Role of Gene Mutations in Adult Acute Myeloid Leukemia Patients Receiving Allogeneic Hematopoietic Stem Cell Transplantation.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3373-3373
Author(s):  
Sheng-Chieh Chou ◽  
Jih-Luh Tang ◽  
Liang-In Lin ◽  
Hsin-An Hou ◽  
Chien-Yuan Chen ◽  
...  

Abstract Abstract 3373 Poster Board III-261 Purpose Several gene mutations had been found to have clinical implications in patients with acute myeloid leukemia (AML), especially in those with normal karyotype. However, the role of such gene mutations for AML patients receiving allogeneic hematopoietic stem cell transplantation (allo-HSCT) was unclear and inconclusive. We retrospectively evaluated the prognostic impact of 8 gene mutations in adult AML patients undergoing allo-HSCT. Materials & Methods From 1995 to 2007, a total of 463 consecutive adult patients with de novo non-M3 AML had comprehensive gene mutation analyses at the National Taiwan University Hospital. Three hundred and twenty five patients who received conventional induction chemotherapy were enrolled in this study. Those who received only low dose chemotherapy or palliative treatment were excluded. The genetic alterations analyzed included NPM1, FLT3/ITD, FLT3/TKD, CEBPA, AML1/RUNX1, RAS, MLL/PTD, and WT1. The clinical implication of these genetic alterations in the patients receiving allo-HSCT was analyzed, and the result was compared with that in patients without allo-HSCT. Results The clinical characteristics in the patients receiving allo-HSCT (n=100) and those without (n=225) were similar with the exception of age, being younger in the former group (35.4 years vs. 49.5 years p<0.001). In univariate analysis, older age (Age > 45 years), higher initial WBC count (WBC>50K/μL), elevated LDH level, unfavorable karyotype, FLT3/ITD, mutations of AML1/RUNX1 were significantly associated with poorer overall survival (OS) in patients not receiving allo-HSCT; While NPM1mut/FLT3ITDneg and CEBPA mutations served as significantly good prognostic indicators. In multivariate analysis, age, WBC count, karyotype, FLT3/ITD, AML1/RUNX1, CEBPA and NPM1mut/FLT3ITDneg remained to be independent prognostic factors in non-allo-HSCT patients. However, in patients receiving allo-HSCT, only unfavorable karyotype and disease status (refractory or remission) at the time of transplantation were associated with poorer OS both in univariate and multivariate analyses. The similar prognostic impact of FLT3/ITD, CEBPA, AML1/RUNX1 and NPM1 on OS was not seen in patients receiving allo-HSCT. Furthermore, in contrast to its poor prognostic impact in non-allo-HSCT patients, mutation of AML1/RUNX1 was a significant good prognostic factor for relapse free survival (p=0.046), although not for OS, in allo-HSCT group. Conclusion FLT3/ITD, mutations of AML1/RUNX1, CEBPA and NPM1 have great prognostic implication for OS in AML patients not receiving allo-HSCT. However, their impact on OS is ameliorated in patients receiving allo-HSCT. The results need to be confirmed by further studies on more patients. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5092-5092
Author(s):  
Juliane Grimm ◽  
Madlen Jentzsch ◽  
Marius Bill ◽  
Julia Schulz ◽  
Karoline Schubert ◽  
...  

