioned above, except C5-/- mice, mobilize normally in response to AMD3100 administration. Accordingly, the number of mobilized CD34- SKL cells, leucocytes, and CFU-GM clonogeneic progenitors in mutant mice was similar to wt littermates. More important we observed that AMD3100 mobilization of HSPCs was preceded by a massive egress of leucocytes from BM and that AMD3100 was able to stimulate in these cells i) phosphorylation of MAPKp42/44 and ii) secretion of MMP-9. At the same time, ELISA data to detect CC activation revealed that serum levels of CC cleavage fragments, which were low in the initial phase of AMD3100 mobilization during granulocyte egress, become elevated later during HSPC egress. Thus, our data show that despite a fact that G-CSF and AMD3100 mobilize HSPCs by involving different mechanisms, activation of CC is a common phenomenon occurring during mobilization induced by both compounds. This further supports a pivotal role of CC activation in the egress of HSPCs from BM; however, both compounds activate CC differently. While G-CSF administration initiates CC activation at its proximal C1q-C3 level, AMD3100 induces CC activation at the distal C5 level, pointing to a crucial role of C5 cleavage in executing mobilization. To support this, all mice employed in our studies that display defects in activation of proximal stages of CC (NOD/SCID, RAG, C2fB-/-, and C3-/-) are normal AMD3100 mobilizers. However, C5 is cleavage required for mobilization occurs in the plasma of these animals latter on - directly by proteases released from AMD3100-stimulated granulocytes that egress from the BM as a first wave of mobilized cells. This compensatory mechanism cannot occur from obvious reasons in C5-/- mice. We conclude that AMD3100-directed mobilization similarly as G-CSF-induced one depends on activation of CC; however, AMD3100 in contrast to G-CSF activates CC at distal stages – directly by proteases released from mobilized/activated granulocytes. Cleavage of C5 and release of C5a and desArgC5a create a sinusoid-permissive environment in BM for HSPCs egress. This suggests involvement of both C5 cleavage fragments as well as a potential role of downstream elements of CC activation - membrane attack complex - MAC (C5b-C9) in stem cell mobilization. Therefore, some poor AMD3100 patient responders could possess a defect in activation of the distal steps of CC. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 67-67
Author(s):  
Wan Wu ◽  
Hakmoo Lee ◽  
Marcin Wysoczynski ◽  
Magdalena Kucia ◽  
Janina Ratajczak ◽  
...  

Abstract We reported that complement cascade (CC) becomes activated in bone marrow (BM) during mobilization of hematopoietic stem/progenitor cells (HSPCs) by immunoglobulin (Ig)-dependent pathway and/or by alternative Ig-independent pathway and, as result of this, several potent bioactive CC anaphylatoxins (C3a, desArgC3a, C5a and desArgC5a) are released (Blood2003;101,3784; Blood2004;103,2071; Blood2005;105,40). Bioactive CC anaphylatoxins (C5a and desArgC5a) are also potent chemoattractants of granulocytes that bind to G-protein-coupled, seven trans-membrane span C5a receptors (C5aR and C5L2) on these cells. To learn more on the role of C5 cleavage fragments in HSPC mobilization, we studied mobilization in C5−/− and C5aR−/− mice as well as their normal wildtype littermates. Mobilization was induced by granulocyte colony-stimulating factor (G-CSF; high 250 μg/kg/6 days and low dose 50 μg/kg/6 days) or zymosan (20 mg/1kg/1 hour), which activate classical and alternative pathways of CC, respectively. We evaluated mobilization efficiency by counting the number of SKL cells, colony-forming unit granulocyte-macrophages (CFU-GMs), and white blood cells circulating in peripheral blood. In parallel, we employed transmission electron microscopy (TEM) to study the morphology and integrity of BM vessels in the BM-blood barrier. Activation of CC was measured by ELISA for C3 cleavage fragments and by histochemical staining for membrane attack-complex (MAC) depositions in BM tissue. We found by ELISA and histochemistry that CC activation correlates with the level of HSPC mobilization in wildtype mice and that mobilization of HSPCs was always preceded by the release of granulocytes from BM. Thus, granulocytes are the first wave of cells that increase in number during mobilization in peripheral blood. Mobilization studies in C5−/− revealed that these animals are very poor mobilizers. TEM studies demonstrated that hematopoietic cells together with granulocytes accumulated around small vessels in the BM of C5−/− animals, but they did not migrate or cross the BM-endothelial barrier. Since C5 cleavage fragments C5a and desArgC5a are potent chemoatrractants