scholarly journals Evaluation of Stem Cell Mobilization in Patients with Multiple Myeloma after Lenalidomide-Based Induction Chemotherapy within the GMMG-HD6 Trial

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3373-3373 ◽  
Author(s):  
Patrick Wuchter ◽  
Uta Bertsch ◽  
Hans-Juergen Salwender ◽  
Markus Munder ◽  
Mathias Haenel ◽  
...  

Abstract Introduction: The German-Speaking Myeloma Multicenter Group (GMMG) has initiated a randomized multicenter phase III trial on the effect of elotuzumab in VRD (bortezomib, lenalidomide, dexamethasone) induction/consolidation and lenalidomide maintenance in patients with newly diagnosed multiple myeloma (GMMG-HD6 trial, NCT02495922). The study compares four cycles induction therapy with VRD vs. VRD + elotuzumab, followed by standard intensification (i.e. mobilization and stem cell transplantation), two cycles consolidation with VRD/VRD + elotuzumab and lenalidomide maintenance +/- elotuzumab. The primary endpoint is determination of the best of four treatment strategies regarding progression-free survival. Here we present a first analysis of stem cell mobilization within this study. Patients and Methods: We performed a retrospective analysis of collection data on all patients who underwent peripheral blood stem cell (PBSC) collection between trial initiation in June 2015 and June 2016. Only patients with completely available datasets in respect of mobilization were considered (n=111). The vast majority of 99 patients (89%) received chemomobilization with CAD (cyclophosphamide, adriamycin, dexamethasone) followed by 5-10 µg G-CSF /kg body weight (bw) /d (starting day +9 until completion of PBSC collection), while in one case (1%) dexamethasone was omitted and in 10 cases (9%) cyclophosphamide mono was administered. One patient underwent steady-state mobilization with G-CSF only (10µg /kg bw /d). 55/111 patients received VRD (50%), whereas the remaining patients received VRD + elotuzumab. According to the recommendations of the study group, PBSCs for three stem cell transplants were to be collected. One transplant ideally consisted of ≥2.5 x10^6 CD34+ cells /kg bw, but in the event of poor mobilization as low as ≥2.0 x10^6 CD34+ cells /kg bw would be considered acceptable. Results: The median number of collected CD34+ cells was 10.4 x10^6 /kg bw (range 2.88 to 23.01 x10^6 /kg bw). Overall, 92 patients (83%) collected ≥7.5 x10^6 CD34+ cells /kg bw and another 12 patients (11%) collected between 6.0 and 7.5 x10^6 CD34+ cells /kg bw, resulting in three transplants, respectively. Only 7 patients (6%) collected below 6.0 x10^6 CD34+ cells /kg bw; 5 of them had been treated in the VRD-arm without elotuzumab. Due to insufficient PBSC mobilization after conventional treatment, 14 patients (13%) received a rescue mobilization with plerixafor, from which 12 patients collected ≥6.0 x10^6 CD34+ cells /kg bw. Overall, 7 serious adverse events (SAEs) occurred during mobilization phase, 4 of them in the study arm with elotuzumab. Conclusions: Cyclophosphamide-based chemomobilization after induction therapy with VRD is feasible. Efficient PBSC collection of ≥6.0 x10^6 CD34+ cells /kg bw could be performed in 104 of 111 patients (94%), with a low incidence of SAEs. The need for rescue mobilization was not higher than that of comparable previous GMMG treatment protocols. The addition of elotuzumab during induction phase did not impede PBSC collection. Disclosures Wuchter: Sanofi-Aventis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Hexal: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Bertsch:Janssen: Research Funding; Celgene: Research Funding; Chugai: Research Funding. Munder:Janssen: Honoraria; Takeda: Honoraria; Amgen: Honoraria; Bristol Myers Squibb: Honoraria. Fenk:Jansen: Honoraria, Other: travel support; Celgene: Honoraria, Other: travel support, Research Funding. Hillengass:Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Honoraria; Celgene: Honoraria; BMS: Honoraria; Novartis: Research Funding; Sanofi: Research Funding. Raab:Novartis: Consultancy, Research Funding; BMS: Consultancy; Celgene: Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Ho:Sanofi-Aventis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Scheid:Medac: Other: Travel, accomodations or expenses; Baxalta: Honoraria; Amgen: Consultancy; Novartis: Consultancy, Honoraria, Other: Travel, accomodations or expenses; Janssen: Consultancy, Honoraria; Celgene: Other: Travel, accomodations or expenses; BMS: Consultancy, Honoraria. Weisel:Onyx: Consultancy; Amgen: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Novartis: Honoraria; Janssen: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; BMS: Consultancy, Honoraria. Goldschmidt:Takeda: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Chugai: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Millennium: Membership on an entity's Board of Directors or advisory committees, Research Funding; Onyx: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2260-2260 ◽  
Author(s):  
Arnon Nagler ◽  
Avichai Shimoni ◽  
Irit Avivi ◽  
Jacob M. Rowe ◽  
Katia Beider ◽  
...  

