Successful Mobilization of Peripheral Blood Stem Cells After Intensive Bendamustine Pre-Treatment In Patients with Multiple Myeloma

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4439-4439
Author(s):  
Wolfram Pönisch ◽  
Julia Wiesler ◽  
Sabine Leiblein ◽  
Elvira Edel ◽  
Haifa K. Al-Ali ◽  
...  

Abstract Abstract 4439 Introduction The alkylating agent bendamustine has structural similarities to both alkylating agents and purine analogs, and is effective in the treatment of patients with multiple myeloma. So far, no data are available on stem cell toxicity or on stem cell mobilization. Since autologous stem cell transplantation is an established treatment for multiple myeloma after primary treatment, we were interested in analysing the experience of stem cell mobilization after bendamustine treatment. Material and Methods A retrospective analysis over a period of fifteen years was carried out in 56 (34 male and 22 female) patients with multiple myeloma after bendamustine pretreatment at the university hospitals Leipzig and Heidelberg. Patients had a median age of 58 (range 31–72) years. The median number of cycles was 3 (range 1–10) and the cumulative bendamustine dose ranged from 120 to 2400 mg/qm. The mobilization regimen in 37 cases was either cyclophosphamide 4 g/qm (n=33) or 7 g/qm (n=4) followed by G-CSF (2×5 ug/kg s.c.). Alternative regimens such as CAD, CED, TCED and others were used for mobilization in the remaining 19 patients. Apheresis was started as soon as peripheral blood CD34+ counts exceeded 10×106/l with a harvest target of 4×106 CD34+/kg using 4 times the blood volume. The minimal accepted target was 2×106 CD34+/kg. Results Stem cell harvest was successful in 54 of the 56 patients. In one patient the peripheral blood CD34+ cell count failed to reach 10 × 106/l and no apheresis was performed. In one further patient a rapid decrease in peripheral blood CD34+ counts resulted in insufficient recovery of stem cells in the apheresis product. In 18 out of 54 patients (33%) the target was reached with a single apharesis. The median number of aphareses in the 54 patients was 2 (range 1–7) and the median CD34+ cell-count obtained was 5.5 (range 1.7–20.4) × 106/kg. Engraftment was successful in 52/53 patients receiving a stem cell transplant. One patient was successfully harvested and did not receive the transplant yet. Conclusion From this retrospective analysis we conclude that mobilization of PBSC is possible after intensive bendamustine pretreatment. Disclosures: Niederwieser: Bristol-Myers Squibb: Speakers Bureau; Novartis: Speakers Bureau. Goldschmidt:Celgene: Membership on an entity's Board of Directors or advisory committees; Ortho Biotech: Membership on an entity's Board of Directors or advisory committees; Ortho Biotech: Research Funding; Celgene: Research Funding; Chugai Pharma: Research Funding; Amgen: Research Funding.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 15-16
Author(s):  
Danny Luan ◽  
Paul J Christos ◽  
Michael Ancharski ◽  
Danielle Guarneri ◽  
Roger Pearse ◽  
...  

Background: Daratumumab (DARA) is a monoclonal antibody which targets CD38 on plasma cells and B cell progenitors. DARA has been effectively combined with other therapies in newly diagnosed and relapsed/refractory multiple myeloma (RRMM), while DARA-based induction regimens in transplant-eligible patients (pts) are increasingly being used in clinical practice. Given that hematopoietic stem cells also express CD38, DARA may potentially affect stem cell mobilization and hematopoietic reconstitution following autologous stem cell transplant (ASCT). Although no clinically significant impact of DARA on stem cell mobilization or hematopoietic recovery was described in large phase 3 trials of triplet induction regimens +/- DARA in newly diagnosed MM, stem cell yields were lower and plerixafor more commonly used in the DARA-containing arms [Moreau et al, Lancet 2019; Voorhees et al, Blood 2020]. Significantly longer time to neutrophil (PMN) engraftment was also reported in pts receiving DARA-based induction who underwent upfront ASCT [Al Saleh et al, Am J Hematol 2020]. In this study, we examine the impact of timing of DARA administration pre-mobilization on day 4 pre-harvest peripheral blood CD34 cell count, stem cell apheresis yield, and post-ASCT engraftment. Methods: Between 1/1/2016 and 12/31/2019, newly diagnosed and RRMM pts receiving DARA-based induction regimens with ≥1 dose of DARA administered within 1 month prior to stem cell mobilization were identified retrospectively and compared to matched controls receiving similar induction regimens without DARA. Granulocyte colony-stimulating factor (G-CSF) was administered per institutional standards and plerixafor added based on day 4 pre-harvest peripheral blood CD34 counts. PMN and platelet engraftment post-ASCT was defined as the first of 3 consecutive days with sustained PMN count >500 x 106/L and independence from platelet transfusion in the preceding 7 days with a count >20 x 109/L, respectively. Pre-harvest peripheral blood CD34 counts and stem cell apheresis yields were obtained from the Cellular Therapy Laboratory at NewYork-Presbyterian Hospital. The study was approved by the Weill Cornell Medicine IRB. Results: We identified 16 pts who received DARA-based induction with ≥1 dose of DARA administered within 1 month of apheresis (DARA group) and 16 non-DARA-containing regimen-matched controls (non-DARA group). Demographics of the DARA and non-DARA groups were well matched (Table 1). DARA pts received their last dose of DARA a mean of 17.3 days prior to the first day of apheresis, with 8 pts receiving their last dose within 2 weeks and the remaining 8 pts between 2 weeks and 1 month prior. Overall, mobilization outcomes were inferior in the DARA group (Table 2). DARA pts had significantly lower day 4 pre-harvest peripheral blood CD34 counts compared to non-DARA pts (17.2 vs 35.4 cells/µL; P=0.0146). Institutional algorithm required plerixafor to be given for day 4 CD34 count ≤40 cells/µL. Fifteen of the 16 DARA pts received plerixafor vs. 11 non-DARA pts (P=0.07). Additionally, DARA pts required significantly more apheresis days (2.4 vs 1.6 days; P=0.0279). Differences in stem cell yield were not significant (8 vs 10 x106cells/kg; P=0.1391). Hematopoietic recovery post-ASCT was not affected by DARA administered in the month preceding mobilization. Conclusions: In summary, we