for granulocytes but not HSPCs, we hypothesize that a lack of both these anaphylatoxins in C5−/− animals prevents egress of granulocytes from BM, which always precedes egress of HSPCs. Furthermore, in C5aR−/−, mice mobilization was normal after administration of a high optimal dose of G-CSF. However, mobilization was significantly lower after a suboptimal dose of G-CSF or administration of zymosan. This indicates that another alternative receptor for C5a and desArgC5a (C5L2) may compensate for C5aR deficiency and that it plays a role in the egress of granulocytes from the BM as well. Thus, this study demonstrates that cells from the granulocytic lineage are actively involved in mobilization in a C5a,-desArgC5a-C5aR manner not only by secreting proteases that create a proteoytic environment in BM, but also as a kind of “ice-breaker” type cells necessary for disintegration of the endothelial-BM barrier to enable HSPCs to egress from the BM microenvironment. In cases of granulocytopenia or if granulocytes are not mobilized as seen in C5−/− mutants, mobilization of HSPCs is very poor. Thus, modulation of CC activation in the BM and stimulation of granulocyte egress from the BM into circulation may help to develop more efficient strategies for HSPC mobilization.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 217-217
Author(s):  
Karin Golan ◽  
Aya Ludin ◽  
Tomer Itkin ◽  
Shiri Cohen-Gur ◽  
Orit Kollet ◽  
...  

Abstract Hematopoietic stem and progenitor cells (HSPC) are mostly retained in a quiescent, non-motile mode in the bone marrow (BM), shifting to a cycling, differentiating and migratory state on demand. How HSC replenish the blood with new mature leukocytes on a daily basis while maintaining a constant pool of primitive cells in the BM throughout life is not clear. Recently, we reported that the bioactive lipid Sphingosine 1-Phosphate (S1P) regulates HSPC mobilization via ROS signaling and CXCL12 secretion (Golan et al, Blood 2012). We hypothesize that S1P influences the daily circadian egress of HSPC and their proliferation. We report that S1P levels in the blood are increased following initiation of light at the peak of HSPC egress and are reduced towards the termination of light when circulating HSPC reach a nadir. Interestingly, mice with constitutively low S1P plasma levels due to lack of one of the enzymes that generates S1P (Sphingosine kinase 1), do not exhibit fluctuations of HSPC levels in the blood between day and night. We report that HSPC numbers in the BM are also regulated in a circadian manner. Unexpectedly, we found two different daily peaks: one in the morning, following initiation of light, which is accompanied by increased HSPC egress and the other at night after darkness, which is associated with reduced HSPC egress. In both peaks HSPC begin to cycle and differentiate via up-regulation of reactive oxygen species (ROS) however, the night peak had lower ROS levels. Concomitant with the peak of primitive stem and progenitor cells, we also observed (to a larger extent in the night peak), expansion of a rare activated macrophage/monocyte αSMA/Mac-1 population. This population maintains HSPC in a primitive state via COX2/PGE2 signaling that reduces ROS levels and increases BM stromal CXCL12 surface expression (Ludin et al, Nat. Imm. 2012). We identified two different BM peaks in HSPC levels that are regulated by the nervous system via circadian changes in ROS levels. Augmented ROS levels induce HSPC proliferation, differentiation and motility, which take place in the morning peak; however, they need to be restored to normal levels in order to prevent BM HSPC exhaustion. In the night peak, HSPC proliferate with less differentiation and egress, and activated macrophage/monocyte αSMA/Mac-1 cells are increased to restore ROS levels and activate CXCL12/CXCR4 interactions to maintain a HSPC primitive phenotype. Additionally, S1P also regulates HSPC proliferation, thus mice with low S1P levels share reduced hematopoietic progenitor cells in the BM. Interestingly S1P is required more for the HSPC night peak since in mice with low S1P levels, HSPC peak normally during day time but not at darkness. We suggest that the first peak is initiated via elevation of ROS by norepinephrine that is augmented in the BM following light-driven cues from the brain (Mendez-Ferrer at al, Nature 2008). The morning elevated ROS signal induces a decrease in BM CXCL12 levels and up-regulated MMP-9 activity, leading to HSC proliferation, as well as their detachment from their BM microenvironment, resulting in enhanced egress. Importantly, ROS inhibition by N-acetyl cysteine (NAC) reduced the morning HSPC peak. Since norepinephrine is an inhibitor