Oxygen Sensing of Mesenchymal Stem and Progenitor Cells Facilitates Neo-Vasculogenesis In Vivo

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4313-4313
Author(s):  
Nicole A Hofmann ◽  
Andreas Reinisch ◽  
Anna Ortner ◽  
Katharina Schallmoser ◽  
Eva Rohde ◽  
...  

Abstract Abstract 4313 Background: Vascular homeostasis and regeneration are maintained by proliferating vessel wall-derived somatic endothelial colony-forming progenitor cells (ECFCs). Despite promising experimental data, regenerative stem cell therapy approaches employing ECFCs have been of rather limited efficiency in clinical trials for both therapeutic vasculogenesis as well as anti-angiogenic therapy. We and others have recently shown that ECFC function in vivo requires a stringent interaction with mesenchymal stem and progenitor cells (MSPCs) * [Blood 2009; 113 (26):6716-25]. Co-transplantation of ECFCs and MSPCs is considered to be an advantageous strategy for vascular regenerative medicine. Hypoxia in ischemic tissue is considered to be a key factor influencing pro- and anti-angiogenic treatment by driving the revascularization machinery. In vivo most cells exist under an O2 pressure considerably below air oxygen. In vitro cells are usually expanded under air oxygen and suddenly encounter reduced O2 conditions when re-injected for therapy. Preliminary data suggests that low oxygen conditions differentially regulate stem cell function. We hypothesized that MSPCs act as hypoxia sensors and drive ECFCs to form functioning vessels in vivo. Methods: Adult human ECFCs were isolated and propagated directly from whole venous blood using a novel recovery strategy **[J Vis Exp. 2009;(32) pii: 1524]. MSPCs were isolated from human bone marrow aspirates. During cell culture, pooled human platelet lysate (pHPL) entirely replaced fetal bovine serum. Throughout this study we designated the oxygen level present in vivo in the venous environment as euoxia (41.5±3.4 mmHg). Oxygen levels below euoxia are defined as hypoxia (27.4±7.3 mmHg). Air-oxygen commonly used in standard laboratory practice is above euoxia and is therefore referred to as hyperoxia (139.8±2.9 mmHg). Progenitor cell phenotype, hierarchy, long-term proliferation, wound repair as well as migratory and vasculogenic functions were monitored under euoxia as compared to hypoxic or hyperoxic conditions. Molecular regulation of cellular responses to different oxygen levels was assessed by flow cytometry, immune cytochemistry and proteomic profiling. ECFC and MSPC interactions in vivo were studied in immune-deficient NSG mice (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) after sub-cutaneous co-implantation in matrigel plugs. Immune histochemistry and TUNEL assays were performed on plugs at day 1, 7 and 14 after transplantation. Results: Compared to hyperoxic standard laboratory conditions in vitro, proliferation of ECFCs and MSPCs in primary and long-term cultures was significantly reduced under euoxia, and even more under hypoxic conditions. Hyperoxic conditioning resulted in a shift in progenitor hierarchy with an augmented number of ECFC high proliferative potential (HPP) colonies (60±18% of total colonies) as compared to euoxia (9±6%) and a complete loss of HPP colonies under hypoxia (0%). The absolute colony number remained unchanged independent of oxygen levels. Both ECFC vascular wound repair in scratch assays and matrigel vascular-like network formation in vitro were improved with escalating oxygen supply. The reoxygenation of hypoxic and euoxic ECFCs led to enhanced proliferation and function. Furthermore, MSPCs stabilized hypoxia inducible factor-1α (HIF-1α) under hypoxic as well as euoxic conditions, whereas ECFCs only stabilized HIF-1α when confronted with hypoxia in vitro. In a mouse model, subcutaneously injected ECFCs in matrigel underwent apoptosis after 1 day and attracted mouse leucocytes which infiltrated the matrigel plug. Co-implantation of ECFCs and MSPCs in these matrigel plugs resulted in reduced apoptosis and formation of perfused human vessels as soon as 7 days after transplantation. In this in vivo setting, perivascular cells but not endothelial cells were positive for HIF-1α in immune histochemistry. Background: These data indicate that oxygen levels differentially regulate ECFC and MSPC function during vascular homeostasis and regeneration. While hypoxic ECFCs alone are not able to function in vitro and form patent vessels in vivo, MSPCs react to the low oxygen environment and support ECFCs to perform vessel formation in vivo at least in part by rescuing ECFCs from hypoxia-induced apoptosis. This suggests that oxygen appears to be a key factor in stem cell transplantation and regenerative medicine. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1293-1293
