Characterization of the Hematologic Phenotype of rpS6 Heterozygous Null Mice as a Model of the Erythroid Failure In Diamond-Blackfan Anemia

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2033-2033
Author(s):  
Sioban B. Keel ◽  
Janis L. Abkowitz

Abstract Abstract 2033 Diamond-Blackfan Anemia (DBA) is a congenital form of pure red cell aplasia characterized by a hypoproliferative, macrocytic anemia, congenital anomalies, and a predisposition to cancer. DBA, along with a growing number of human diseases, is linked to defects in ribosome biogenesis. Mutations in at least 10 ribosomal protein genes of both the 40S and 60S ribosomal subunits have now been identified in over 50% of patients with DBA (Narla A, et al. Blood 2010; 115) resulting in ribosomal protein haploinsufficency and in turn a defect in ribosome biogenesis. It remains, however, unknown how these events culminate in erythroid marrow failure. The study of this pathophysiology has been hindered by a lack of animal models. We became aware of the Rps6-deleted mouse as a potential murine model of DBA (Volarevic S, et al. Science 2000; 288). RPS6 is another 40S ribosomal subunit protein required for ribosomal subunit assembly. Haploinsufficiency of RPS6 causes a phenotype reminiscent of DBA during embryogenesis (Panic L, et al. Mol Cell Biol 2006; 26), however, the erythropoietic phenotype of the conditionally-deleted Rps6 heterozygous mouse was unknown. The purpose of these studies is to fully characterize the erythroid phenotype of this mouse as a model of DBA. We demonstrate that deletion of one Rps6 allele in mice results in a macrocytic anemia and leukopenia (an absolute neutropenia and lymphocytopenia, Table 1). Though this finding is not typical, neutropenia has been described in DBA. Like DBA, the anemia is hypoproliferative (corrected reticulocyte counts were equivalent in rpS6 heterozygous and control mice: 3.3% ± 0.21, n= 3 vs. 3.6 ± 0.33, n=3; two-tailed Student's t-test, p= 0.08, which is an inappropriately low value given the deleted animals’ anemia). Flow cytometric analyses of bone marrow and spleen double-stained for Ter119 and transferrin receptor (CD71) demonstrate impaired early erythroid differentiation, evidenced by a relative expansion in the proerythroblast and basophilic erythroblast populations. Hematopoietic colony assays confirm this early defect. These data suggest that haploinsufficiency of rpS6 impacts both erythropoiesis and granulopoiesis, and since the mice are not thrombocytopenic, the effect appears lineage specific, rather than occurring in a common progenitor cell. Polysome profiles to confirm a defect in ribosome biogenesis are pending. Since heterozygous mice recapitulate the erythroid phenotype of DBA, we treated the mice with standard and potential DBA therapies. Specifically, mice received 2 mg/kg/day of prednisone for 12 weeks. There was no improvement in the hemoglobin or MCV in treated animals. As DBA and 5q- syndrome myelodysplastic syndrome (MDS) share an erythroid phenotype and both result from a haploinsufficiency of a ribosomal protein, we also tested whether the macrocytic anemia in rpS6 heterozygous mice responds to lenalidomide (Revlimid®, gift from Celgene Corporation, San Diego, CA). Mice received 3 mg/kg/day of lenalidomide by oral gavage for 12 weeks. The hemoglobin increased in control mice and markedly increased in rpS6 heterozygous mice after 12 weeks of therapy (13.5 ± 0.4 to 14.9 ± 0.2, p= 0.0 and 7.9 g/dL ± 0.9 to 10.3 ± 0.8, p= 0.01, respectively; mean ± SEM, Student's t-test, paired). Additionally, the MCV decreased with therapy in both groups (49.1 fL ± 1.4 to 41.1 ± 0.2, p=0.005 and 57.4 ± 1.1 to 53.77 ± 1.4, p=0.08). With the caveat that we did not monitor drug levels achieved in vivo, these data suggest that lenalidomide improves hemoglobinization and deserves further study in DBA. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3428-3428
Author(s):  
Paola Quarello ◽  
Emanuela Garelli ◽  
Adriana Carando ◽  
Patrizia Pappi ◽  
Alfredo Brusco ◽  
...  