of TNFα, upon light termination norepinephrine levels decrease and TNFα levels are up-regulated. TNFα induces activation of S1P in the BM, leading to the darkness peak in HSPC levels. S1P was previously shown also to induce PGE2 signaling, essential for HSPC maintenance by the rare activated αSMA/Mac-1 population. Indeed, in mice with low S1P levels, we could not detect a peak in COX2 levels in these BM cells during darkness. We conclude that S1P not only induces HSPC proliferation via augmentation of ROS levels, but also activates PGE2/COX2 signaling in αSMA/Mac-1 population to restore ROS levels and prevent HSPC differentiation and egress during the night peak. We hypothesize that the morning HSPC peak, involves proliferation, differentiation and egress, to allow HSPC to replenish the blood circulation with new cells. In contrast, the second HSPC night peak induces proliferation with reduced differentiation and egress, allowing the renewal of the BM HSPC pool. In summary, we identified two daily circadian peaks in HSPC BM levels that are regulated via light/dark cues and concomitantly allow HSPC replenishment of the blood and immune system, as well as maintenance of the HSPC constant pool in the BM. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 555-555
Author(s):  
Chihwa Kim ◽  
Wu Wan ◽  
Rui Liu ◽  
Magdalena Kucia ◽  
Janina Ratajczak ◽  
...  

Abstract Abstract 555 We previously reported that complement cascade (CC) is activated in bone marrow (BM) during mobilization of hematopoietic stem/progenitor cells (HSPCs; Blood 2003;101:3784; Blood 2004;103:2071; and Blood 2005;105:40) and that C5 cleavage fragments direct egress of HSPCs from BM into peripheral blood (PB) (Leukemia 2009;23:2052 and Leukemia 2010;24:976). Accordingly, C5 cleavage fragments (C5a and desArgC5a) stimulate myeloid cells in BM to secrete proteolytic enzymes and chemoattract granulocytes into peripheral blood (PB). Therefore, granulocytes form a first wave of cells that permeabilize the BM-PB endothelial barrier and prime it for subsequent egress of HSPCs. We have also observed that activation of the distal part of the complement cascade (CC), which leads to formation of C5b-C9 (also known as the membrane attack complex [MAC]), is crucial for egress/mobilization of HSPCs. It is known that proteins that form MAC can be inserted into cell membranes, resulting in cell lysis, or may remain in biological fluids as soluble MAC (sMAC) and in this “non-lytic” form may interact with target cells. We have already reported that sMAC releases bioactive lipid - sphingosine-1 phosphate (S1P) from erythrocytes, which is a major chemoattractant in mobilized peripheral blood (mPB) for HSPCs (Leukemia 2010;24:976). Since the level of sMAC increases in PB during mobilization as well as following conditioning for transplantation, we became interested in whether this protein complex affects the biology of normal HSPCs. First, we observed that, while sMAC does not affect proliferation and viability of clonogenic progenitors, it activates phosphorylation of MAPKp42/44 and AKT in both human CD34+ and murine SKL cells. Furthermore, sMAC primes and enhances chemotactic responsiveness of HSPCs to S1P and SDF-1 gradients and increases adhesiveness of these cells to BM stroma and endothelium. This effect is probably lipid raft mediated, because exposure of cells to methylo-b-cyclodextrin before chemotaxis abrogates this phenomenon. We also found that HSPCs, as well as PB mononuclear cells exposed to sMAC, secrete increased levels of PGE2 and metalloproteinases, which indicates that an increase in sMAC level in PB after conditioning for transplantation may enhance the homing properties of HSPCs. Thus, our results in toto provide novel evidence that sMAC is an underappreciated and potent regulator of HSPC trafficking and plays an important role, both direct and indirect (via released from cells S1P), in mobilization and homing of HSPCs after transplantation. In support of this notion, we found that mice displaying defects in CC activation and sMAC generation display a defect in homing of HSPCs. Thus, our data provide yet more evidence that innate immunity and the complement cascade regulate trafficking of HSPCs by (1) releasing active C3 and C5 cleavage fragments that increase the level of bioactive lipids chemoattractants in PB and BM and by (2) modulating the migratory properties of HSPCs with sMAC. We propose modulation of CC as a novel strategy for controlling both mobilization and homing of HSPCs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2477-2477
Author(s):  
Kasia Mierzejewska ◽  
Ahmed Abdel-Latif ◽  
Gabriela Schneider ◽  
Janina Ratajczak ◽  
Magdalena Kucia ◽  
...  