Abstract Abstract 2260 Background: BKT140 is a high affinity CXCR4 inhibitor with an extended K off-rate. Pre-clinical studies in animal models with BKT140 showed a robust mobilization of white blood cells (WBC) and hematopoietic stem cells (HSC). Furthermore, BKT140 also showed a direct anti-tumor effect against human-derived multiple myeloma (MM), lymphoma and primary leukemia cells and cell lines in vitro and in vivo, causing significant apoptosis. Aims: To assess BKT140 toxicity (primary endpoints), the mobilization capacity of CD34+ hematopoietic progenitors and CD138 MM cells, and pharmacokinetic (PK) and pharmacodynamic (PD) (secondary endpoints). Methods: 16 MM patients in first CR/PR were included in a phase I/IIa study, in which escalating doses of BKT140 (30, 100,300,900 μg/kg) were administered together with a high-dose cyclophosphamide (Cy) (2 g/m2) and G-CSF (5 μg/Kg) for stem cell mobilization. G-CSF was started on day 5 post Cy and BKT140 was injected subcutaneously (SC) once on day 10. Toxicity, PK, and mobilization capacity (assessed by serial measurements of number of WBC and CD34+ and CD138+ cells) were measured pre- and post BKT140 administration. Results: BKT140 was well tolerated at all doses and none of the patients developed grade II-IV toxicity. BKT140 was rapidly absorbed with no observed lag time, with peak plasma concentrations occurring 0.5h after administration. Clearance was rapid, with a median terminal half-life of 0.69h. BKT140 administration resulted in a significant dose-dependent increase in the number of peripheral blood neutrophils, monocytes, lymphocytes, and CD34+ cells compared to the G-CSF/Cy individual patient baseline. The maximum increase in the number of WBC from baseline was observed within 8h following BKT140 injection, 2.5-, and 3.0-, 4.1- and 4.8-fold, for the 4 BKT140 doses, respectively. Furthermore, BKT140 administration resulted in a significant increase in the mean absolute PB CD34+ cells mobilized (6.6, 7.5, 11.2 and 20.6 ×106/kg) for the 4 BKT140 administered doses, respectively. Moreover, the number of aphaeresis was reduced from 2.25 procedures at the first two BKT140 doses to 1.25 and 1 aphaeresis at the highest BKT140 doses, respectively. An increase in the number of CD138+ cells was observed in 6 out of 6 pts that had CD138+ cells in their blood and were treated with lower doses of BKT140 (30 and 100 μg/kg). Interestingly, in pts that were treated with the highest doses of BKT140 (300 and 900 μg/kg) a reduced number of CD138+ cells was observed in 3 out of 7 pts that had CD138+ cells in their blood, whereas in 4 pts, an increase in the number of CD138+ cells was shown. Three pts who did not have CD138+ cells in their blood were not affected by BKT140. The BKT140 mobilized grafts were used for AutoSCT following 200 mg/m2 melphalan conditioning. Pts received an average of 5.3×106 CD34+ cells/kg. All transplanted pts rapidly engrafted (n=15). The median day for neutrophil (>500/mm3) and platelet (>20,000/mm3, >50,000/mm3,) was on day 11 (range, 0–13), day 11 (range, 0–14), and day 14 (range, 0–23), respectively. Conclusions: The current data suggests that BKT140 can safely be added to G-CSF-based harvesting regimens, can increase CD34+ cell mobilization and reduce the number of collection days. Furthermore, due to its ability to release MM cells from the bone marrow and stimulate their cell death, additional studies are warranted to further evaluate the effect of BKT140 as an anti-MM agent. Disclosures: Nagler: Biokine Therapeutics Ltd: Consultancy. Abraham: Biokine Therapeutics Ltd: Employment, Equity Ownership, Patents & Royalties. Wald: Biokine Therapeutics Ltd: Employment. Shaw: Biokine Therapeutics Ltd: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Eizenberg: Biokine Therapeutics Ltd: Employment, Equity Ownership, Patents & Royalties. Peled: Biokine Therapeutics Ltd: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1837-1837
Author(s):  
Eyal Lebel ◽  
Katherine Lajkosz ◽  
Esther Masih-Khan ◽  
Donna E. Reece ◽  
Suzanne Trudel ◽  
...  