Abstract Abstract 3428 Background: Diamond-Blackfan anemia (DBA,#MIM105650) is a rare congenital pure red cell aplasia characterized by normochromic macrocytic anemia, reticulocytopenia, and normocellular bone marrow with a selective deficiency of erythroid precursors. Although mutations of eleven ribosomal protein (RP) genes have been detected in more than 50% of DBA patients the remaining patients appear to have intact ribosomal protein genes using stadard sequencing methods (Boria et al. Hum Mut 2010). We previously described the detection of three large RPS19 deletions using the MLPA (Multiplex Ligation-dependent Probe Amplification) technique (Quarello et al. Haematologica 2008). As MLPA is an efficient and rapid technique that detects gene dosage alterations, we thus decided to apply this approach also to other RP genes. Aim: To search for unidentified RP large deletions we applied the MLPA technique in Italian DBA patients who have been found mutation-negative by sequencing. Methods: Italian DBA patients without RP genes mutations (73/156, 47%) were included in this study. The analysis was performed using a homemade MLPA kit following the recommendations provided by MRC Holland (Amsterdam, The Netherlands, www.mlpa.com). The probes were designed to detect deletions of six RP genes (RPS17, RPS19, RPS26, RPL5, RPL11, RPL35A). Deletions of probe recognition sequences were apparent by a 35–50% reduced relative peak area of the amplification product of that probe. Results: The results of the MLPA assay revealed that 13 out of the 73 probands (18%) had a multi-exonic deletion in one of the six DBA genes analyzed. We identified four deletions of the RPS17 gene, three of the RPS26 gene, three of the RPL35A, two of the RPL11 gene and one of the RPL5 gene. No additional RPS19 deletions were found. DBA patients with deletions showed a severe phenotype with a very high percentage of transfusion dependence (85%). Somatic malformations were observed only in two patients. Conclusion: We detected a high percentage of deletions of known DBA genes in a cohort of patients in whom no mutations were found by RP sequencing. Mutation screening of the RP genes with a combination of sequencing and MLPA reached an overall detection rate of 61.5% (96/156). In our cohort, large genomic deletions represent up to 18% of all mutations detected. In conclusion, we stress the high percentage of identified RP genes deletions in DBA patients. We also highlight that a gene-dosage technique, such as MLPA, should complement sequencing in a clinical environment since only a combined approach of this kind permits the comprehensive detection of all mutations in the DBA RP genes. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 175-175 ◽  
Author(s):  
Hanna T. Gazda ◽  
Mee Rie Sheen ◽  
Leana Doherty ◽  
Adrianna Vlachos ◽  
Valerie Choesmel ◽  
...  

Abstract Abstract 175 Diamond-Blackfan anemia (DBA) is a congenital bone marrow failure syndrome characterized by anemia usually presenting during infancy or in early childhood, birth defects, and increased risk of cancer. Although anemia is the most prominent feature of DBA, the disease is also characterized by growth retardation and congenital malformations, in particular craniofacial, upper limb, heart and urinary system defects, that are present in ∼30–50% of patients. To date, DBA has been associated with mutations in seven ribosomal protein (RP) genes, S19, S24, S17, L35A, L5, L11, and S7 in about ∼43% of patients. To complete our large scale screen of RP genes in a DBA population, we sequenced 49 ribosomal protein genes in our DBA patient cohort of 117 probands. Together with our previous efforts of screening 29 RP genes, this completes the analysis of all known RP genes (excluding RPS4Y on the Y chromosome). Here we report probable mutations in four more RP genes, RPS10, RPS26, RPL19, and RPL26, and variants of unknown significance in six more, RPL9, RPL14, RPL23A, RPL7, RPL35, and RPL3. RPS10 and RPS26 are now confirmed DBA genes as we identified five mutations in RPS10 in five probands and nine mutations in RPS26 in 12 probands. We found single small frameshifting deletions in RPL19 and RPL26 in single DBA families. Pre-rRNA analysis in lymphoblastoid cells from patients bearing mutations in RPS10 and RPS26 showed elevated levels of 18S-E pre-rRNA. This accumulation is consistent with the phenotype observed in HeLa cells after knock-down of RPS10 or RPS26 expression with siRNAs, which indicate that mutations in the RPS10 and RPS26 genes in DBA patients affect the function of the proteins. This brings to 11, the total number of RP genes mutated in ∼54% of patients with DBA, with nine more genes harboring variants of unknown significance requiring further study. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 177-177 ◽  
Author(s):  
Elspeth Payne ◽  
Hong Sun ◽  
Barry H. Paw ◽  
A. Thomas Look ◽  
Arati Khanna-Gupta