Abstract Background We have recently reported that hematopoietic stem/progenitor cells (HSPCs) that harbor mutations of the PIG-A gene are preferentially mobilized into peripheral blood (PB) during hemolytic events in paroxysmal nocturnal hemoglobinuria (PNH) patients (Leukemia 2012;26:1722). This effect has been explained by i) an increase in the plasma level of sphingosine-1-phosphate (S1P), which at physiological doses is a major chemoattractant for HSPCs and is released from lysed erythrocytes (Leukemia 2010;24:976), and ii) the fact that PNH-cloned HSPCs, in contrast to normal HSPCs, show defective SDF-1–CXCR4-mediated retention in BM niches. It is known that under steady-state conditions the concentration of S1P in PB is already 25x higher than its concentration in the BM microenvironment and increases additionally during hemolysis. Aim of the study Since erythrocytes are a major source of plasma S1P, we asked whether massive hemolysis of erythrocytes leading to an additional increase in plasma S1P level would trigger mobilization of HSPCs. Furthermore, to shed more mechanistic light on the mobilization of HSPCs in PNH patients and to distinguish the effect of an increase in the S1P chemotactic gradient in PB plasma from the effect of defective retention of HSPCs in the BM microenvironment, we performed mobilization studies in mice exposed to the hemolysis-inducing agent phenhlhydrazine (PHZ) ± blockade of the BM-retaining SDF-1–CXCR4 axis by AMD3100. Experimental approach Normal C57Bl6 mice were injected with i) PHZ to induce hemolysis and S1P release from erythrocytes, ii) AMD3100 to perturb the SDF-1–CXCR4-mediated retention of HSPCs in BM niches, or iii) both PHZ and AMD3100. Subsequently, we evaluated the number of circulating Sca-1+Kit+Lin– (SKL) HSPCs as well as the number of clonogenic CFU-GM progenitors in PB. In parallel, we evaluated the S1P blood plasma levels by liquid chromatography electrospray ionization tandem mass spectrometry (HPLC ESI MS/MS) and the SDF-1 level by ELISA. In addition, we measured complement cascade (CC) activation by measuring the C5b-C9 (membrane attack complex, MAC) levels. Results We found that hemolysis doubles the PB plasma level of S1P (from 1 to 2 mM). To assess the effect of plasma S1P versus plasma SDF-1 as chemoattractants mediating egress of HSPCs from BM, we employed plasma derived from control and PHZ-treated mice, W146, a receptor-specific inhibitor for the S1P receptor type 1 (S1P1), and the CXCR4 antagonist AMD3100 in Transwell migration assays. We observed that chemotaxis of BM-purified HSPCs was inhibited by blocking the S1P–S1P1 but not the SDF-1–CXCR4 axes, which demonstrates that the S1P level in plasma is a crucial chemoattractant for HSPCs present under normal steady-state conditions and in PHZ-treated mouse plasma. This observation also clearly shows that the S1P gradient, even under steady-state conditions, is already high enough to promote egress of HSPCs from BM into PB and supports our previous observations that, while the SDF-1–CXCR4 axis plays an important role in retention of HSPCs in BM niches, the SDF-1 plasma level is too low to induce egress of HSPCs (Leukemia 2010;24:976). In our in vivo mobilization studies, we observed that, in contrast to AMD3100 administration, PHZ-induced hemolysis alone had a negligible effect on mobilization of HSPCs, with a peak at 6 h after infusion of this hemolysis-inducing agent (Figure 1). However, when we combined PHZ with AMD3100, mice mobilized twice as many HSPCs as with administration of AMD3100 alone. The degree of mobilization of HSPCs correlated with the free Hb level in plasma and with activation of the complement cascade. Conclusions At the steady-state conditions S1P level in PB is already a strong chemotactic factros for BM-residing HSPCs. More importantly, to explain the differential mobilization of PNH-affected HSPCs versus normal HSPCs (Leukemia 2012;26:1722), we show here for the first time that hemolysis alone, even if it doubles the S1P level in PB, requires attenuation of CXCR4–SDF-1-mediated retention in BM niches. Thus, PNH-affected HSPCs, due to defective lipid raft formation, have impaired CXCR4-mediated retention in BM niches and are preferentially mobilized into PB. Finally, our data explain why, compared with PNH, HSPCs are mobilized to a much lesser degree in other hemolytic syndromes (e.g., sickle cell anemia). Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3492-3492