Abstract Introduction: The transcription factor ZBTB7A regulates early differentiation of hematopoietic progenitors & has been associated with oncogenic as well as oncosuppressive functions. While it was shown that ectopic overexpression of Zbtb7a in immature lymphocytes leads to the development of an aggressive T-cell lymphoblastic leukemia, high ZBTB7A expression in cytogenetically normal acute myeloid leukemia (CN-AML) is associated with improved outcomes. Furthermore, recently a leukemogenic cooperation between RUNX1/RUNX1T1 & ZBTB7A mutations in t(8;21)-associated AML was suggested. Here, we further evaluated the complex role of ZBTB7A expression in hematopoietic malignancies by assessing its potential prognostic impact in AML pts undergoing hematopoietic stem cell transplantation (HSCT) after non-myeloablative conditioning (NMA). Methods: We analyzed bone marrow (BM) at diagnosis of 140 pts (median age 63 years [y], range 37-75y) treated at our institution between 2000 & 2015. All pts received NMA conditioning (3x30mg/m2 Fludarabine on days -4 to -1 & 2Gy total body irradiation) followed by HSCT in complete remission with (CR; n=111; 79.3%) or without peripheral hematological recovery (CRi; n=29; 20.7%). Median follow-up for pts alive was 3.5y. Our cohort included pts with CN-AML (n=62, 44.3%), complex karyotype (n=17; P=12.1%) & other cytogenetic abnormalities (n=61; 43.6%). At diagnosis mutations in the genes CEBPA, DNMT3A, IDH1, IDH2, NPM1 & the presence of FLT3-ITD were determined. In diagnostic BM cytogenetics were analyzed using standard techniques for banding & fluorescence in-situ hybridization & the expression of common surface markers was analyzed using flow cytometry. The expression of ZBTB7A was assessed using quantitative RT-PCR & normalized to ABL1 as internal control. As a cut-off the third quartile of normalized gene expression was identified to group high & low ZBTB7A expressers. Results: At diagnosis pts with a high ZBTB7A expression more often had a complex karyotype (P=.02) & were less likely to have core-binding factor AML by trend (P=.18). Additionally, high ZBTB7A levels associated with significantly fewer blasts in peripheral blood (P=.008) & BM (P=.02). The BM mononuclear cells in high ZBTB7A expressers were to a smaller extent positive for myeloid markers (CD38 P=.03; CD33 P=.11; CD13 P=.13) & exhibited a higher percentage of erythroid (Glycophorin A P=.03) as well as monocytic (CD11b P=.04; CD14 P=.01) surface markers. We did not find any statistical associations between ZBTB7A levels & the mutation status of NPM1, CEBPA, IDH1, DNMT3A or the presence of FLT3-ITD. Yet, there was a trend for more IDH2 mutations in the group of high ZBTB7A expressers (P=.18). At diagnosis a high expression of ZBTB7A associated with a significantly higher cumulative incidence of relapse (CIR; P=.002, Figure 1A). This finding also translated into a significantly shorter overall survival (OS; P=.01; Figure 1B) for AML pts with high ZBTB7A levels at diagnosis. When we restricted our analyses to CN-AML, high ZBTB7A expression remained a negative prognostic factor by trend (CIR P=.16; OS P=.11). Conclusion: Expression of ZBTB7A associated with distinct biological features & surface marker pattern in AML. This underlines the results of recent studies which identified ZBTB7A as a novel player in leukemogenesis. However, our findings are in contrast with the previously shown favorable prognostic impact of high ZBTB7A levels in a CN-AML cohort mainly treated with chemotherapy. In contract all pts included in our studies were consolidated with NMA-HSCT. Since this treatment regimen is mainly based on the graft versus leukemia effect a high ZBTB7A expression could potentially interfere with the immunological recognition of the AML blasts resulting in a reduced response to NMA-HSCT. Consequently, future functional studies & clinical trials should aim at further characterize the complex role of ZBTB7A in AML. Figure Figure. Disclosures Poenisch: Mundipharma: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5228-5228
Author(s):  
Genki Yamato ◽  
Hiroki Yamaguchi ◽  
Hiroshi Handa ◽  
Norio Shiba ◽  
Satoshi Wakita ◽  
...  

Abstract Background Acute myeloid leukemia (AML) is a complex disease caused by various genetic alterations. Some prognosis-associated cytogenetic aberrations or gene mutations such as FLT3-internal tandem duplication (ITD), t(8;21)(q22;q22)/RUNX1-RUNX1T1, and inv(16)(p13q22)/CBFB-MYH11 have been found and used to stratify the risk. Numerous gene mutations have been implicated in the pathogenesis of AML, including mutations of DNMT3A, IDH1/2, TET2 and EZH2 in addition to RAS, KIT, NPM1, CEBPA and FLT3in the recent development of massively parallel sequencing technologies. However, even after incorporating these molecular markers, the prognosis is unclear in a subset of AML patients. Recently, NUP98-NSD1 fusion gene was identified as a poor prognostic factor for AML. We have reported