Abstract Abstract 177 Diamond Blackfan Anemia (DBA) is a congenital autosomal dominant bone marrow failure syndrome of childhood manifested as profound anemia. The disease is characterized by enhanced sensitivity of hematopoietic progenitors to apoptosis with evidence of stressed erythropoiesis. In addition to bone marrow defects, DBA patients often have craniofacial, genitourinary, cardiac and limb abnormalities and have an increased risk of developing hematopoietic malignancies and osteosarcoma. Twenty-five percent of patients with DBA have heterozygous mutations in the ribosomal protein S19 (RPS19) gene, which encodes a component of the 40S ribosomal subunit. Additionally, a growing percentage of DBA patients lacking a mutation in the RPS19 gene have been shown to have mutations in other ribosomal protein genes. These observations support the hypothesis that DBA is a disease of altered ribosome assembly and function. It is unclear how defects in ribosomal proteins have such a specific effect on erythroid maturation and cause increased apoptosis in the erythroid compartment. An attempt to model DBA by homozygous deletion of the Rps19 gene in mice proved to be embryonic lethal, and heterozygous mice appeared to fully compensate for the loss of one Rps19 allele, in contrast to the disease observed in humans. However, two groups have successfully modeled DBA in zebrafish using an antisense morpholino (MO) approach. These studies demonstrated that similar to the human disease, rps19 deficiency leads to defective erythropoiesis, increased apoptosis and to developmental abnormalities. A central role for the tumor suppressor p53 was suggested in one of these studies. It has previously been shown that any MO injection into zebrafish embryos can lead to the activation of the p53 pathway. Therefore, in order to clarify whether p53-independent effects also contributed to the DBA phenotype in zebrafish, we utilized the p53e7/e7 line that harbors a mutation within the p53 DNA-binding domain. Splice site and validated 5'UTR MOs targeting zebrafish rps19 were injected into one-cell stage embyros that were wildtype (WT) for p53 (AB) or mutated p53e7/e7. Staining for hemoglobin at 48 hours post fertilization showed a profound reduction in circulating blood in both p53 wild-type and p53 mutant embryos. Although p53 mutants injected with rps19 MO show a similar reduction in hemoglobin expression to WT morphants, they have a marked improvement in their developmental defects. A 20% decrease in expression of the transcription factor GATA-1 was observed in the rps19 morphants in the p53 mutant background compared to control MO injection. The implications of this finding are being further investigated and extended to include a panel of additional erythroid-specific factors. We have observed no increase in the levels of cell death, as measured by acridine orange (AO) staining or expression of the p53-regulated apoptosis associated gene PUMA, in the p53 mutant background. Taken together, our observations indicate that the phenotype observed in DBA has both a p53-dependent and a p53-independent component. We hypothesize that the p53-dependent component of DBA is likely responsible for the increased apoptosis associated with DBA while the erythroid maturation defect is associated, in large part, with a p53-independent component. Our studies are currently focused on identifying the players in the latter pathway. These investigations should shed light on thus far undefined pathways that will likely open new avenues for drug design and development for DBA. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (6) ◽  
pp. 912-921 ◽  
Author(s):  
Loïc Garçon ◽  
Jingping Ge ◽  
Shwetha H. Manjunath ◽  
Jason A. Mills ◽  
Marisa Apicella ◽  
...  

Key PointsRibosome biogenesis and hematopoiesis are impaired in iPSCs from DBA patients. The abnormalities of DBA iPSCs are ameliorated by genetic restoration of the defective ribosomal protein genes.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Deborah Chiabrando ◽  
Emanuela Tolosano

Diamond-Blackfan anemia (DBA) is a rare, pure red-cell aplasia that presents during infancy. Approximately 40% of cases are associated with other congenital defects, particularly malformations of the upper limb or craniofacial region. Mutations in the gene coding for the ribosomal protein RPS19 have been identified in 25% of patients with DBA, with resulting impairment of 18S rRNA processing and 40S ribosomal subunit formation. Moreover, mutations in other ribosomal protein coding genes account for about 25% of other DBA cases. Recently, the analysis of mice from which the gene coding for the heme exporter Feline Leukemia Virus subgroup C Receptor (FLVCR1) is deleted suggested that this gene may be involved in the pathogenesis of DBA. FLVCR1-null mice show a phenotype resembling that of DBA patients, including erythroid failure and malformations. Interestingly, some DBA patients have disease linkage to chromosome 1q31, where FLVCR1 is mapped. Moreover, it has been reported that cells from DBA patients express alternatively spliced isoforms of FLVCR1 which encode non-functional proteins. Herein, we review the known roles of RPS19 and FLVCR1 in ribosome function and heme metabolism respectively, and discuss how the deficiency of a ribosomal protein or of a heme exporter may result in the same phenotype.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3204-3204
Author(s):  
Yuki Konno ◽  
Tsutomu Toki ◽  
Satoru Tandai ◽  
Gang Xu ◽  
Kiminori Terui ◽  
...  