report lower day 4 pre-harvest peripheral blood CD34 count, increased requirement for plerixafor, and longer apheresis duration in newly diagnosed and RRMM pts receiving DARA within 1 month ofstem cell mobilization. These limitations are largely overcome by plerixafor usage which, combined with G-CSF, resulted in successful stem cell collection in all patients. Limitations in our study include small sample sizes, retrospective control selection, and fewer pts in the DARA group achieving ≥VGPR prior to mobilization. Nevertheless, our findings are consistent with inferior mobilization outcomes reported in the DARA-containing arms of phase 3 trials of triplet induction +/- DARA and highlight the nearly universal requirement for plerixafor usage when DARA is administered within a month prior to apheresis. Prospective study of day 4 pre-harvest peripheral blood CD34 counts and other predictors of stem cell yield should be incorporated into future clinical trials of CD38 monoclonal antibody-based induction regimens for transplant-eligible MM pts. Disclosures Rossi: Janssen: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees. Niesvizky:GSK: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; BMS: Consultancy, Honoraria; Karyopharm: Consultancy, Honoraria; Takeda: Consultancy, Honoraria. Rosenbaum:Amgen: Research Funding; GlaxoSmithKline: Research Funding; Akcea: Honoraria; Celgene: Honoraria; Janssen: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1962-1962
Author(s):  
Sandhya R. Panch ◽  
Brent R. Logan ◽  
Jennifer A. Sees ◽  
Bipin N. Savani ◽  
Nirali N. Shah ◽  
...  

Introduction: Approximately 7% of unrelated hematopoietic stem cell (HSC) donors are asked to donate a subsequent time to the same or different recipient. In a recent large CIBMTR study of second time donors, Stroncek et al. incidentally found that second peripheral blood stem cell (PBSC) collections had lower total CD34+ cells, CD34+ cells per liter of whole blood processed, and CD34+ cells per kg donor weight. Based on smaller studies, the time between the two independent PBSC donations (inter-donation interval) as well as donor sex, race and baseline lymphocyte counts appear to influence CD34+ cell yields at subsequent donations. Our objective was to retrospectively evaluate factors contributory to CD34+ cell yields at subsequent PBSC donation amongst NMDP donors. Methods. The study population consisted of filgrastim (G-CSF) mobilized PBSC donors through the NMDP/CIBMTR between 2006 and 2017, with a subsequent donation of the same product. evaluated the impact of inter-donation interval, donor demographics (age, BMI, race, sex, G-CSF dose, year of procedure, need for central line) and changes in complete blood counts (CBC), on the CD34+ cell yields/liter (x106/L) of blood processed at second donation and pre-apheresis (Day 5) peripheral blood CD34+ cell counts/liter (x106/L) at second donation. Linear regression was used to model log cell yields as a function of donor and collection related variables, time between donations, and changes in baseline values from first to second donation. Stepwise model building, along with interactions among significant variables were assessed. The Pearson chi-square test or the Kruskal-Wallis test compared discrete variables or continuous variables, respectively. For multivariate analysis, a significance level of 0.01 was used due to the large number of variables considered. Results: Among 513 PBSC donors who subsequently donated a second PBSC product, clinically relevant decreases in values at the second donation were observed in pre-apheresis CD34+ cells (73.9 vs. 68.6; p=0.03), CD34+cells/L blood processed (32.2 vs. 30.1; p=0.06), and total final CD34+ cell count (x106) (608 vs. 556; p=0.02). Median time interval between first and second PBSC donations was 11.7 months (range: 0.3-128.1). Using the median pre-apheresis peripheral blood CD34+ cell counts from donation 1 as the cut-off for high versus low mobilizers, we found that individuals who were likely to be high or low mobilizers at first donation were also likely to be high or low mobilizers at second donation, respectively (Table 1). This was independent of the inter-donation interval. In multivariate analyses, those with an inter-donation interval of >12 months, demonstrated higher CD34+cells/L blood processed compared to donors donating within a year (mean ratio 1.15, p<0.0001). Change in donor BMI was also a predictor for PBSC yields. If donor BMI decreased at second donation, so did the CD34+cells/L blood processed (0.74, p <0.0001). An average G-CSF dose above 960mcg was also associated with an increase in CD34+cells/L blood processed compared to donors who received less than 960mcg (1.04, p=0.005). (Table 2A). Pre-apheresis peripheral blood CD34+ cells on Day 5 of second donation were also affected by the inter-donation interval, with higher cell counts associated with a longer time interval (>12 months) between donations (1.23, p<0.0001). Further, independent of the inter-donation interval, GCSF doses greater than 960mcg per day associated with higher pre-apheresis CD34+ cells at second donation (1.26, p<0.0001); as was a higher baseline WBC count (>6.9) (1.3, p<0.0001) (Table 2B). Conclusions: In this large retrospective study of second time unrelated PBSC donors, a longer inter-donation interval was confirmed to be associated with better PBSC mobilization and collection. Given hematopoietic stem cell cycling times of 9-12 months in humans, where possible, repeat donors may be chosen based on these intervals to optimize PBSC yields. Changes in BMI are also to be considered while recruiting repeat donors. Some of these parameters may be improved marginally by increasing G-CSF dose within permissible limits. In most instances, however, sub-optimal mobilizers at first donation appear to donate suboptimal numbers of HSC at their subsequent donation. Disclosures Pulsipher: CSL Behring: Membership on an entity's Board of Directors or advisory committees; Miltenyi: Research Funding; Bellicum: Consultancy; Amgen: Other: Lecture; Jazz: Other: Education for employees; Adaptive: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Medac: Honoraria. Shaw:Therakos: Other: Speaker Engagement.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1902-1902
Author(s):  
Divaya Bhutani ◽  
Vidya sri Kondadasula ◽  
Joseph P. Uberti ◽  
Voravit Ratanatharathorn ◽  
Lawrence G. Lum ◽  
...  