Author(s):  
Laura A. Paganessi ◽  
Andrew L. Walker ◽  
Stephanie A. Gregory ◽  
Henry C. Fung ◽  
Kent W. Christopherson

Abstract The exopeptidase CD26 (also known as DPPIV/dipeptidylpeptidase IV) cleaves dipeptides from the N-terminus of proteins that contain the required X-Pro or X-Ala motif. We have previously reported that inhibition or loss of CD26 activity results in a deficiency in normal granulocyte-colony stimulating factor (G-CSF) induced mobilization, suggesting that CD26 is a necessary component of mobilization (Christopherson, et al Blood 2003 and Christopherson, et al Exp Hematol 2003). The chemokine CXCL12 (SDF-1, stromal cell derived factor-1) contains the appropriate recognition sequence for CD26 induced cleavage. This combined with the importance of CXCL12 in the trafficking of hematopoietic stem and progenitor cells (HSC/HPC) suggests CXCL12 as a likely functional target of CD26 during G-CSF induced mobilization. For this reason we therefore decided to investigate whether genetically engineered mice lacking CD26 (CD26−/−) could be mobilized utilizing the CXCR4 antagonist, AMD3100. To evaluate this, ten week old C57BL/6 and CD26−/− mice (also on a C57BL/6 background) received a single subcutaneous injection of AMD3100 (1mg/1kg). One hour following injection the mice were euthanized by CO2 inhalation. Peripheral blood was then obtained by heart stick with a 1.2 ml syringe containing EDTA as an anticoagulant. A complete blood count was taken for each peripheral blood sample. Following red blood cell lysis, cells were plated for myeloid colony formation in a standard 1% methylcellulose colony assay containing the appropriate cytokines. Following 7 days of incubation at 5% O2, 5% CO2 and 37°C plates were scored for colony-forming units-granulocyte macrophage (CFU-GM), burst-forming units-erythroid (BFU-E), and colony-forming units-granulocyte, erythroid, macrophage, and megakaryocytic (CFU-GEMM). Data is presented as the number of colonies per femur for the bone marrow and as the number of colonies per ml of whole blood for the peripheral blood. AMD3100 treatment resulted in an increase in white blood cell (WBC) counts from 5.05±0.48 × 106/ml in untreated mice to 10.21±0.88×106/ml in treated mice (p≤0.01). An increase in WBC counts was also observed during AMD3100 treatment in CD26−/− mice from 7.77±1.28×106/ml in untreated mice to 16.7 ±2.11 × 106/ml in treated mice (p<0.01). AMD3100 treatment resulted in an increase in circulating myeloid progenitors in the peripheral blood of C57BL/6 and CD26−/− mice as compared to untreated C57BL/6 and CD26−/− mice respectively (p≤0.01). Specifically, a 2.38, 3.75, 12.33 fold increase in CFU-GM, BFU-E, and CFU-GEMM were observed in the peripheral blood of C57BL/6 mice after treatment. A 2.63, 5.48, 14.29 fold increase in CFU-GM, BFU-E, and CFU-GEMM were observed in the peripheral blood of CD26−/− mice after treatment. Existing pre-clinical and clinical data suggest that the CXCR4 antagonist, AMD3100, rapidly mobilizes hematopoietic progenitor cells from the bone marrow into the periphery. The results presented here provide pre-clinical evidence that disruption of the interaction between the CXCR4 chemokine receptor and CXCL12, via sub-cutaneous injection of AMD3100, mobilizes significant numbers of myeloid progenitors in mice, even in the absence of CD26. These results support the notion that CD26 is downstream of G-SCF treatment. Additionally, these results support the potential use of AMD3100 to treat patients that may have an altered ability to respond to G-CSF treatment as a result of a reduction or loss in CD26 activity. Future studies are warranted to evaluate potential variations in CD26 levels or activity in the general population, in differing patient populations, and during different treatment regimens.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2137-2137 ◽  