Abstract Abstract 3204 Poster Board III-141 Diamond-Blackfan anemia (DBA) is an inherited congenital bone marrow failure syndrome, characterized by red blood cell aplasia, macrocytic anemia, and increased risk of malignancy. Although anemia is the most prominent feature of DBA, the disease is also characterized by growth retardation and congenital malformations, which occur in about 40% of patients. Approximately 90% of patients present during the first year of life or in early childhood. Recent studies have shown that the disease is associated with heterozygous mutations in the ribosomal protein (RP) genes RPS19, RPS24, and RPS17, encoding small ribosomal subunit proteins, and in RPL5, RPL11 and RPL35a, encoding large ribosomal subunit proteins, in about 50% of patients with DBA in Western countries. There have been no studies to determine the incidence of these mutations in Asian patients with DBA. In this study, 44 probands (46 patients) with DBA in Japan were screened for mutations of the 6 known DBA genes RPS19, RPS24, RPS17, RPL5, RPL11, and RPL35a, in addition to RPS14, which is implicated in the 5q- syndrome, a subtype of myelodysplastic syndrome characterized by a defect in erythroid differentiation. Mutations in RPS19, which have been found in 25% of patients in Western countries, were detected in 6 probands (13.6%). Missense mutations were noted in 5 of these probands, and a frameshift mutation caused by a single-nucleotide insertion was found in 1 case. Three of 7 patients had multiple malformations. Novel mutations in RPL5 were identified in 3 probands (6.8%). Insertion of 2 nucleotides was found in 1 case, affecting the reading frame. Two cases had point mutations, which resulted in a loss of the first initiation codon. All 3 patients with RPL5 mutations had multiple physical anomalies. Remarkably, 2 of 3 patients with RPL5 mutations had cleft palate, whereas no other DBA patients presented with cleft palate. Mutations in RPL11 were identified in 2 patients (4.5%). Deletion of 1 or 2 nucleotides was found in each case, leading to a shift in the reading frame. In contrast to previous reports on patients with RPL11 mutations, thumb anomalies were not seen. Deletion of 1 nucleotide in RPS17 was identified in 1 patient (2.3%), resulting in introduction of a premature stop codon. RPS17 mutations are rare and have been only reported in 2 patients with DBA. Anomalies were not seen in our patient. In summary, RP gene mutations were identified in 27.3% of DBA index cases in Japan. No mutations were detected in RPS14, RPS24 and RPL35a. In Japan, the frequency of mutations in the RP genes appears to be lower than in Western countries. Mutations in RPL5 are associated with multiple physical abnormalities, including cleft palate. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1299-1299
Author(s):  
Adeline Mayeux ◽  
Nathalie Montel-Lehry ◽  
Manon Saby ◽  
Aurore Anton ◽  
Narjesse Karboul ◽  
...  