Abstract Background: Bortezomib has become an integral part of front-line therapy of multiple myeloma in a large majority of patients. There are preliminary reports which show that addition of bortezomib can augment the peripheral blood CD34 count during stem cell mobilization. In this single center prospective trial we added bortezomib to G-CSF to evaluate the effects of bortezomib on peripheral CD34 counts and collection. Methods: Patients aged 18-70 years with diagnosis of multiple myeloma (MM) or non-hodgkin's lymphoma (NHL) who were eligible for autologous stem cell transplantation (ASCT) and had received no more than three prior chemotherapeutic regimens were eligible for the study. Patients were enrolled in two groups. Group A (N=3) received G-CSF 16mcg/kg for 5 days and proceeded to stem cell collection on D5 and then received bortezomib 1.3mg/m2 on D5 after stem cell collection and G-CSF 16mcg/kg on D6, 7, 8 and repeat stem cell collection on D6, 7, 8 till the goal was achieved. Group B (N=17) received G-CSF 16mg/kg on D1-5 and received bortezomib 1.3mg/m2 on D4 and proceeded to stem cell collection on D5. If the patient was not able to collect the predefined goal CD34, G-CSF was continued on D 6, 7, 8 and a second dose of bortezomib 1.3mg/m2 was given on D7. Mobilization procedure was stopped once the predefined goal CD34 collection (4 x 106/kg for MM and 2 x 106/kg for NHL) had been collected. Primary objectives of the study was to determine if addition of bortezomib to G-CSF will result in an increase in PBSCs by > 2-fold and to achieve median neutrophil engraftment 12 days post ASCT. Secondary objectiveswere to evaluate the collected product for co-mobilization of lymphoma or myeloma cells and to determine if the use of bortezomib increases the mobilization of immune-stimulatory Dendritic cell (DC) -1 subsets. Results: A total of 23 patients were enrolled and 20 were evaluable for the results. Only one patient with NHL was enrolled and rest had MM. Median age of pts was 57 years, M/F 8/12, median number of previous chemotherapy regimens was 1 (range 1-3). The median peripheral blood CD34 count pre and post bortezomib in all patients were 28.8 x 106/kg and 37 x 106/kg respectively. All three patients in group A had drop in peripheral blood CD34 counts on D6 post bortezomib as they had undergone stem cell collection on day 5. In part B (N=17), 15 patients had increase in peripheral blood CD 34+ve cell counts with 4 patients achieved doubling while 11 pts had less than doubling of peripheral blood CD34 count after receiving bortezomib. Two patients had minimal drop in the peripheral blood CD34 counts post bortezomib. Median number of CD34 cells collected in15 patients (part B) were 5.06 x 106 CD34 cells/kg (range 4-15.1). 18 patients proceeded to ASCT and median time to neutrophil engraftment (ANC ≥500/cumm) post transplant was 12 days (range 11-16) and platelet engraftment (Plt count ≥ 20,000/cumm) was 18 days (range 15-27). There was no significant change in DC1/DC2 ratio in both groups following treatment with bortezomib and G-CSF (Figure 1). In group A all three patients collected goal CD34 count on day 5 and 2/3 patients collected >4 x106 CD34 cells/kg on D6 post bortezomib and1/3 patients collected 2.6 x 106 on D6 post bortezomib. In group B (n=17), 2 patients were unable to collect because of low CD34 counts on D4 and D5, 11 pts collected the goal in one day (D 5) and 4 pts required two days of apheresis (D 5 and 6). None of the patients received D7 bortezomib. Conclusion: Use of bortezomib during autologous stem cell collection was safe and well tolerated. Majority of patients had increase in peripheral blood CD34 counts post bortezomib administration on D4. Future trials should explore bortezomib as an alternate strategy to chemo-mobilization in combination with growth factors. Figure 1. DC1/DC2 ratio in group A and group B at various time points. Figure 1. DC1/DC2 ratio in group A and group B at various time points. Figure 2. Figure 2. Disclosures Off Label Use: Bortezomib for stem cell mobilization. Lum:Karyopharm Therapeutics Inc: Equity Ownership; Transtarget.Inc: Equity Ownership. Deol:Bristol meyer squibb: Research Funding. Abidi:celgene: Speakers Bureau; Millenium: Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2253-2253
Author(s):  
Shirshendu Sinha ◽  
Morie Gertz ◽  
Martha Lacy ◽  
Angela Dispenzieri ◽  
Suzanne Hayman ◽  
...  