Abstract Introduction: Autologous stem cell transplantation (ASCT) is standard therapy for selected patients with newly diagnosed multiple myeloma (MM). Studies in MM and lymphoma have suggested that ability to mobilize and collect a higher yield of CD34 + cells predicts for improved survival outcomes, perhaps reflecting better bone marrow reserve (Bolwell 2007, Raschle 2011). We aimed to validate this hypothesis by correlating high CD34 + cell collection ("supermobilizers") and survival outcomes in a large myeloma cohort with long follow-up. Methods: We retrospectively reviewed MM patients (pts) who underwent ASCT at our centre 2000-2010, correlating number of CD34 + cells collected with post-transplant progression-free survival (PFS) and overall survival (OS). Stem cells were mobilized using cyclophosphamide 2.5 g/m 2 IV (day 1), G-CSF 10 ug/kg/day SC (starting on day 4), and leukapheresis (day 11), targeting 4x10 6/kg but accepting a minimum of 2x10 6/kg to support a single transplant. Using a cut-off used in previous studies, pts were categorized as "supermobilizers" if ≥8x10 6/kg CD34+ cells were collected. Results: 621 pts were analyzed. Most pts (422/605; 70%) received high dose dexamethasone (HDD) alone or in combination with vincristine and adriamycin (VAD) for pre-transplant induction therapy (pre-dating the novel agent era) with only 18% (110/605) receiving more contemporary bortezomib-based induction (mostly cyclophosphamide, bortezomib and dexamethasone; CyBORD). The median number of CD34 + cells collected for all pts was 13.9x10 6/kg (range 2.1-61.8). The median CD34 + cells re-infused was 6.2x10 6/kg (range 2.1-25), as some cells were reserved for 2 nd ASCT, but median CD34+ cells collected correlated with CD34 + cells infused (Pearson coefficient 0.81, p<0.001). At a median follow-up of 74 months (m), we were surprised to report an inferior PFS of 24.1m for the supermobilizers collecting ≥8x10 6/kg vs 33.7m for the <8 group (p=0.038, Figure 1a), without differences in OS (p=0.612, Figure 1b). No further discrimination in PFS was observed when using a more extreme supermobilizer cut-off of 15x10 6/kg. To further understand the counterintuitive result of shorter PFS with higher mobilization capacity, we explored the continuous relationship between CD34 + cells and PFS, identifying another optimal cut-off of 4.5x10 6/kg. Pts collecting in the mid-range (4.5-8; n=129) achieved the best PFS of 34.5m, significantly improved over 24.1m in the ≥8 group (n=478) and 11.4m in the small group at the extreme lower collection range (n=14; ≤4.5x10 6/kg)(Figure 1c). A similar pattern was seen with OS (Figure 1d). Clinical and laboratory parameters that may impact both collection capacity and survival, such as age, ISS, and kidney dysfunction, were investigated as confounders but were similar between collection groups and did not predict for PFS in multivariable analyses. Treatment variables, however, differed between groups: the lower collection groups more often received bortezomib-based induction (29%, 31% and 14% in the ≤4.5, 4.5-8 and ≥8 groups, respectively, p<0.001) resulting in deeper responses pre-transplant (VGPR 50% in the ≥8 group vs 43% in the 4.5-8 group, p=0.024) (Table 1). Use of maintenance therapy post-ASCT also differed (50%, 40% and 28% in the ≤4.5, 4.5-8 and ≥8 groups, respectively, p=0.006). Discussion: In this large cohort of 621 MM patients, we report that "supermobilizers" who collected ≥8 x 10 6 CD34 + cells/kg exhibit inferior PFS from transplant than those with less robust mobilization. We suspected that this unexpected observation was due to confounding variables, and identified differences in treatment, primarily greater use of bortezomib-based induction and post-transplant maintenance therapy in the lower collection group. This group was able to achieve deeper responses (≥VGPR) even before transplant than the supermobilizer group, leading to improved PFS. Although bortezomib is routinely used as induction therapy pre-transplant currently and is not felt to be stem cell toxic, it may impair mobilization to a lesser degree, leading not to abject failure of collection but lowered capacity to achieve "supermobilizer" status. Although more research is needed to validate this hypothesis, we can at minimum conclude that high stem cell collection does not appear to predict for a long-term survival advantage. Figure 1 Figure 1. Disclosures Reece: Millennium: Research Funding; Sanofi: Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria; Takeda: Consultancy, Honoraria, Research Funding; Karyopharm: Consultancy, Research