that all pediatric AML patients with NUP98-NSD1 fusion showed high expression of the PR domain containing 16 (PRDM16; also known as MEL1) gene, which is a zinc finger transcription factor located near the breakpoint at 1p36. PRDM16 is highly homologous to MDS1/EVI1, which is an alternatively spliced transcript of EVI1. Furthermore, PRDM16 is essential for hematopoietic stem cell maintenance and remarkable as a candidate gene to induce leukemogenesis. Recent reports revealed that high PRDM16 expression was a significant marker to predict poor prognosis in pediatric AML. However, the significance of PRDM16 expression is unclear in adult AML patients. Methods A total of 151 adult AML patients (136 patients with de novo AML and 15 patients with relapsed AML) were analyzed. They were referred to our institution between 2004 and 2015 and our collaborating center between 1996 and 2013. The median length of follow-up for censored patients was 30.6 months. Quantitative RT-PCR analysis was performed using the 7900HT Fast Real Time PCR System with TaqMan Gene Expression Master Mix and TaqMan Gene Expression Assay. In addition to PRDM16, ABL1 was also evaluated as a control gene. We investigated the correlations between PRDM16 gene expression and other genetic alterations, such as FLT3-ITD, NPM1, and DNMT3A, and clarified the prognostic impact of PRDM16 expression in adult AML patients. Mutation analyses were performed by direct sequence analysis, Mutation Biased PCR, and the next-generation sequencer Ion PGM. Results PRDM16 overexpression was identified in 29% (44/151) of adult AML patients. High PRDM16 expression correlated with higher white blood cell counts in peripheral blood and higher blast ratio in bone marrow at diagnosis; higher coincidence of mutation in NPM1 (P = 0.003) and DNMT3A (P = 0.009); and lower coincidence of t(8;21) (P = 0.010), low-risk group (P = 0.008), and mutation in BCOR (P = 0.049). Conversely, there were no significant differences in age at diagnosis and sex distribution. Patients with high PRDM16 expression tended to be low frequency in M2 (P = 0.081) subtype, and the remaining subtype had no significant differences between high and low PRDM16 expression. Remarkably, PRDM16 overexpression patients were frequently observed in non-complete remission (55.8% vs. 26.3%, P = 0.001). Patients with high PRDM16 expression tended to have a cumulative incidence of FLT3-ITD (37% vs. 21%, P = 0.089) and MLL-PTD (15% vs. 5%, P = 0.121). We analyzed the prognosis of 139 patients who were traceable. The overall survival (OS) and median survival time (MST) of patients with high PRDM16 expression were significantly worse than those of patients with low expression (5-year OS, 17% vs. 32%; MST, 287 days vs. 673 days; P = 0.004). This trend was also significant among patients aged <65 years (5-year OS, 25% vs. 48%; MST, 361 days vs. 1565 days, P = 0.013). Moreover, high PRDM16 expression was a significant prognostic factor for FLT3-ITD negative patients aged < 65 years in the intermediate cytogenetic risk group (5-year OS, 29% vs. 58%; MST, 215 days vs. undefined; P = 0.032). Conclusions We investigated the correlations among PRDM16 expression, clinical features, and other genetic alterations to reveal clinical and prognostic significance. High PRDM16 expression was independently associated with non-CR and adverse outcomes in adult AML patients, as well as pediatric AML patients. Our finding indicated that the same pathogenesis may exist in both adult and pediatric AML patients with respect to PRDM16 expression, and measuring PRDM16 expression was a powerful tool to predict the prognosis of adult AML patients. Disclosures Inokuchi: Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria; Celgene: Honoraria; Pfizer: Honoraria.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1981-1981
Author(s):  
Yang Xu ◽  
Zhen Yang ◽  
Hong Tian ◽  
Huiying Qiu ◽  
Aining Sun ◽  
...  

Abstract Abstract 1981 Background: Gene mutations may serve as potential markers to extend the prognostic parameters in acute myeloid leukemia (AML) patients. In this study, we detected distribution of mutations in the nucleophosmin gene (NPM1), C-KIT, the fms-related tyrosine kinase 3 gene (FLT3), Isocitrate dehydrogenase gene 1 and 2 (IDH1, IDH2), the neuroblastoma RAS viral oncogene homolog (NRAS) and DNA methyltransferase 3A gene (DNMT3A) in 442 newly diagnosed AML patients (none-APL). Associations of gene mutations with clinical outcomes in these patients followed HSCT treatment or chemotherapy were further evaluated. Methods: Between February 2005 and December 2011, 442 newly diagnosed AML (none-APL) patients in our centre were retrospectively analyzed. There are 248 males and 194 females, and the median ages were 40 (16–60) years. 