Abstract Abstract 2253 Background: Lenalidomide based combinations are among the most common initial therapies for myeloma. Previous studies have suggested that lenalidomide therapy can result in suboptimal stem cell collection in patients eligible to undergo autologous stem cell transplantation, especially older patients after prolonged exposure to the drug. Many salvage approaches are used when attempting repeat stem cell collection in this patient group. Patients and Methods: Two hundred twenty four patients who underwent stem cell collection following lenalidomide-dexamethasone induction from July 2004 and December 2009 were included in the current analysis. Data pertaining to the duration of lenalidomide therapy, stem cell mobilization regimen, and the collection yields were collected from the medical records. Results: The median age at mobilization was 60.6 years (range; 29, 76) and 136 (60%) were male. There were a total of 245 collection attempts from among 224 patients, 21 (9.8%) patients attempting to remobilize after failing to collect the desired numbers of stem cells at the first attempt. We first analyzed the results of the initial collection attempt. The median duration of lenalidomide therapy prior to stem cell collection was 4 months (range; 1, 26). The mobilization strategies were GCSF (Granulocyte Colony Stimulating Factor) alone in 151 (67%) patients, cyclophosphamide (CTX) followed by GCSF in 29 (13%) patients, and GCSF plus AMD3100 in 44 (20%) patients. Among those receiving AMD3100, it was added either due to peripheral blood CD34 cell count not reaching the threshold for initiation of harvest or for poor first day CD34 cells collection in 34 patients and given in a planned fashion in 10 patients. Overall 15 patients (7%) failed to reach the peripheral CD34 cell counts required to initiate apheresis, and among those starting apheresis 6 patients failed to collect at least 2 million CD34 cells/kg; a cumulative failure rate of 9%. Another 18 (8%) patients failed to collect at least 4 million CD34 cells /kg. The CD34 cells yield on day 1, the total yield, number of collections, the average daily yield and the percentage of the targeted cells collected for each mobilization strategy including failure rates are detailed in the table. Twenty-one patients reattempted stem cell mobilization; including 14 that failed a first attempt and 7 did who not achieve the intended goal even though they collected more than 2 million CD34 cells/kg. The mobilization regimens were GCSF alone, CTX + GCSF, GCSF + GM-CSF (Granulocyte Macrophage Colony Stimulating Factor) and GCSF + AMD in 5, 8, 3, and 4 patients respectively. All patients collected at least 2 million CD34 cells /kg and 14 patients (70%) collected more than 4 million CD34 cells /kg. The median CD34 cells collected with the second attempt was 5.4 million/kg (rang; 2, 19.5) bringing the median total collection for these 21 patients to 9.6 million/kg (2.6-19.6). Overall, of the 224 patients studied, all but the 6 patients who failed initially and did not attempt a second collection collected at least 2 million CD34 cells /kg and 197 (88%) collected at least 4 million CD34 cells/kg. Conclusion: While the overall failure rate of stem cell collection in patients receiving initial therapy with lenalidomide is 10%, a risk adapted approach of adding AMD3100 appear to decrease the risk of failure. However, majority of patients failing a stem cell harvest attempt can be salvaged with a second collection allowing these patients to proceed to a stem cell transplant if desired. Disclosures: Gertz: Celgene: Honoraria; Millenium: Honoraria, Membership on an entity's Board of Directors or advisory committees; Genzyme: Research Funding. Lacy: Celgene: Research Funding. Dispenzieri: Celgene: Honoraria, Research Funding; Binding Site: Honoraria. Micallef: Genzyme: Membership on an entity's Board of Directors or advisory committees. Kumar: Celgene: Consultancy, Research Funding; Millennium: Research Funding; Merck: Consultancy, Research Funding; Novartis: Research Funding; Genzyme: Consultancy, Research Funding; Cephalon: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3448-3448 ◽  
Author(s):  
Keren Osman ◽  
Ajai Chari ◽  
Samir Parekh ◽  
Christine Pun ◽  
Gillian Morgan ◽  
...  

Abstract Introduction: Elotuzumab is a humanized monoclonal antibody directed against SLAMF7 that is approved for use in relapsed multiple myeloma patients in combination with lenalidomide and dexamethasone. This agent appears to have several modes of action, including facilitation of antibody-dependent, cell-mediated cytotoxicity (ADCC) through binding to SLAMF7 on myeloma cells and activation of natural killer (NK) cells to kill tumor cells through ligation of the target. We initiated a single-center, open label, phase 1 trial based on the hypothesis that the addition of elotuzumab and autologous peripheral blood mononuclear cell (PBMC) reconstitution to standard-of-care autologous hematopoietic stem cell transplantation (auto-SCT) and lenalidomide maintenance for consolidation therapy in myeloma patients after induction therapy will be safe and feasible. We hypothesize that early PBMC reconstitution post-auto-SCT will restore a viable NK cell population for activation by elotuzumab, which may target residual myeloma cells and promote tumor-specific humoral and cellular immune responses against myeloma cells. Subsequent maintenance therapy with elotuzumab and lenalidomide may amplify this response, resulting in long-term maintenance of the minimal residual disease state. Methods. This is a Phase 1b, open-label, trial investigating elotuzumab and autologous PBMC reconstitution with auto-SCT consolidation therapy and lenalidomide maintenance. The primary objective of this study is to assess the safety and tolerability of elotuzumab and autologous PBMC reconstitution in the setting of auto-SCT and lenalidomide maintenance in multiple myeloma patients. The secondary objectives are to assess myeloma disease status and progression-free survival (PFS) after one year of treatment. Subjects must achieve partial response or better by IMWG criteria with induction chemotherapy, be eligible for auto-SCT by institutional standards, and meet inclusion/exclusion criteria. Fifteen subjects are planned in this pilot study. The treatment plan is as follows: In addition to standard peripheral blood stem cell mobilization and harvest, subjects undergo steady-state leukopheresis