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Within the bone marrow environment, adhesive interactions between stromal cells and extracellular matrix molecules are required for stem and progenitor cell survival, proliferation and differentiation as well as their transmigration between bone marrow (BM) and the circulation. This regulation is mediated by cell surface adhesion receptors. In experimental mouse stem cell transplantation models, several classes of cell adhesion receptors have been shown to be involved in the homing and engraftment of stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Using FACS analysis, the integrin a6 chain was now found to be ubiquitously (>95%) expressed in mouse hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, lin−Sca-1+c-Kit+CD34+) both in adult bone marrow and in fetal liver. In vitro, about 70% of mouse BM lin−Sca-1+c-Kit+ cells adhered to laminin-10/11 and 40% adhered to laminin-8. This adhesion was mediated by integrin a6b1 receptor, as shown by functional blocking monoclonal antibodies. We also used a functional blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of hematopoietic stem and progenitor cells. We found that the integrin a6 antibody inhibited the homing of bone marrow progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C was reduced by about 40% as compared to cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells (LTR), antibody treated bone marrow cells were first injected intravenously into lethally irradiated primary recipients. After three hours, bone marrow cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis 16 weeks after transplantation revealed an 80% reduction of stem cell activity of integrin a6 antibody treated cells as compared to cells treated with control antibody. These results suggest that integrin a6 plays an important role for hematopoietic stem and progenitor cell homing in vivo.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1387-1387
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Homing of transplanted hematopoietic stem cells (HSC) in the bone marrow (BM) is a prerequisite for establishment of hematopoiesis following transplantation. However, although multiple adhesive interactions of HSCs with BM microenviroment are thought to critically influence their homing and subsequently their engraftment, the molecular pathways that control the homing of transplanted HSCs, in particular, of fetal HSCs are still not well understood. In experimental mouse stem cell transplantation models, several integrins have been shown to be involved in the homing and engraftment of both adult and fetal stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Furthermore, integrin a6 is required for adult mouse HSC homing to BM in vivo (Qian et al., Abstract American Society of Hematology, Blood 2004 ). We have now found that the integrin a6 chain like in adult HSC is ubiquitously (>99%) expressed also in fetal liver hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, LSK ). In vitro, fetal liver LSK cells adhere to laminin-10/11 and laminin-8 in an integrin a6b1 receptor-dependent manner, as shown by function blocking monoclonal antibodies. We have now used a function blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of fetal liver hematopoietic stem and progenitor cells to BM. The integrin a6 antibody inhibited homing of fetal liver progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C in BM was reduced by about 40% as compared to the cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells, BM cells were first incubated with anti-integrin alpha 6 or anti-integrin alpha 4 or control antibody, and then injected intravenously into lethally irradiated primary recipients. After three hours, BM cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis up to 16 weeks after transplantation showed that no reduction of stem cell reconstitution from integrin a6 antibody treated cells as compared to cells treated with control antibody. In accordance with this, fetal liver HSC from integrin a6 gene deleted embryos did not show any impairment of homing and engraftment in BM as compared to normal littermates. These results suggest that integrin a6 plays an important developmentally regulated role for homing of distinct hematopoietic stem and progenitor cell populations in vivo.


Blood ◽  
1995 ◽  
Vol 85 (6) ◽  
pp. 1472-1479 ◽  
Author(s):  
CL Li ◽  
GR Johnson

Murine bone marrow cells were fractionated by fluorescence-activated cell sorting into Rh123lo Lin- c-kit+ Ly6A+, Rh123hi Lin-c-kit+ Ly6A+, and Lin- c-kit+ Ly6A- populations within which most, if not all, of the hematopoietic activities of the marrow resided. The Rh123lo Lin- c- kit+Ly6A+ cells, which consist exclusively of small- or medium-sized lymphocyte-like cells, are highly enriched for long-term hematopoietic in vivo repopulating cells. The enrichment factor for these cells from the marrow was estimated as 2,000-fold. The Rh123hi Lin- c-kit+ Ly6A+ cells, although also highly enriched for day-12 spleen colony-forming units, were relatively depleted of long-term in vivo repopulation capacity. Most, if not all Lin- c-kit+ Ly6A- cells were Rb123hi. In contrast to both Rh123lo and Rh123hi Lin- c-kit+ Ly6A+ stem cell populations, the Lin- c-kit+ Ly6A- cells can be stimulated to proliferate in vitro in the presence of single cytokines, which is a characteristic of committed progenitor cells. No marked synergistic interactions between individual cytokines were observed with this cell population. Both Rh123hi Lin- c-kit+ Ly6A+ mature stem cell and Lin- c- kit+ Ly6A- progenitor cell populations displayed in vivo repopulation kinetics resembling those of the putative short-term hematopoietic repopulating cells.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4100-4100
Author(s):  
Darja Karpova ◽  
Katrin Dauber ◽  
Gabriele Spohn ◽  
Doreen Chudziak ◽  
Eliza Wiercinska ◽  
...  