Funding; GSK: Honoraria; BMS: Honoraria, Research Funding. Trudel: Amgen: Honoraria, Research Funding; BMS/Celgene: Consultancy, Honoraria, Research Funding; Janssen: Honoraria, Research Funding; Genentech: Research Funding; Sanofi: Honoraria; Pfizer: Honoraria, Research Funding; GlaxoSmithKline: Consultancy, Honoraria, Research Funding; Roche: Consultancy. Prica: Astra-Zeneca: Honoraria; Kite Gilead: Honoraria. Chen: Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; BMS: Consultancy, Membership on an entity's Board of Directors or advisory committees; Astrazeneca: Membership on an entity's Board of Directors or advisory committees; Beigene: Membership on an entity's Board of Directors or advisory committees; Gilead: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 15-16
Author(s):  
Danny Luan ◽  
Paul J Christos ◽  
Michael Ancharski ◽  
Danielle Guarneri ◽  
Roger Pearse ◽  
...  

Background: Daratumumab (DARA) is a monoclonal antibody which targets CD38 on plasma cells and B cell progenitors. DARA has been effectively combined with other therapies in newly diagnosed and relapsed/refractory multiple myeloma (RRMM), while DARA-based induction regimens in transplant-eligible patients (pts) are increasingly being used in clinical practice. Given that hematopoietic stem cells also express CD38, DARA may potentially affect stem cell mobilization and hematopoietic reconstitution following autologous stem cell transplant (ASCT). Although no clinically significant impact of DARA on stem cell mobilization or hematopoietic recovery was described in large phase 3 trials of triplet induction regimens +/- DARA in newly diagnosed MM, stem cell yields were lower and plerixafor more commonly used in the DARA-containing arms [Moreau et al, Lancet 2019; Voorhees et al, Blood 2020]. Significantly longer time to neutrophil (PMN) engraftment was also reported in pts receiving DARA-based induction who underwent upfront ASCT [Al Saleh et al, Am J Hematol 2020]. In this study, we examine the impact of timing of DARA administration pre-mobilization on day 4 pre-harvest peripheral blood CD34 cell count, stem cell apheresis yield, and post-ASCT engraftment. Methods: Between 1/1/2016 and 12/31/2019, newly diagnosed and RRMM pts receiving DARA-based induction regimens with ≥1 dose of DARA administered within 1 month prior to stem cell mobilization were identified retrospectively and compared to matched controls receiving similar induction regimens without DARA. Granulocyte colony-stimulating factor (G-CSF) was administered per institutional standards and plerixafor added based on day 4 pre-harvest peripheral blood CD34 counts. PMN and platelet engraftment post-ASCT was defined as the first of 3 consecutive days with sustained PMN count >500 x 106/L and independence from platelet transfusion in the preceding 7 days with a count >20 x 109/L, respectively. Pre-harvest peripheral blood CD34 counts and stem cell apheresis yields were obtained from the Cellular Therapy Laboratory at NewYork-Presbyterian Hospital. The study was approved by the Weill Cornell Medicine IRB. Results: We identified 16 pts who received DARA-based induction with ≥1 dose of DARA administered within 1 month of apheresis (DARA group) and 16 non-DARA-containing regimen-matched controls (non-DARA group). Demographics of the DARA and non-DARA groups were well matched (Table 1). DARA pts received their last dose of DARA a mean of 17.3 days prior to the first day of apheresis, with 8 pts receiving their last dose within 2 weeks and the remaining 8 pts between 2 weeks and 1 month prior. Overall, mobilization outcomes were inferior in the DARA group (Table 2). DARA pts had significantly lower day 4 pre-harvest peripheral blood CD34 counts compared to non-DARA pts (17.2 vs 35.4 cells/µL; P=0.0146). Institutional algorithm required plerixafor to be given for day 4 CD34 count ≤40 cells/µL. Fifteen of the 16 DARA pts received plerixafor vs. 11 non-DARA pts (P=0.07). Additionally, DARA pts required significantly more apheresis days (2.4 vs 1.6 days; P=0.0279). Differences in stem cell yield were not significant (8 vs 10 x106cells/kg; P=0.1391). Hematopoietic recovery post-ASCT was not affected by DARA administered in the month preceding mobilization. Conclusions: In summary, we report lower day 4 pre-harvest peripheral blood CD34 count, increased requirement for plerixafor, and longer apheresis duration in newly diagnosed and RRMM pts receiving DARA within 1 month ofstem cell mobilization. These limitations are largely overcome by plerixafor usage which, combined with G-CSF, resulted in successful