Abstract Diamond-Blackfan anemia (DBA) is a rare congenital erythroblastopenia associated with haploinsufficiency of more than 15 ribosomal protein genes. We identified in the French registry a DBA patient exhibiting a large heterozygous deletion in ribosomal protein gene RPSA, making it a new candidate as a DBA-associated gene. The deletion was confirmed by qPCR using specific intron/exon primers that could discriminate the RPSA gene from pseudo-genes. Consistent loss of function of this allele, RPSA mRNAs were underrepresented in erythroid cultures and in lymphoblastoid cells (LCLs) derived from the patient. Additionally, an important decrease in erythroid proliferation was observed in erythroid progenitor and precursor cells derived from the patient's bone marrow CD34+ cells, together with a delay in erythroid differentiation, the activation of the p53 pathway, and a G0/G1 cell cycle arrest, which are regular features of DBA patient cells. Similar to other RP genes linked to DBA, interruption of RPSA expression in zebrafish embryos strongly affected development of the head and erythroid cell differentiation, supporting its relevance as a candidate DBA gene. Northern blot analysis also revealed impaired pre-ribosomal RNA (pre-rRNA) processing in patient LCLs compared to controls. But unexpectedly, the observed pre-rRNA profile was clearly different from that observed in HeLa cells upon RPSA knockdown and suggested a dysfunction of pre-rRNA processing upstream of that produced by a shortage of RPSA. We noticed that the RPSA gene hosts the intron-encoded H/ACA snoRNAs snoRA6 and snoRA62, the latter being included in the deletion. Q-RT-PCR analysis of patient cells showed decreased levels of snoRA62 when compared to controls and to other RP-mutated DBA patients. Strikingly, knocking out the snoRNA62 coding sequence in human haploid HAP1 cells with Crispr/Cas9 resulted in a pre-rRNA maturation defect similar to that observed in the RPSA+/mut DBA patient, thereby revealing a role for snoRA62 in human pre-rRNA processing. These data strongly suggest that, in addition to RPSA haploinsufficiency, the primum movens of DBA in this particular patient includes the deletion of the intronic snoRA62 hosted in the RPSA gene. To our knowledge, this is the first time that a snoRNA is linked to DBA. We will discuss this ongoing work in light of our most recent results in cells and zebrafish models. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3103-3103
Author(s):  
Dagmar Pospisilova ◽  
Radek Cmejla ◽  
Jana Cmejlova ◽  
Helena Handrkova ◽  
Jan Stary ◽  
...  

Abstract Introduction: Diamond-Blackfan anemia (DBA) is a congenital red cell aplasia that is usually diagnosed during early infancy. Apart from defects in red cell maturation, the disorder is also associated with various physical anomalies in 40% of patients. Mutations in the ribosomal protein (RP) S19 were found in 25% of patients, while mutations in other proteins of a small ribosomal subunit (RPS17 and RPS24) were published only in a small fraction of patients. Recently, mutations in RPL5, RPL11 and RPL35a of a large ribosomal subunit were also disclosed in several DBA patients. Results: The Czech DBA registry currently comprises 31 patients. Mutations in RPL5 were identified in 8/31 patients (26%), and mutations in RPL11 in 2/31 patients (6.5%), implying that mutations in RPL5 account for more Czech DBA cases than mutations in RPS19 (22.6%). As for the classification of mutations, all types were identified, including a nonsense mutation (in RPL11), point mutations (in RPL11 and RPL5), a supposed splicing defect and a small insertion and deletions (all in RPL5). Except for point mutations, all other changes were predicted to cause frameshift with premature stop codon. Since identified alterations were found neither in dbSNP nor in 52 healthy controls, and in two families mutations segregate with the disease, we conclude that they represent true DBA-causative mutations. Although the Czech DBA Registry is rather small, we performed a direct comparison of the group of patients with RPS19 mutations (n=7) with the group of patients with RPL5 mutations (n=8). No differences were found in sex ratio, steroid responsiveness, severity or course of the disease or the treatment outcome. However, patients with RPL5 mutations were generally born small for gestational age (SGA) compared with patients from the RPS19-mutated group. Only one patient (12.5%) with an RPL5 mutation was born with normal birth weight compared to four patients (57.1%) with RPS19 mutations. The second difference was even more striking: all patients with RPL5 mutations had flat thenar and some also an additional thumb anomaly, while no thumb anomalies were observed in patients with RPS19 mutations. It is questionable whether normal RPL5 function is in some way more important for proper thumb development than RPS19. Discussion: The identification of mutations in the genes in DBA patients is also interesting from another point of view. Both proteins RPL5 and RPL11 have been reported to be implicated in the activation of p53 through the interaction with the MDM2 protein, suppressing its E3 ubiquitin ligase function that otherwise directs p53 to a rapid degradation. It is noteworthy that yet another RP of a large ribosomal subunit was described, having exactly the same function – RPL23. Because no RPL23 mutations in our DBA patients were found, the primary function of RPL5 and RPL11 in ribosome biogenesis and/or translation underlies DBA phenotype rather than the conjoint role of RPL5, RPL11 and RPL23 in the p53 regulation. Conclusions: We identified 6 and 2 different mutations in the RPL5 and RPL11 genes, respectively, expanding the repertoire of known DBA-associated mutations. No mutations in the RPL23 were identified, suggesting that aberrant p53 activation due to mutations in RPL5 and RPL11 seems unlikely to be the primary cause of DBA. Patients with RPL5 mutations are more commonly born SGA and have higer frequency of thumb anomalies.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1116-1116
Author(s):  
Susanne M. Schmidt ◽  
Christian J. Lechner ◽  
Frank Gruenebach ◽  
Julia Salih ◽  
Lothar Kanz ◽  
...  