Abstract Abstract 4100 INTRODUCTION: Mobilized hematopoietic stem/progenitor cells (HSPC) have become the favored cell source for stem cell transplantation. The current gold standard mobilizing agent is G-CSF, where a 5-day mobilization regimen precedes stem cell harvest. More fast-acting and potent mobilizing agents would be desirable in the interest of donor and recipient safety and convenience. AMD3100, a currently available fast-acting mobilizing agent has proven weak for clinical mobilization as a single agent, with an efficiency of less than 1/5th of G-CSF in humans. METHODS: Binding properties (position, selectivity, affinity) of the novel PEM CXCR4 antagonist POL5551 to its target receptor were analyzed. In vivo mobilization efficiency was studied after injection into C57Bl/6 or DBA/2 mice. Different administration modes (Bolus vs. continous infusion) were tested as well as a combination with a standard regimen (9×100 μg/kg q12h) of G-CSF or Cyclophosphamide. Progenitor cell mobilization was monitored using clonogenic in vitro assays. Properties of mobilized cells were tested by flow cytometry, in vitro transwell migration assays and in vivo (homing, engraftment kinetics, stem cell contents, secondary engraftment) in lethally irradiated CD45.1 or CD45.1/2 recipient mice, alone or with CD45.1 competitor bone marrow cells. RESULTS: POL5551 showed selective binding to CXCR4 with an affinity exceeding that of its natural ligand SDF1, albeit occupying the extracellular receptor domains only (Fig.1). Mobilization peaked 4 hours after i.p. injection and a positive but non-linear dose-response relationship was documented for doses between 0.5 and 100 mg/kg (6000 CFU-C/ml, Fig. 2). A dose of 15 mg/kg mobilized more than twice the number of CFU-C as an equimolar dose of AMD3100, and a single dose of POL5551 at 30 mg/kg mobilized as strongly as a standard 5-day course of G-CSF treatment. POL5551 synergized with G-CSF in that injection of 5 mg/kg POL5551 after G-CSF treatment increased mobilization by 10-fold (3,000 to approx. 30,000 CFU-C/mL); this represents a 2.5 fold increase compared to a similar treatment regimen with AMD3100. Similarly, synergism with Cyclophosphamide was observed (9,900 to 50,000 CFU-C/mL). Given as continous infusion, 5 mg/kg/day of POL5551 mobilized up to 8,000 CFU-C/ml, whereas at 30 mg/kg/day up to 40,000 CFU-C/ml were measured in circulation on day 3. Mobilized cells migrated efficiently in in vitro transwell assays and homed efficiently to the bone marrow of lethally irradiated recipients. Moreover POL5551 mobilized cells provided timely early engraftment and contained long-term engrafting stem cells with self-renewal capacity, including in serial transplantation. The immunophenotype of immature cells mobilized with POL5551 was characterized by low expression of several adhesion molecules. CONCLUSIONS: POL5551 mobilizes murine stem and progenitor cells with rapid kinetics and unprecedented efficiency, markedly exceeding that of G-CSF and AMD3100. The combination of POL5551 with G-CSF mobilized more strongly than G-CSF with other CXCR4 antagonists. Similar to what we previously described for other mobilized stem cell specimen, POL5551-mobilized cells homed to marrow and engrafted efficiently. Immunophenotype was similar to that of AMD3100 mobilized cells. If the data can be corroborated in humans, POL5551 has the potential to substitute for G-CSF as a mobilizing agent. Disclosures: Romagnoli: Polyphor Ltd.: Employment. Chevalier:Polyphor Ltd: Employment. Patel:Polyphor Ltd.: Employment.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1691-1691
Author(s):  
Kimberly Klarmann ◽  
Daniel Gough ◽  
Benyam Asefa ◽  
Chris Clarke ◽  
Katie Renn ◽  
...  