Author(s):  
Linda J. Bendall ◽  
Robert Welschinger ◽  
Florian Liedtke ◽  
Carole Ford ◽  
Aileen Dela Pena ◽  
...  

Abstract Abstract 2137 The chemokine CXCL12, and its receptor CXCR4, play an essential role in homing and engraftment of normal hematopoietic cells in the bone marrow, with the CXCR4 antagonist AMD3100 inducing the rapid mobilization of hematopoietic stem and progenitor cells into the blood in mice and humans. We have previously demonstrated that AMD3100 similarly induces the mobilization of acute lymphoblastic leukemia (ALL) cells into the peripheral blood. The bone marrow microenvironment is thought to provide a protective niche for ALL cells, contributing to chemo-resistance. As a result, compounds that disrupt leukemic cell interactions with the bone marrow microenvironment are of interest as chemo-sensitizing agents. However, the mobilization of normal hematopoietic stem and progenitor cells may also increase bone marrow toxicity. To better evaluate how such mobilizing agents affect normal hematopoietic progenitors and ALL cells, the temporal response of ALL cells to the CXCR4 antagonist AMD3100 was compared to that of normal hematopoietic progenitor cells using a NOD/SCID xenograft model of ALL and BALB/c mice respectively. ALL cells from all 7 pre-B ALL xenografts were mobilized into the peripheral blood by AMD3100. Mobilization was apparent 1 hour and maximal 3 hours after drug administration, similar to that observed for normal hematopoietic progenitors. However, ALL cells remained in the circulation for longer than normal hematopoietic progenitors. The number of ALL cells in the circulation remained significantly elevated in 6 of 7 xenografts examined, 6 hours post AMD3100 administration, a time point by which circulating normal hematopoietic progenitor levels had returned to baseline. No correlation between the expression of the chemokine receptor CXCR4 or the adhesion molecules VLA-4, VLA-5 or CD44, and the extent or duration of ALL cell mobilization was detected. In contrast, the overall motility of the ALL cells in chemotaxis assays was predictive of the extent of ALL cell mobilization. This was not due to CXCL12-specific chemotaxis because the association was lost when correction for background motility was undertaken. In addition, AMD3100 increased the proportion of actively cells ALL cells in the peripheral blood. This did not appear to be due to selective mobilization of cycling cells but reflected the more proliferative nature of bone marrow as compared to peripheral blood ALL cells. This is in contrast to the selective mobilization of quiescent normal hematopoietic stem and progenitor cells by AMD3100. Consistent with these findings, the addition of AMD3100 to the cell cycle dependent drug vincristine, increased the efficacy of this agent in NOD/SCID mice engrafted with ALL. Overall, this suggests that ALL cells will be more sensitive to effects of agents that disrupt interactions with the bone marrow microenvironment than normal progenitors, and that combining agents that disrupt ALL retention in the bone marrow may increase the therapeutic effect of cell cycle dependent chemotherapeutic agents. Disclosures: Bendall: Genzyme: Honoraria.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1234-1234
Author(s):  
Robert S Welner ◽  
Giovanni Amabile ◽  
Deepak Bararia ◽  
Philipp B. Staber ◽  
Akos G. Czibere ◽  
...  