stem cell collection in all patients. Limitations in our study include small sample sizes, retrospective control selection, and fewer pts in the DARA group achieving ≥VGPR prior to mobilization. Nevertheless, our findings are consistent with inferior mobilization outcomes reported in the DARA-containing arms of phase 3 trials of triplet induction +/- DARA and highlight the nearly universal requirement for plerixafor usage when DARA is administered within a month prior to apheresis. Prospective study of day 4 pre-harvest peripheral blood CD34 counts and other predictors of stem cell yield should be incorporated into future clinical trials of CD38 monoclonal antibody-based induction regimens for transplant-eligible MM pts. Disclosures Rossi: Janssen: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees. Niesvizky:GSK: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; BMS: Consultancy, Honoraria; Karyopharm: Consultancy, Honoraria; Takeda: Consultancy, Honoraria. Rosenbaum:Amgen: Research Funding; GlaxoSmithKline: Research Funding; Akcea: Honoraria; Celgene: Honoraria; Janssen: Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2258-2258
Author(s):  
Tomer M Mark ◽  
Adriana C Rossi ◽  
Roger N Pearse ◽  
Morton Coleman ◽  
David Bernstein ◽  
...  

Abstract Abstract 2258 Background: Prior use of lenalidomide beyond 6 cycles of therapy in the treatment of multiple myeloma (MM) has been shown to negatively impact stem cell yield, but this phenomenon can be overcome with the addition of high-dose cyclophosphamide to standard G-CSF mobilization. We hypothesized that the use of plerixafor (Mozobil®) would compare similarly to chemotherapy in rescuing the ability to collect stem cells in lenalidomide-treated myeloma. Methods: We performed a retrospective study comparing the efficacy of plerixafor + G-CSF mobilization (PG) to chemotherapy + G-CSF (CG) (either high-dose cyclophosphamide at 3g/m2 or DCEP [4-day infusional dexamethasone/ cyclophosphamide/ etoposide/cisplatin]) in 49 consecutive stem cell collection attempts in patients with MM exposed to prior lenalidomide. The primary endpoint was the ability to collect sufficient stem cells for at least two transplants (minimum 5×106 CD34+ cells/kg), comparing results in terms of total exposure to lenalidomide and time elapsed from lenalidomide exposure until the mobilization attempt. The secondary endpoint was number of apheresis days required to meet collection goal. Resilts: Twenty-four patients underwent PG mobilization and twenty-five with CG (21 with G-CSF + cyclophosphamide, 4 with G-CSF+DCEP). The two groups did not differ in terms of total amount of lenalidomide exposure: median number of lenalidomide cycles for patients mobilized with PG was 6.5 (range 1.2–86.6), vs. 6 (range 2–21.6), for patients mobilized with CG (P = 0.663). The median time between mobilization and last lenalidomide dose was also similar between the two groups: 57.5 (range 12–462) days for PG vs. 154 (range 27–805) days for CG (P = 0.101). There was an equivalent rate of successful collection of 100% for PG and 96% for CG, P = 0.322. One patient failed collection in the CG group due to emergent hospitalization for septic shock during a period of neutropenia; no patient collected with PG had a serious adverse event that interrupted the collection process. Stem cell yield did not differ between the two arms (13.9 vs. 18.8 × 106 million CD34+ cells/kg for PG vs. CG respectively, P = 0.083). Average time to collection goal was also equal, with a median of time of 1 day required in both groups, (range 1–2 days for PG, 1–5 days for CG, P = 0.073). There was no relationship between amount of lenalidomide exposure and stem cell yield with either PG (P = 0.243) or CG (P = 0.867). Conclusion: A plerixafor + G-CSF mobilization schedule is equivalent in efficacy to chemotherapy + G-CSF in obtaining adequate numbers of stem cells for two autologous stem cell transplants in patients with MM exposed to lenalidomide; however, PG may be a less toxic approach than chemomobilization. Number of lenalidomide cycles has no impact on chances of stem cell collection success using either method. Disclosures: Mark: Celgene Corp: Speakers Bureau; Millenium Corp: Speakers Bureau. Zafar: Celgene Corp: Speakers Bureau. Niesvizky: Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Millenium: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Onyx: Consultancy, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2253-2253
Author(s):  
Shirshendu Sinha ◽  
Morie Gertz ◽  
Martha Lacy ◽  
Angela Dispenzieri ◽  
Suzanne Hayman ◽  
...  