Abstract Members of the interferon inducible-200 (IFI-200) family of proteins inhibit cell growth and may be important mediators of differentiation. We examined IFI-204 and IFI-205 mRNA expression in purified populations of hematopoietic stem and progenitor cells at different stages of maturation using quantitative RT-PCR and found that their expression markedly increased during myeloid maturation. To evaluate the effect of IFI-205 and IFI-204 on hematopoietic stem cell (HSC) growth, we transduced these genes into mouse bone marrow cells (BMC) using retroviral vectors. The presence IFI-204 or IFI-205 resulted in a decrease in cell growth in response to hematopoietic growth factors. Further analysis revealed the infected cells were 98% c-Kit+ Sca-1+, indicative of the stem cell surface phenotype, suggesting they may be blocked in a primitive stage of maturation. When transplanted, BMC transduced with IFI-204 or IFI-205 failed to engraft lymphoid, myeloid, or erythroid lineages in both short and long term reconstitution assays, suggesting that constitutive expression of IFI-204 and IFI-205 inhibited HSC development both in vitro and in vivo. However, based on the quantitative RT-PCR results, which show that IFI-205 increased during myeloid differentiation, we know its endogenous, regulated expression must permit the cells to mature. Therefore, to study of the effects of these genes on differentiation we transduced the mulitpotential EML (erythroid, myeloid, lymphoid) cell line with IFI-204 and IFI-205 to circumvent severe growth inhibition caused by expression of IFI-204 and Ifi-205 in normal cells. Single cell analysis of EMLs transduced with IFI-205 demonstrated that expression of IFI-205 in this cell line did not significantly inhibit cell growth. We have isolated EML clones from the transduced cells and verified IFI-205 expression. In addition, we generated transgenic mice that express IFI-205 under control of the Vav and MRP8 promoters, and we identified transgenic lines that express IFI-205 at higher levels compared to wild type controls. Analysis of hematopoiesis in these animals is currently in progress. Altogether, our data demonstrate 3 findings: 1) IFI-204 and IFI-205 expression increases during myeloid development based on quantitative RT-PCR analysis, 2) constitutive expression of IFI-204 and -205 results in potent inhibition of growth and maturation of normal hematopoietic stem and progenitor cells in vivo and in vitro and 3) these genes did not significantly inhibit the proliferation of the EML cell line, which provides us with a means to study the mechanism by which these molecules regulate myeloid maturation. Finally, the considerable inhibitory effects of these family members on normal hematopoietic cell growth suggest their potential as therapeutic modalities for treatment of leukemia.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1395-1395
Author(s):  
Morayma Reyes ◽  
Jeffrey S. Chamberlain

Abstract Multipotent Adult Progenitor Cells (MAPC) are bone marrow derived stem cells that can be extensively expanded in vitro and can differentiate in vivo and in vitro into cells of all three germinal layers: ectoderm, mesoderm, endoderm. The origin of MAPC within bone marrow (BM) is unknown. MAPC are believed to be derived from the BM stroma compartment as they are isolated within the adherent cell component. Numerous studies of bone marrow chimeras in human and mouse point to a host origin of bone marrow stromal cells, including mesenchymal stem cells. We report here that following syngeneic bone marrow transplants into lethally irradiated C57Bl/6 mice, MAPC are of donor origin. When MAPC were isolated from BM chimeras (n=12, 4–12 weeks post-syngeneic BM transplant from a transgenic mouse ubiquitously expressing GFP), a mixture of large and small GFP-positive and GFP-negative cells were seen early in culture. While the large cells stained positive for stroma cell markers (smooth muscle actin), mesenchymal stem cell makers (CD73, CD105, CD44) or macrophages (CD45, CD14), the small cells were negative for all these markers and after 30 cell doublings, these cells displayed the classical phenotype of MAPC (CD45−,CD105−, CD44−, CD73−, FLK-1+(vascular endothelial growth factor receptor 2, VEGFR2), Sca-1+,CD13+). In a second experiment, BM obtained one month post BM transplant (n=3) was harvested and mononuclear cells were sorted as GFP-positive and GFP-negative cells and were cultured in MAPC expansion medium. MAPC grew from the GFP-positive fraction. These GFP positive cells displayed the typical MAPC-like immunophenotypes, displayed a normal diploid karyotype and were expanded for more than 50 cell doublings and differentiated into endothelial cells, hepatocytes and neurons. To rule out the