Abstract Abstract 1116 Poster Board I-138 Introduction In chronic myeloid leukemia (CML) the translocation t(9;22) results in the fusion protein BCR/ABL, a tyrosine kinase that mediates oncogenic signalling, which is successfully targeted by treatment with the tyrosine kinase inhibitor (TKI), imatinib. The novel TKIs, nilotinib and dasatinib, are approved for the treatment of CML patients who progress under imatinib treatment. Therapeutic doses of TKIs also affect anti-tumor immunity. Imatinib has recently been shown to modulate differentiation of dendritic cells (DC), and dasatinib impairs effector functions of cytotoxic lymphocytes. Up to now little is known regarding possible immunomodulatory effects of dasatinib and nilotinib in DC. We here studied and compared the effects of therapeutic concentrations of the three approved TKIs on human monocyte-derived DC. Methods Plastic adherent peripheral blood monocytes were cultured with GM-CSF and IL-4 to generate human DC in the presence or absence of pharmacological concentrations of the drugs (nilotinib and imatinib at 1 and 3μM; dasatinib at 10 and 50nM). DC maturation was induced by adding lipopolysaccharide on day 6 of culture. The influence of treatment with the TKIs on DC was analyzed by immunostaining, determination of cytokine production, migration assays and mixed lymphocyte reaction (MLR) on day 7 of culture. Results To a similar extent, all three TKIs significantly (n = 17, p<.05, Student's T test) impaired the differentiation of monocytes to DC at therapeutically relevant concentrations as revealed by reduced expression of CD1a, CD83, and the costimulatory molecules CD86 and CD80 at the cell surface. This was only partially restored after subsequent withdrawal of the TKIs from the culture. In contrast, nilotinib, but not imatinib or dasatinib significantly (n = 29, p<.05, Student's T test) impaired the migratory capacity of DC. While secretion of MIP1alpha was reduced by pharmacologically relevant doses of all three TKIs, only dasatinib reduced activation-induced secretion of further chemokines and cytokines like Rantes, MCP-1 and IL-6 (n= 8, all p<0.05, Student's T test). Moreover, pretreatment with nilotinib significantly (n=26, p<.05, Student's T test) impaired the capacity of DC to induce T-cell immune responses as revealed by MLR, while imatinib and dasatinib had no relevant influence. Conclusion Pharmacological doses of the three TKIs caused comparable phenotypic alterations of DC. Nilotinib treatment reduced DC migration and impaired the capacity of DC to induce T-cell proliferation, but did not reduce DC cytokine production except MIP1alpha. Dasatinib did not affect migration or T cell-stimulatory capacity of DC, but decreased secretion of all investigated cytokines. Importantly, in contrast to the other TKIs, imatinib did not impair any of the investigated DC functions. Since the three TKIs approved to date differ significantly with regard to their influence on immune effector functions, for future combinatory approaches using TKIs and DC-based immunotherapy, the choice and dosing of the most suitable drug requires careful consideration. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (13) ◽  
pp. 3622-3633 ◽  
Author(s):  
Kelly A. McGowan ◽  
Wendy W. Pang ◽  
Rashmi Bhardwaj ◽  
Marcelina G. Perez ◽  
John V. Pluvinage ◽  
...  

Abstract Reduced gene dosage of ribosomal protein subunits has been implicated in 5q− myelodysplastic syndrome and Diamond Blackfan anemia, but the cellular and pathophysiologic defects associated with these conditions are enigmatic. Using conditional inactivation of the ribosomal protein S6 gene in laboratory mice, we found that reduced ribosomal protein gene dosage recapitulates cardinal features of the 5q− syndrome, including macrocytic anemia, erythroid hypoplasia, and megakaryocytic dysplasia with thrombocytosis, and that p53 plays a critical role in manifestation of these phenotypes. The blood cell abnormalities are accompanied by a reduction in the number of HSCs, a specific defect in late erythrocyte development, and suggest a disease-specific ontogenetic pathway for megakaryocyte development. Further studies of highly purified HSCs from healthy patients and from those with myelodysplastic syndrome link reduced expression of ribosomal protein genes to decreased RBC maturation and suggest an underlying and common pathophysiologic pathway for additional subtypes of myelodysplastic syndrome.


Sign in / Sign up

Export Citation Format

Share Document