for PBMC collection. Subjects receive standard melphalan conditioning (day -1) and autologous stem cell rescue (day 0). Autologous PBMC are reinfused on day +3 post-stem cell infusion and cycle 1 of elotuzumab 20 mg/kg IV is given on day +4. Subjects receive subsequent cycles of elotuzumab every 28 days up to cycle 12. Lenalidomide maintenance at 10 mg orally daily days 1-21 of every 28-day cycle begins with cycle 4 of elotuzumab, and may continue off study beyond cycle 12 at the investigator's discretion. Bone marrow aspirates and peripheral blood are collected for correlative studies at screening, cycle 2, cycle 4, and at the end of study after cycle 12. For the primary endpoint analysis, the safety population includes all subjects who received at least one dose of study treatment. The evaluable population constitutes all subjects who received at least four of the first five planned doses of elotuzumab. Results: Fourteen of the planned 15 subjects have been enrolled in the study. Demographic and staging data reflect the general transplant-eligible myeloma patient population at our institution. All 14 of these subjects are included in the safety population, having received at least 1 dose of elotuzumab. Nine of 14 subjects have completed at least 4 of the first 5 planned elotuzumab infusions and are evaluable. The majority of adverse events, including infusion reactions attributable to elotuzumab, have been grade 2 or lower. Grade 3 or higher hematologic AEs, including anemia, neutropenia, lymphopenia, thrombocytopenia, and non-hematologic AEs including nausea, vomiting, and dehydration, were attributable to the auto-SCT procedure. There were no delays in hematopoietic reconstitution observed. One episode of grade 3 hypertension was attributed to elotuzumab infusion and resolved with supportive care. No AEs were attributed to PBMC reconstitution. Conclusions: The combination of elotuzumab and PBMC reconstitution with standard auto-SCT and lenalidomide maintenance for consolidation therapy of multiple myeloma appears to be safe and feasible. One subject withdrew for personal reasons. The trial is ongoing and is expected to complete accrual and the clinical results will be updated for presentation. Disclosures Chari: Celgene: Consultancy, Research Funding; Array Biopharma: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Pharmacyclics: Research Funding; Janssen: Consultancy, Research Funding; Amgen Inc.: Honoraria, Research Funding; Takeda: Consultancy, Research Funding. Geerlof:Bristol-Myers Squibb: Employment. Jagannath:Novartis: Consultancy; Janssen: Consultancy; Bristol-Myers Squibb: Consultancy; Celgene: Consultancy; Merck: Consultancy. Cho:Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Research Funding; Agenus, Inc.: Research Funding; Genentech Roche: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Consultancy, Research Funding; Ludwig Institute for Cancer Research: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 38-39 ◽  
Author(s):  
Laurent Garderet ◽  
Hafida Ouldjeriouat ◽  
Mohamed-Amine Bekadja ◽  
Elisabeth Daguenet ◽  
Laure Vincent ◽  
...  

Background: High dose melphalan (HDM) followed by autologous hematopoietic stem cell transplantation (ASCT) is widely used in multiple myeloma (MM) patients as upfront and salvage therapy. However, the safety and efficacy of ASCT in patients with renal insufficiency (RI) is controversial, which have led to an inconsistent arbitrary cut-off for creatinine clearance (CrCl) for performing ASCT. Here we analyzed prospectively the outcomes of MM patients with severe RI who underwent ASCT. Methods: We enrolled prospectively 50 newly diagnosed MM patients who had a serum CrCl of &lt;40 mL/min at the time of ASCT and an age of up to 65 years. They all received bortezomib-based induction therapy and had achieved at least a partial response before proceeding to ASCT. The recommended dose of melphalan was 140 mg/m2 and it was advised to infuse at least 3 x106/kg autologous CD34+ cells. Consolidation/maintenance post-ASCT was according to the physician's choice. The primary endpoint was transplant related mortality. Results: The patients characteristics at enrollment are given in Table 1. We focused on 44 patients who were beyond 3 months post-ASCT. Light chain MM was frequent (12%), 10% had high risk cytogenetics, 36% increased serum LDH and 10% extramedullary disease. Induction chemotherapies included bortezomib plus IMiDs in 25/44 patients with ≥2 lines of chemotherapy in 12/44. The pre-transplant disease status was sCR in =5%, CR in =15%, VGPR in =39%, and PR in =41% of patients. The number of days of cytapheresis was 2 or less in 95% of cases and the median number of CD34+ cells collected was 3.3 x 106 (1.3-9.5). The median time from diagnosis to ASCT was 175 days (103-307). HDM was 140 mg/m2 in 42/44 patients and 200 mg/m2 in 2/44. All, except two, received consolidation post ASCT (34% missing) and 52% had maintenance therapy (all lenalidomide except two receiving bortezomib) and 7% had no maintenance (41% pending). Toxicity: We observed one death during the first 100 days post-ASCT, secondary to a septic shock on day 42. The median time to neutrophil engraftment was 12 days (9-68) and to platelet engraftment 13 days (10-70). Among patients receiving RBC transfusions (75%) and platelet transfusions (84%), the median number of RBC transfusions was 3 (1-6) and that of platelet transfusions was 3 (1-10). Response: Nine patients (70%) achieved dialysis independence from the time of diagnosis: 13 patients were on dialysis at diagnosis, 5 at the time of ASCT and 4 three months post-ASCT. Renal function improved post-ASCT in 34% of patients, 14% moving from a CrCl of &lt;40 mL/min to 60 mL/min and 20% to above 60 mL/min. No patient experienced worsened renal function following ASCT. At 100 days post-ASCT, the hematological response had improved in 49% of patients, from PR to VGPR (18%), from PR to CR/sCR (11%) and from VGPR to CR/sCR (20%). The best response obtained was 5% PR, 34% VGPR, 47% CR and 11% sCR with one patient relapsing. Conclusions: In this preliminary analysis, HDM with ASCT proved to be safe and effective in MM patients with RI at transplant. We observed one death among 44 patients within the first 3 months post-ASCT. A more detailed report of the toxicity will be presented during the meeting along with the survival. Disclosures Vincent: takeda: Membership on an entity's Board of Directors or advisory committees, Other: Congress support; Celgene: Membership on an entity's Board of Directors or advisory committees, Other: Congress support; janssen: Membership on an entity's Board of Directors or advisory committees, Other: Congress support. Mohty:Jazz Pharmaceuticals: Consultancy, Honoraria, Research Funding, Speakers Bureau; BMS: Consultancy, Honoraria, Research Funding, Speakers Bureau; Novartis: Consultancy, Honoraria, Research Funding, Speakers Bureau; Stemline: Consultancy, Honoraria, Research Funding, Speakers Bureau; Janssen: Consultancy, Honoraria, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Research Funding, Speakers Bureau; Takeda: Consultancy, Honoraria, Research Funding, Speakers Bureau; GSK: Consultancy, Honoraria, Research Funding, Speakers Bureau; Sanofi: Consultancy, Honoraria, Research Funding, Speakers Bureau; Amgen: Consultancy, Honoraria, Research Funding, Speakers Bureau. Karlin:AbbVie: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel support; Celgene/Bristol-Myers Squibb: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel support; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel support, personal fees; GlaxoSmithKline: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Other: Personal fees; Sanofi: Honoraria; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel support, personal fees; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel support, personal fees. Morel:Janssen: Honoraria. Rubio:Medac: Consultancy; Gilead: Honoraria; MSD: Honoraria; Novartis: Honoraria; Neovii: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3373-3373 ◽  
Author(s):  
Patrick Wuchter ◽  
Uta Bertsch ◽  
Hans-Juergen Salwender ◽  
Markus Munder ◽  
Mathias Haenel ◽  
...  

Abstract Introduction: The German-Speaking Myeloma Multicenter Group (GMMG) has initiated a randomized multicenter phase III trial on the effect of elotuzumab in VRD (bortezomib, lenalidomide, dexamethasone) induction/consolidation and lenalidomide maintenance in patients with newly diagnosed multiple myeloma (GMMG-HD6 trial, NCT02495922). The study compares four cycles induction therapy with VRD vs. VRD + elotuzumab, followed by standard intensification (i.e. mobilization and stem cell transplantation), two cycles consolidation with VRD/VRD + elotuzumab and lenalidomide maintenance +/- elotuzumab. The primary endpoint is determination of the best of four treatment strategies regarding progression-free survival. Here we present a first analysis of stem cell mobilization within this study. Patients and Methods: We performed a retrospective analysis of collection data on all patients who underwent peripheral blood stem cell (PBSC) collection between trial initiation in June 2015 and June 2016. Only patients with completely available datasets in respect of mobilization were considered (n=111). The vast majority of 99 patients (89%) received chemomobilization with CAD (cyclophosphamide, adriamycin, dexamethasone) followed by 5-10 µg G-CSF /kg body weight (bw) /d (starting day +9 until completion of PBSC collection), while in one case (1%) dexamethasone was omitted and in 10 cases (9%) cyclophosphamide mono was administered. One patient underwent steady-state mobilization with G-CSF only (10µg /kg bw /d). 55/111 patients received VRD (50%), whereas the remaining patients received VRD + elotuzumab. According to the recommendations of the study group, PBSCs for three stem cell transplants were to be collected. One transplant ideally consisted of ≥2.5 x10^6 CD34+ cells /kg bw, but in the event of poor mobilization as low as ≥2.0 x10^6 CD34+ cells /kg bw would be considered acceptable. Results: The median number of collected CD34+ cells was 10.4 x10^6 /kg bw (range 2.88 to 23.01 x10^6 /kg bw). Overall, 92 patients (83%) collected ≥7.5 x10^6 CD34+ cells /kg bw and another 12 patients (11%) collected between 6.0 and 7.5 x10^6 CD34+ cells /kg bw, resulting in three transplants, respectively. Only 7 patients (6%) collected below 6.0 x10^6 CD34+ cells /kg bw; 5 of them had been treated in the VRD-arm without elotuzumab. Due to insufficient PBSC mobilization after conventional treatment, 14 patients (13%) received a rescue mobilization with plerixafor, from which 12 patients collected ≥6.0 x10^6 CD34+ cells /kg bw. Overall, 7 serious adverse events (SAEs) occurred during mobilization phase, 4 of them in the study arm with elotuzumab. Conclusions: Cyclophosphamide-based chemomobilization after induction therapy with VRD is feasible. Efficient PBSC collection of ≥6.0 x10^6 CD34+ cells /kg bw could be performed in 104 of 111 patients (94%), with a low incidence of SAEs. The need for rescue mobilization was not higher than that of comparable previous GMMG treatment protocols. The addition of elotuzumab during induction phase did not impede PBSC collection. Disclosures Wuchter: Sanofi-Aventis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Hexal: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Bertsch:Janssen: Research Funding; Celgene: Research Funding; Chugai: Research Funding. Munder:Janssen: Honoraria; Takeda: Honoraria; Amgen: Honoraria; Bristol Myers Squibb: Honoraria. Fenk:Jansen: Honoraria, Other: travel support; Celgene: Honoraria, Other: travel support, Research Funding. Hillengass:Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Honoraria; Celgene: Honoraria; BMS: Honoraria; Novartis: Research Funding; Sanofi: Research Funding. Raab:Novartis: Consultancy, Research Funding; BMS: Consultancy; Celgene: Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Ho:Sanofi-Aventis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Scheid:Medac: Other: Travel, accomodations or expenses; Baxalta: Honoraria; Amgen: Consultancy; Novartis: Consultancy, Honoraria, Other: Travel, accomodations or expenses; Janssen: Consultancy, Honoraria; Celgene: Other: Travel, accomodations or expenses; BMS: Consultancy, Honoraria. Weisel:Onyx: Consultancy; Amgen: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Novartis: Honoraria; Janssen: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; BMS: Consultancy, Honoraria. Goldschmidt:Takeda: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Chugai: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Millennium: Membership on an entity's Board of Directors or advisory committees, Research Funding; Onyx: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5900-5900
Author(s):  
Wolfram Poenisch ◽  
Madlen Ploetze ◽  
Bruno Holzvogt ◽  
Marc Andrea ◽  
Thomas Zehrfeld ◽  
...  