393 patients (88.9%) of patients were with single or normal karyotype and 49 patients (11.1%) were with complex abnormal karyotype. In addition to MICM examination, direct sequencing was employed to access the distribution of mutations in of FLT3-ITD (exon14), FLT3-TKD (exon 20), NPM1 (exon12), C-KIT (exon8, 17), IDH2 (exon 4), NRAS (exon1, 2), DNMT3A (exon23) of 445 AML patients. Complete remission (CR) was achieved in 258 patients (58.4%) followed the standard induction therapy, 128 patients received HSCT (Allo-HSCT: 121 vs. Auto-HSCT: 7) therapy after first remission or second remission while 258 patients received consolidation chemotherapy contained 4–6 cycles high dose Ara-C (HD-Ara-C). Overall survival (OS) and Event-free survival (EFS) were measured at last follow-up (censored), and Kaplan-Meier analysis was used to calculate the distribution of OS and EFS. Results: In 442 AML (None-APL) patients, 44 patients (9.7%) had C-KIT mutations, 97 patients (21.9%) had NPM1 mutations, 95 patients (21.5%) had FLT3-ITD mutations, 26 patients (5.9%) had FLT3-TKD mutations, 23 patients (5.2%) had IDH1 mutations, 48 patients (10.9%) had IDH2 mutations, 31 patients (7.0%) had DNMT3A mutations, and 40 patients (9.0%) had NRAS mutations. Using COX regression, we found that mutations in FLT3-ITD (HR:2.113; 95%CI: 1.1420 to 3.144),IDH1 (HR:3.023; 95%CI: 1.055 to 3.879), NRAS (HR:1.881; 95%CI: 1.021 to 2.945), and DNMT3A (HR: 2.394; 95%CI: 1.328 to 4.315) were independent unfavorable prognostic indicators of overall survival of AML patients. We further compared the outcomes of AML patients with such gene mutations followed different therapy (HSCT vs. HD Ara-C), and results shown that patients with mutations in IDH1, NRAS and DNMT3A received HSCT therapy had better survival. The median OS and EFS of patients with FLT3-ITD, IDH1, NRAS and DNMT3A in the two groups (HSCT vs. HD Ara-C) were as follows: IDH1 (OS: 35 months vs. 11 months, p=0.016; EFS: 34 months vs. 8 months, p=0.012), NRAS (OS: 27months vs. 8 months, p=0.008; EFS: 23 months vs. 4 months, p=0.049), DNMT3A (OS: 66 months vs. 19 months, p=0.008; EFS: 54 months vs. 13 months, p=0.002). Conclusions: Taken together, our data proved that mutant FLT3-ITD, IDH1, NRAS, and DNMT3A might serve as poor prognostic markers and hematopoietic stem cell transplantation as first-line treatment could favor the outcome of AML patients carrying IDH1, NRAS, and DNMT3A mutations. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1477-1477
Author(s):  
Akira Shimada ◽  
Daisuke Tomizawa ◽  
Akitoshi Kinoshita ◽  
Kazuko Hamamoto ◽  
Ichiro Tsukimoto ◽  
...  

Abstract Abstract 1477 Introduction: When compared to older patients, infants with acute leukemia exhibit distinct cytogenetic features, such as higher prevalence of MLL gene rearrangement (MLL-R), and are known to have higher vulnerability to intensive cytotoxic therapy, such as hematopoietic stem cell transplantation. In contrast to acute lymphoblastic leukemia (ALL), there have been few reports on acute myeloid leukemia (AML) in infants. To develop more appropriate therapeutic strategies for infants with AML, it is necessary to elucidate the distinct clinical features of this subgroup. We therefore performed a retrospective analysis on infant AML in Japan. Patients: Infants with AML, aged less than 1 year at diagnosis, registered in any of the 6 Japanese AML clinical trials between 1991 and 2010 (TCCSG M91-13, TCCSG M96-14, AML99, CCLSG9805, CCLSG9805RE, and JPLSG AML-05) were included in this study. Patients with Down syndrome were excluded. Results: A total of 122 infant AML patients were included in the present analysis, which comprised approximately 10% of all pediatric AML patients. The most frequent FAB classification type was M5 (28.7%), followed by M7 (22.9%) and M4 (10.8%). About 30% of patients had 11q23 abnormalities/MLL -R, but there was no impact on prognosis. Several cases with normal karyotype were revealed to be MLL -R on FISH analysis or on MLL -fusion chimeric transcript analysis by RT-PCR. t(8;21), inv(16) and t(15;17) cases were very rare among the infant cohorts. Furthermore, 7.8% had t(1;22)(p13;q13), and 2.5% had t(7;12)(q36;p13). Genetic mutation results could be obtained in 11 cases in the AML99 study; only one case each was confirmed to have NRAS, KRAS or KIT gene mutation. No cases with FLT3-ITD were detected among the 11 cases in the AML99 or the 44 cases in the AML-05 study. Survival rate varied based on treatment received; 5-year OS rate was 58.3% to 71.4%, and 5-year EFS rate was 49.4% to 64.2%. Discussion: Survival rate in infant AML was identical to that in older pediatric AML. However, there was a possible underestimation of MLL -R patients based on sole chromosome analysis; the prevalence of MLL -R was less than 50% in infant AML patients, without any prognostic impact. Other well-known genetic alterations in pediatric AML also had no effect on outcome of infant AML. Infant AML is a heterogeneous subgroup of pediatric AML, and further studies, as well as novel biomarkers, will be necessary to fully understand its biology. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document