possibility that MAPC are the product of cell fusion between a host and a donor cell either in vivo or in our in vitro culture conditions, we performed sex mismatched transplants of female GFP donor BM cells into a male host. BM from 5 chimeras were harvested 4 weeks after transplant and MAPC cultures were established. MAPC colonies were then sorted as GFP-positive and GFP- negative and analyzed for the presence of Y-chromosome by FISH analysis. As expected all GFP-negative (host cells) contained the Y-chromosome whereas all GFP-positive cells (donor cells) were negative for the Y-chromosome by FISH. This proves that MAPC are not derived from an in vitro or in vivo fusion event. In a third study, BM mononuclear cells from mice that had been previously BM-transplanted with syngeneic GFP-positive donors (n=3) were transplanted into a second set of syngeneic recipients (n=9). Two months after the second transplant, BM was harvested and mononuclear cells were cultured in MAPC medium. The secondary recipients also contained GFP-positive MAPC. This is the first demonstration that BM transplantation leads to the transfer of cells that upon isolation in vitro generate MAPCs and, whatever the identity of this cell may be, is eliminated by irradiation. We believe this is an important observation as MAPC hold great clinical potential for stem cell and/or gene therapy and, thus, BM transplant may serve as a way to deliver and reconstitute the MAPC population. In addition, this study provides insight into the nature of MAPC. The capacity to be transplantable within unfractionated BM transplant renders a functional and physiological distinction between MAPC and BM stromal cells. This study validates the use of unfractionated BM transplants to study the nature and possible in vivo role of MAPC in the BM.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 83-83
Author(s):  
Alex J. Tipping ◽  
Cristina Pina ◽  
Anders Castor ◽  
Ann Atzberger ◽  
Dengli Hong ◽  
...  

Abstract Hematopoietic stem cells (HSCs) in adults are largely quiescent, periodically entering and exiting cell cycle to replenish the progenitor pool or to self-renew, without exhausting their number. Expression profiling of quiescent HSCs in our and other laboratories suggests that high expression of the zinc finger transcription factor GATA-2 correlates with quiescence. We show here that TGFβ1-induced quiescence of wild-type human cord blood CD34+ cells in vitro correlated with induction of endogenous GATA-2 expression. To directly test if GATA-2 has a causative role in HSC quiescence we constitutively expressed GATA-2 in human cord blood stem and progenitor cells using lentiviral vectors, and assessed the functional output from these cells. In both CD34+ and CD34+ CD38− populations, enforced GATA-2 expression conferred increased quiescence as assessed by Hoechst/Pyronin Y staining. CD34+ cells with enforced GATA-2 expression showed reductions in both colony number and size when assessed in multipotential CFC assays. In CFC assays conducted with more primitive CD34+ CD38− cells, colony number and size were also reduced, with myeloid and mixed colony number more reduced than erythroid colonies. Reduced CFC activity was not due to increased apoptosis, as judged by Annexin V staining of GATA-2-transduced CD34+ or CD34+ CD38− cells. To the contrary, in vitro cultures from GATA-2-transduced CD34+ CD38− cells showed increased protection from apoptosis. In vitro, proliferation of CD34+ CD38− cells was severely impaired by constitutive expression of GATA-2. Real-time PCR analysis showed no upregulation of classic cell cycle inhibitors such as p21, p57 or p16INK4A. However GATA-2 expression did cause repression of cyclin D3, EGR2, E2F4, ANGPT1 and C/EBPα. In stem cell assays, CD34+ CD38− cells constitutively expressing GATA-2 showed little or no LTC-IC activity. In xenografted NOD/SCID mice, transduced CD34+ CD38−cells expressing high levels of GATA-2 did not contribute to hematopoiesis, although cells expressing lower levels of GATA-2 did. This threshold effect is presumably due to DNA binding by GATA-2, as a zinc-finger deletion variant of GATA-2 shows contribution to hematopoiesis from cells irrespective of expression level. These NOD/SCID data suggest that levels of GATA-2 may play a part in the in vivo control of stem and progenitor cell proliferation. Taken together, our data demonstrate that GATA-2 enforces a transcriptional program on stem and progenitor cells which suppresses their responses to proliferative stimuli with the result that they remain quiescent in vitro and in vivo.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2207-2207
Author(s):  
Ashu Kumari ◽  
Cornelia Brendel ◽  
Thorsten Volkmann ◽  
Sonja Tajstra ◽  
Andreas Neubauer ◽  
...  