Abstract Introduction: Bendamustine is a bifunctional alkylating agent with low toxicity that produces both single- and double-strand breaks in DNA, and shows only partial cross resistance with other alkylating drugs. Treatment of patients with newly diagnosed multiple myeloma using Bendamustine and Prednisone in comparison to Melphalan and Prednisone results in superior complete response rate and prolonged time to treatment failure (Poenisch et al, Res Clin Oncol 132: 205-212;2006). So far, however, reliable information on stem cell toxicity and mobilization of stem cells for autologous stem cell transplantation (SCT) after induction treatment with a combination of bendamustine, prednisone and bortezomib (BPV) is missing. Material and Methods: A retrospective analysis of peripheral blood stem cell mobilization and autologous SCT was performed in 35 patients with multiple myeloma who had received at least two cycles of a BPV induction therapy consisting of bendamustine 60 mg/m2 on days 1 and 2, bortezomib 1.3 mg/m² on days 1, 4, 8 and 11, and prednisone 100 mg on days 1, 2, 4, 8 and 11 between October 2008 and May 2014. The mobilization regimen consisted of cyclophosphamide 4 g/m2 and G-CSF (2x5µg/kg). Apheresis was started as soon as peripheral blood CD34+ counts exceeded 20x106/l with a harvest target of 8x106 CD34+/kg. The minimal accepted target was 2x106 CD34+/kg. Results: A median number of two (range 1–5) BPV treatment cycles were given to the patients. The majority of the patients (n = 31, 89 %) responded including 2 sCR, 5 nCR, 11 VGPR, and 13 PR. Three patients had MR, and 1 SD. Stem cell mobilization and harvest was successful in all patients. In 19 of 35 patients (54 %) a single apheresis was sufficient to reach the target. The median number of aphereses was one (range 1-4) and the median CD34+ cell-count/kg was 13.5 (range 3.2-33.1) x106. All patients received an autologous SCT. The pre-transplantation conditioning therapy consisted of melphalan 200 mg/m2. In 8 patients with concomitant heart amyloidosis or severe renal insufficiency melphalan dose was reduced to 100 or 140 mg/m2. Engraftment was successful in 34 of 35 patients. The median time to leucocytes count >l×109/l was reached after 11 (range 9–18) days and the time to untransfused platelet count of >50×109/l was 13 (range 10–55) days. 34 patients (97%) responded after the autologous SCT with 11 sCR, 2 CR, 7 nCR, 7 VGPR, and 7 PR. The progression free survival at 18 months was 87 % and overall survival was 92 %. Conclusion: Stem cell mobilization and autologous SCT is feasible in multiple myeloma patients who have received BPV induction therapy. Disclosures Al-Ali: Novartis: Consultancy, Honoraria, Research Funding; Celgene: Honoraria, Research Funding. Lange:Novartis: Consultancy, Honoraria, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2258-2258
Author(s):  
Tomer M Mark ◽  
Adriana C Rossi ◽  
Roger N Pearse ◽  
Morton Coleman ◽  
David Bernstein ◽  
...  