Abstract Abstract 2253 Background: Lenalidomide based combinations are among the most common initial therapies for myeloma. Previous studies have suggested that lenalidomide therapy can result in suboptimal stem cell collection in patients eligible to undergo autologous stem cell transplantation, especially older patients after prolonged exposure to the drug. Many salvage approaches are used when attempting repeat stem cell collection in this patient group. Patients and Methods: Two hundred twenty four patients who underwent stem cell collection following lenalidomide-dexamethasone induction from July 2004 and December 2009 were included in the current analysis. Data pertaining to the duration of lenalidomide therapy, stem cell mobilization regimen, and the collection yields were collected from the medical records. Results: The median age at mobilization was 60.6 years (range; 29, 76) and 136 (60%) were male. There were a total of 245 collection attempts from among 224 patients, 21 (9.8%) patients attempting to remobilize after failing to collect the desired numbers of stem cells at the first attempt. We first analyzed the results of the initial collection attempt. The median duration of lenalidomide therapy prior to stem cell collection was 4 months (range; 1, 26). The mobilization strategies were GCSF (Granulocyte Colony Stimulating Factor) alone in 151 (67%) patients, cyclophosphamide (CTX) followed by GCSF in 29 (13%) patients, and GCSF plus AMD3100 in 44 (20%) patients. Among those receiving AMD3100, it was added either due to peripheral blood CD34 cell count not reaching the threshold for initiation of harvest or for poor first day CD34 cells collection in 34 patients and given in a planned fashion in 10 patients. Overall 15 patients (7%) failed to reach the peripheral CD34 cell counts required to initiate apheresis, and among those starting apheresis 6 patients failed to collect at least 2 million CD34 cells/kg; a cumulative failure rate of 9%. Another 18 (8%) patients failed to collect at least 4 million CD34 cells /kg. The CD34 cells yield on day 1, the total yield, number of collections, the average daily yield and the percentage of the targeted cells collected for each mobilization strategy including failure rates are detailed in the table. Twenty-one patients reattempted stem cell mobilization; including 14 that failed a first attempt and 7 did who not achieve the intended goal even though they collected more than 2 million CD34 cells/kg. The mobilization regimens were GCSF alone, CTX + GCSF, GCSF + GM-CSF (Granulocyte Macrophage Colony Stimulating Factor) and GCSF + AMD in 5, 8, 3, and 4 patients respectively. All patients collected at least 2 million CD34 cells /kg and 14 patients (70%) collected more than 4 million CD34 cells /kg. The median CD34 cells collected with the second attempt was 5.4 million/kg (rang; 2, 19.5) bringing the median total collection for these 21 patients to 9.6 million/kg (2.6-19.6). Overall, of the 224 patients studied, all but the 6 patients who failed initially and did not attempt a second collection collected at least 2 million CD34 cells /kg and 197 (88%) collected at least 4 million CD34 cells/kg. Conclusion: While the overall failure rate of stem cell collection in patients receiving initial therapy with lenalidomide is 10%, a risk adapted approach of adding AMD3100 appear to decrease the risk of failure. However, majority of patients failing a stem cell harvest attempt can be salvaged with a second collection allowing these patients to proceed to a stem cell transplant if desired. Disclosures: Gertz: Celgene: Honoraria; Millenium: Honoraria, Membership on an entity's Board of Directors or advisory committees; Genzyme: Research Funding. Lacy: Celgene: Research Funding. Dispenzieri: Celgene: Honoraria, Research Funding; Binding Site: Honoraria. Micallef: Genzyme: Membership on an entity's Board of Directors or advisory committees. Kumar: Celgene: Consultancy, Research Funding; Millennium: Research Funding; Merck: Consultancy, Research Funding; Novartis: Research Funding; Genzyme: Consultancy, Research Funding; Cephalon: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2764-2764
Author(s):  
Ondrej Venglar ◽  
Tereza Sevcikova ◽  
Anjana Anilkumar Sithara ◽  
Veronika Kapustova ◽  
Jan Vrana ◽  
...  