Abstract Abstract 2207 Poster Board II-184 Introduction: Treatment with the Abl-kinase specific inhibitor imatinib (IM) is very effective in chronic myeloid leukemia (CML). However, IM presumably fails to eradicate CML stem cells (HSC) leading to disease persistence and relapse after IM-discontinuation. Although causes of CML persistence under imatinib remain ill defined, quiescence and BCR/ABL-overexpression of CML stem and progenitor cells have been suggested as underlying mechanisms. We here set out to identify means to directly study persistence mechanisms in residual BCR/ABL-positive progenitor and stem cell clones from chronic phase CML patients in major molecular remission (mmR) under imatinib. Methods: Bone marrow specimens of twenty-one CML patients in at least major molecular remission (mmR) according to the international scale, first diagnosis (FD) patients (n=5) and healthy donors (n=4) were sorted into HSC, common myeloid progenitors (CMP), granulocyte/macrophage progenitors (GMP) and megakaryocate-erythrocyte progenitors (MEP) and BCR-ABL mRNA expression was directly assessed by quantitative real time (qPCR) and/or nested PCR (mRNA of 4.000 sorted cells). Alternatively, HSC, CMP, GMP and MEP were seeded into soft agar and mRNA was extracted from individual colony forming units (CFU) to assess BCR/ABL-mRNA expression by qPCR. Moreover, CFU of sub-fractions of first diagnosis CML patients were treated in vitro with IM at 3mM and BCR/ABL-expression of surviving CFU was compared with the BCR/ABL expression levels of mock-treated CML-CFU. In total, 595 soft agar colonies were analyzed. Results: By nested PCR, BCR/ABL-mRNA was readily detectable in the HSC compartments of 7 of 10 (7/10) CML patients in mmR. BCR/ABL was also detected in the CMP-, GMP-, and MEP-compartments in 6, 10 and 8 of the 10 patients, respectively. Real time qRT-PCR suggested only a trend toward stronger BCR/ABL positivity of the HSC compartment when compared to the other progenitor compartments (table 1). A detailed analysis of the BCR/ABL-expression of individual CFU from HSC-, CMP-, GMP-, and MEP-compartments of mmR patients revealed that persisting CML-CFU expressed significantly less BCR/ABL than first diagnosis CML-CFU obtained before imatinib therapy (table 1). This finding could be recapitulated in vitro: primary CML-CD34+ cells of first diagnosis CML patients (n=4) were seeded into soft agar in the presence or absence of 3 uM imatinib. After 14 days BCR/ABL expression only of BCR/ABL-positive CFU was compared. BCR/ABL-positive CML-CFU (n=30) that had survived imatinib exposure expressed significantly less BCR/ABL than mock-treated CML-CFU (n=175) (p<0.001). Work is in progress providing in vitro evidence that selection/induction of low BCR/ABL expression in immature progenitor and stem cells is a new mechanism of imatinib persistence in mmR patients via reducing oncogenic addiction from BCR/ABL. Conclusions: We showed that BCR/ABL-persistence is not confined to the quiescent CML-stem cell compartment, but seems to affect also the highly proliferative progenitor compartments. More intriguingly, persisting CML-HSC and -precursor cells express remarkably low levels of BCR/ABL when compared to first diagnosis HSC and progenitors, implying that low BCR/ABL expression reduces imatinib sensitivity in vivo. The simple model of selection / induction of low BCR/ABL expression as mechanism of imatinib persistence in CML would explain the low propensity of disease progression after achieving mmR, and the low genetic instability of CML clones from mmR patients. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2476-2476
Author(s):  
Kasia Mierzejewska ◽  
Ewa Suszynska ◽  
Sylwia Borkowska ◽  
Malwina Suszynska ◽  
Maja Maj ◽  
...  