Abstract Abstract 2258 Background: Prior use of lenalidomide beyond 6 cycles of therapy in the treatment of multiple myeloma (MM) has been shown to negatively impact stem cell yield, but this phenomenon can be overcome with the addition of high-dose cyclophosphamide to standard G-CSF mobilization. We hypothesized that the use of plerixafor (Mozobil®) would compare similarly to chemotherapy in rescuing the ability to collect stem cells in lenalidomide-treated myeloma. Methods: We performed a retrospective study comparing the efficacy of plerixafor + G-CSF mobilization (PG) to chemotherapy + G-CSF (CG) (either high-dose cyclophosphamide at 3g/m2 or DCEP [4-day infusional dexamethasone/ cyclophosphamide/ etoposide/cisplatin]) in 49 consecutive stem cell collection attempts in patients with MM exposed to prior lenalidomide. The primary endpoint was the ability to collect sufficient stem cells for at least two transplants (minimum 5×106 CD34+ cells/kg), comparing results in terms of total exposure to lenalidomide and time elapsed from lenalidomide exposure until the mobilization attempt. The secondary endpoint was number of apheresis days required to meet collection goal. Resilts: Twenty-four patients underwent PG mobilization and twenty-five with CG (21 with G-CSF + cyclophosphamide, 4 with G-CSF+DCEP). The two groups did not differ in terms of total amount of lenalidomide exposure: median number of lenalidomide cycles for patients mobilized with PG was 6.5 (range 1.2–86.6), vs. 6 (range 2–21.6), for patients mobilized with CG (P = 0.663). The median time between mobilization and last lenalidomide dose was also similar between the two groups: 57.5 (range 12–462) days for PG vs. 154 (range 27–805) days for CG (P = 0.101). There was an equivalent rate of successful collection of 100% for PG and 96% for CG, P = 0.322. One patient failed collection in the CG group due to emergent hospitalization for septic shock during a period of neutropenia; no patient collected with PG had a serious adverse event that interrupted the collection process. Stem cell yield did not differ between the two arms (13.9 vs. 18.8 × 106 million CD34+ cells/kg for PG vs. CG respectively, P = 0.083). Average time to collection goal was also equal, with a median of time of 1 day required in both groups, (range 1–2 days for PG, 1–5 days for CG, P = 0.073). There was no relationship between amount of lenalidomide exposure and stem cell yield with either PG (P = 0.243) or CG (P = 0.867). Conclusion: A plerixafor + G-CSF mobilization schedule is equivalent in efficacy to chemotherapy + G-CSF in obtaining adequate numbers of stem cells for two autologous stem cell transplants in patients with MM exposed to lenalidomide; however, PG may be a less toxic approach than chemomobilization. Number of lenalidomide cycles has no impact on chances of stem cell collection success using either method. Disclosures: Mark: Celgene Corp: Speakers Bureau; Millenium Corp: Speakers Bureau. Zafar: Celgene Corp: Speakers Bureau. Niesvizky: Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Millenium: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Onyx: Consultancy, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2946-2946
Author(s):  
Carlos Fernández de Larrea ◽  
Natalia Tovar ◽  
María Rozman ◽  
Laura Rosiñol ◽  
Juan I. Aróstegui ◽  
...  

Abstract Abstract 2946 Background: The achievement of complete remission (CR) is the crucial step for a long-lasting response and prolonged survival after autologous stem cell transplantation (ASCT) in patients with multiple myeloma (MM). The European Group for Blood and Marrow Transplantation (EBMT) criteria for CR include the negativity of serum and urine immunofixation (IFE) and less than 5% of bone marrow plasma cells (BMPCs). Additionally, the International Myeloma Working Group (IMWG) has even proposed a stringent CR category, which requires to rule out the clonal nature of the BMPCs. However, few studies have addressed this issue in patients with MM and negative IFE. The aim of the present study was to determine the impact of plasma cell count in the bone marrow aspirate on the long-term outcome of patients with MM with negative IFE after ASCT. Methods: Thirty-five patients (16M/19F; median age at ASCT 55 years, range 26–68) with MM who underwent ASCT from March 1994 to December 2008, were studied. All patients had achieved a negative serum and urine IFE after high dose therapy with melphalan-based regimens. Bone marrow aspirate was performed when negative serum and urine IFE was achieved and at least three months from ASCT (median 3.24 months). The analysis was based on microscopic revision for May-Grünwald-Giemsa stained bone marrow smears performed according to standard procedures. BMPC percentage was calculated independently by two observers counting 500 bone marrow total nucleated cells in random areas from two different slides (1000 cells on each patient). Results: Median BMPCs percentage was 0.8 (range 0.1–5.8). Only two patients had more than 3% BPMCs. These results are in contrast with a recent report from the Mayo Clinic group, where 14% of the patients with MM and negative IFE had 5% or more BMPCs. In univariate Cox-model regression analysis, the number of BMPCs significantly correlated with progression-free survival (PFS)(p=0.021) with no impact on overall survival (OS)(p=0.92). This statistical significance on PFS was retained in the multivariate analysis, when baseline prognostic factors such as age, hemoglobin level, serum creatinine, β2-microglobulin and Durie-Salmon stage were added to the model (p=0.003). To establish the best predictive cut-off for progression and survival, a receptor-operator curve (ROC) analysis was developed. It showed the value of 1.5% BMPCs, with a sensitivity of 53%, specificity of 90% and area under the curve of 0.66 for predicting progression. Ten patients had more than 1.5% BMPC, and 25 equal or less than 1.5% BMPC. Median PFS was 8.5 years (CI 95% 2.6 to 14.3) and was not reached in patients with ≤1.5% BMPCs versus 3.1 years in patients with >1.5% BMPCs, with a hazard ratio probability to progression of 3.02 (CI 95% 1.18 to 9.71)(p=0.016) in the group with more than 1.5% of BMPCs (Figure 1). Median OS was not reached in patients with ≤1.5% compared with a median of 9.7 years in those with more than 1.5% BMPCs (p=0.195) (Figure 2). It is likely that serological CR with very low percentage of BMPCs (i.e. ≤1.5%) is equivalent to negative MRD assessed by MFC or molecular studies. In fact, all 8 patients in continued CR between 9 and 16 years beyond ASCT (“operational cures”) are in the group with ≤1.5% BMPCs, while all patients in the group with >1.5% BPMC have relapsed within the first 9 years from ASCT (Figure 1). Conclusion: The percentage of BMPCs in patients with MM in CR after ASCT is a strong predictor of progression. Bone marrow morphology examination is an easy, inexpensive, and non-time consuming test and it should be the first step in the estimation of the residual tumor mass in patients with MM in CR after ASCT. Disclosures: Rosiñol: Janssen-Cilag: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees. Cibeira:Janssen-Cilag: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees. Blade:Janssen-Cilag: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document