Abstract Introduction: Daratumumab (Dara) is an anti-CD38 monoclonal antibody representing a novel treatment agent for multiple myeloma (MM). Nonetheless, several studies have reported a Dara-related impairment of CD34+ hematopoietic stem cell (HSC) mobilization and post-autologous stem cell transplantation (ASCT) complications, including low yields of mobilized HSCs and delayed neutrophil engraftment. Impact of Dara on the mobilization process and HSCs remains poorly understood even though sufficient yields of CD34+ cells are necessary for a successful ASCT and subsequent patient recovery. Aims: To compare the effect of the Dara-containing (Dara-Bortezomib-Dexamethasone [D-VCd]) and conventional (Bortezomib-Thalidomide-Dexamethasone [VTd]) therapy on CD34+ HSCs. Methods: Transplant eligible MM patients were treated with D-VCd or VTd induction regimen followed by a cyclophosphamide + G-CSF mobilization and a high-dose melphalan D -1 before ASCT. Flow cytometry (FCM) screening of CD34+ subsets was performed in the bone marrow (BM) or apheresis product (AP) at three consecutive time points: 1) diagnostic BM (DG), 2) mobilization AP (MOB), 3) a day prior ASCT BM (D-1). Furthermore, RNA sequencing (RNAseq) of sorted CD34+ cells was performed on total RNA with ribo-depletion protocol in AP after the induction. D-VCd samples had lower RNA yields thus the D-VCd or VTd groups were processed as independent batches. Results: Clinical data revealed no significant differences in mobilization (p >0.050) likely due to a small cohort sizes (D-VCd n=5 vs VTd n=9), though a trend towards worse performance in D-VCd was observed. Median CD34+ cell yield was 3.08 vs 10.56 x 10 6/kg. Platelet recovery of >20x10 9/L was D+14 vs D+12 (range: 11-18 vs 10-16). Neutrophil recovery of >0.5x10 9/L was D+12 in both groups (range: 11-17 vs 11-12). In FCM analysis, DG (n=14), MOB D-VCd (n=5) vs VTd (n=9), D-1 D-VCd (n=7) vs VTd (n=15) were compared. CD34+ frequency (Fig. 1A) difference in MOB D-VCd vs VTd was insignificant (median: 1.15% vs 1.89%), whereas CD34+ fraction dropped in D-1 D-VCd (median: 0.52% vs 0.72%, p=0.027), albeit there was no significant reduction in D-1 D-VCd vs initial DG (median: 0.52% vs 0.45%). Differences in the distribution of certain HSC subsets were detected in the CD34+ pool (Fig. 1B-E). Frequency of multipotent progenitors (MPPs) (Fig. 1B) was increased in MOB D-VCd (median: 82.1% vs 66.2%, p=0.004). Frequency of lympho-myeloid-primed progenitor + granulocyte-monocyte progenitor (LMPP+GMP) (Fig. 1C) subset was reduced in D-VCd in both MOB (median: 1.7% vs 16.9%, p=0.042) and D-1 (median: 5.3% vs 14.0%; p=0.026). Erythro-myeloid progenitors (EMPs) (Fig. 1D) were reduced in MOB D-VCd (median: 10.7% vs 19.5%, p=0.042), while the frequency of EMPs increased in D-1 D-VCd (median: 20.8% vs 12.4%, p=0.045). No considerable differences were found in the expression of adhesion molecules CD44/HCAM or CD184/CXCR4. CD38 was strongly diminished in the whole D-VCd CD34+ fraction of MOB and D-1. To understand whether the differences in the mobilization efficacy after D-VCd induction were reflected in the expression profile of mobilized CD34+ cells, differential expression analysis was performed. Overall 133 significantly deregulated genes (p<0.05; log fold change >(-)1) between cohorts (D-VCd n=5 vs VTd n=5) were revealed (Fig. 2). Pathway analysis showed cellular response and localization as the most deregulated categories. The list of deregulated genes contained 25% of non-coding RNAs, some of which were linked to a protein localization in the cell (RN7SL1/2). The expression of adhesion molecules was inspected independently. Out of 59 HSC hallmark genes, only 8 were significantly altered in D-VCd. Interestingly, the main homing molecule CXCR4 seemed to be downregulated in D-VCd, while integrins A3 