Abstract Background Hematopoietic stem/progenitor cells (HSPCs) are exposed in vivo to several growth factors, cytokines, chemokines, and bioactive lipids in bone marrow (BM) in addition to various sex hormones circulating in peripheral blood (PB). It is known that androgen hormones (e.g., danazol) is employed in the clinic to treat aplastic anemia patients. However, the exact mechanism of action of sex hormones secreted by the pituitary gland or gonads is not well understood. Therefore, we performed a complex series of experiments to address the influence of pregnant mare serum gonadotropin (PMSG), luteinizing hormone (LH), follicle-stimulating hormone (FSH), androgen (danazol) and prolactin (PRL) on murine hematopoiesis. In particular, from a mechanistic view we were interested in whether this effect depends on stimulation of BM-residing stem cells or is mediated through the BM microenvironment. Materials and Methods To address this issue, normal 2-month-old C57Bl6 mice were exposed or not to daily injections of PMSG (10 IU/mice/10 days), LH (5 IU/mice/10 days), FSH (5 IU/mice/10 days), danazol (4 mg/kg/10 days) and PRL (1 mg/day/5days). Subsequently, we evaluated changes in the BM number of Sca-1+Lin–CD45– that are precursors of long term repopulating hematopoietic stem cells (LT-HSCs) (Leukemia 2011;25:1278–1285) and bone forming mesenchymal stem cells (Stem Cell & Dev. 2013;22:622-30) and Sca-1+Lin–CD45+ hematopoietic stem/progenitor cells (HSPC) cells by FACS, the number of clonogenic progenitors from all hematopoietic lineages, and changes in peripheral blood (PB) counts. In some of the experiments, mice were exposed to bromodeoxyuridine (BrdU) to evaluate whether sex hormones affect stem cell cycling. By employing RT-PCR, we also evaluated the expression of cell-surface and intracellular receptors for hormones in purified populations of murine BM stem cells. In parallel, we studied whether stimulation by sex hormones activates major signaling pathways (MAPKp42/44 and AKT) in HSPCs and evaluated the effect of sex hormones on the clonogenic potential of murine CFU-Mix, BFU-E, CFU-GM, and CFU-Meg in vitro. We also sublethally irradiated mice and studied whether administration of sex hormones accelerates recovery of peripheral blood parameters. Finally, we determined the influence of sex hormones on the motility of stem cells in direct chemotaxis assays as well as in direct in vivo stem cell mobilization studies. Results We found that 10-day administration of each of the sex hormones evaluated in this study directly stimulated expansion of HSPCs in BM, as measured by an increase in the number of these cells in BM (∼2–3x), and enhanced BrdU incorporation (the percentage of quiescent BrdU+Sca-1+Lin–CD45– cells increased from ∼2% to ∼15–35% and the percentage of BrdU+Sca-1+Lin–CD45+ cells increased from 24% to 43–58%, Figure 1). These increases paralleled an increase in the number of clonogenic progenitors in BM (∼2–3x). We also observed that murine Sca-1+Lin–CD45– and Sca-1+Lin–CD45+ cells express sex hormone receptors and respond by phosphorylation of MAPKp42/44 and AKT in response to exposure to PSMG, LH, FSH, danazol and PRL. We also observed that administration of sex hormones accelerated the recovery of PB cell counts in sublethally irradiated mice and slightly mobilized HSPCs into PB. Finally, in direct in vitro clonogenic experiments on purified murine SKL cells, we observed a stimulatory effect of sex hormones on clonogenic potential in the order: CFU-Mix > BFU-E > CFU-Meg > CFU-GM. Conclusions Our data indicate for the first time that not only danazol but also several pituitary-secreted sex hormones directly stimulate the expansion of stem cells in BM. This effect seems to be direct, as precursors of LT-HSCs and HSPCs express all the receptors for these hormones and respond to stimulation by phosphorylation of intracellular pathways involved in cell proliferation. These hormones also directly stimulated in vitro proliferation of purified HSPCs. In conclusion, our studies support the possibility that not only danazol but also several other upstream pituitary sex hormones could be employed to treat aplastic disorders and irradiation syndromes. Further dose- and time-optimizing mouse studies and studies with human cells are in progress in our laboratories. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Lionel Faivre ◽  
Véronique Parietti ◽  
Fernando Siñeriz ◽  
Sandrine Chantepie ◽  
Marie Gilbert-Sirieix ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document