Abstract Abstract 1234 Specialized bone marrow (BM) microenvironment niches are essential for hematopoietic stem and progenitor cell maintenance, and recent publications have focused on the leukemic stem cells interaction and placement within those sites. Surprisingly, little is known about how the integrity of this leukemic niche changes the normal stem and progenitor cells behavior and functionality. To address this issue, we started by studying the kinetics and differentiation of normal hematopoietic stem and progenitor cells in mice with Chronic Myeloid Leukemia (CML). CML accounts for ∼15% of all adult leukemias and is characterized by the BCR-ABL t(9;22) translocation. Therefore, we used a novel SCL-tTA BCR/ABL inducible mouse model of CML-chronic phase to investigate these issues. To this end, BM from leukemic and normal mice were mixed and co-transplanted into hosts. Although normal hematopoiesis was increasingly suppressed during the disease progression, the leukemic microenvironment imposed distinct effects on hematopoietic progenitor cells predisposing them toward the myeloid lineage. Indeed, normal hematopoietic progenitor cells from this leukemic environment demonstrated accelerated proliferation with a lack of lymphoid potential, similar to that of the companion leukemic population. Meanwhile, the leukemic-exposed normal hematopoietic stem cells were kept in a more quiescent state, but remained functional on transplantation with only modest changes in both engraftment and homing. Further analysis of the microenvironment identified several cytokines that were found to be dysregulated in the leukemia and potentially responsible for these bystander responses. We investigated a few of these cytokines and found IL-6 to play a crucial role in the perturbation of normal stem and progenitor cells observed in the leukemic environment. Interestingly, mice treated with anti-IL-6 monoclonal antibody reduced both the myeloid bias and proliferation defects of normal stem and progenitor cells. Results obtained with this mouse model were similarly validated using specimens obtained from CML patients. Co-culture of primary CML patient samples and GFP labeled human CD34+CD38- adult stem cells resulted in selective proliferation of the normal primitive progenitors compared to mixed cultures containing unlabeled normal bone marrow. Proliferation was blocked by adding anti-IL-6 neutralizing antibody to these co-cultures. Therefore, our current study provides definitive support and an underlying crucial mechanism for the hematopoietic perturbation of normal stem and progenitor cells during leukemogenesis. We believe our study to have important implications for cancer prevention and novel therapeutic approach for leukemia patients. We conclude that changes in cytokine levels and in particular those of IL-6 in the CML microenvironment are responsible for altered differentiation and functionality of normal stem cells. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Kasia Mierzejewska ◽  
Yuri M. Klyachkin ◽  
Janina Ratajczak ◽  
Ahmed Abdel-Latif ◽  
Magda Kucia ◽  
...  

Sphingosine-1-phosphate (S1P) is a crucial chemotactic factor in peripheral blood (PB) involved in the mobilization process and egress of hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM). Since S1P is present at high levels in erythrocytes, one might assume that, by increasing the plasma S1P level, the hemolysis of red blood cells would induce mobilization of HSPCs. To test this assumption, we induced hemolysis in mice by employing phenylhydrazine (PHZ). We observed that doubling the S1P level in PB from damaged erythrocytes induced only a marginally increased level of mobilization. However, if mice were exposed to PHZ together with the CXCR4 blocking agent, AMD3100, a robust synergistic increase in the number of mobilized HSPCs occurred. We conclude that hemolysis, even if it significantly elevates the S1P level in PB, also requires attenuation of the CXCR4-SDF-1 axis-mediated retention in BM niches for HSPC mobilization to occur. Our data also further confirm that S1P is a major chemottractant present in plasma and chemoattracts HSPCs into PB under steady-state conditions. However, to egress from BM, HSPCs first have to be released from BM niches by blocking the SDF-1-CXCR4 retention signal.


Sign in / Sign up

Export Citation Format

Share Document