and B4 were upregulated. Conclusions: Despite the limited cohort sizes, a prospective trend of delayed neutrophil and platelet recovery was observed after D-VCd therapy. FCM analysis revealed a significant reduction of CD34+ subsets responsible, among others, for a reconstitution of neutrophils and megakaryocytes. A strong signal in transcriptome data which would potentially explain differential mobilization in D-VCd cohort was not detected, nevertheless, several genes with adhesive/homing and stem cell differentiation function were indeed altered. The results warrant further investigation. Figure 1 Figure 1. Disclosures Hajek: BMS: Consultancy, Honoraria, Research Funding; AbbVie: Consultancy, Honoraria; Novartis: Consultancy, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pharma MAR: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4439-4439
Author(s):  
Wolfram Pönisch ◽  
Julia Wiesler ◽  
Sabine Leiblein ◽  
Elvira Edel ◽  
Haifa K. Al-Ali ◽  
...  

Abstract Abstract 4439 Introduction The alkylating agent bendamustine has structural similarities to both alkylating agents and purine analogs, and is effective in the treatment of patients with multiple myeloma. So far, no data are available on stem cell toxicity or on stem cell mobilization. Since autologous stem cell transplantation is an established treatment for multiple myeloma after primary treatment, we were interested in analysing the experience of stem cell mobilization after bendamustine treatment. Material and Methods A retrospective analysis over a period of fifteen years was carried out in 56 (34 male and 22 female) patients with multiple myeloma after bendamustine pretreatment at the university hospitals Leipzig and Heidelberg. Patients had a median age of 58 (range 31–72) years. The median number of cycles was 3 (range 1–10) and the cumulative bendamustine dose ranged from 120 to 2400 mg/qm. The mobilization regimen in 37 cases was either cyclophosphamide 4 g/qm (n=33) or 7 g/qm (n=4) followed by G-CSF (2×5 ug/kg s.c.). Alternative regimens such as CAD, CED, TCED and others were used for mobilization in the remaining 19 patients. Apheresis was started as soon as peripheral blood CD34+ counts exceeded 10×106/l with a harvest target of 4×106 CD34+/kg using 4 times the blood volume. The minimal accepted target was 2×106 CD34+/kg. Results Stem cell harvest was successful in 54 of the 56 patients. In one patient the peripheral blood CD34+ cell count failed to reach 10 × 106/l and no apheresis was performed. In one further patient a rapid decrease in peripheral blood CD34+ counts resulted in insufficient recovery of stem cells in the apheresis product. In 18 out of 54 patients (33%) the target was reached with a single apharesis. The median number of aphareses in the 54 patients was 2 (range 1–7) and the median CD34+ cell-count obtained was 5.5 (range 1.7–20.4) × 106/kg. Engraftment was successful in 52/53 patients receiving a stem cell transplant. One patient was successfully harvested and did not receive the transplant yet. Conclusion From this retrospective analysis we conclude that mobilization of PBSC is possible after intensive bendamustine pretreatment. Disclosures: Niederwieser: Bristol-Myers Squibb: Speakers Bureau; Novartis: Speakers Bureau. Goldschmidt:Celgene: Membership on an entity's Board of Directors or advisory committees; Ortho Biotech: Membership on an entity's Board of Directors or advisory committees; Ortho Biotech: Research Funding; Celgene: Research Funding; Chugai Pharma: Research Funding; Amgen: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 317-317 ◽  
Author(s):  
Annamaria Brioli ◽  
Giulia Perrone ◽  
Silvestro Volpe ◽  
Silvana Pasini ◽  
Anna Mele ◽  
...  

Abstract Abstract 317 Introduction: The novel agents bortezomib, thalidomide and lenalidomide have been successfully incorporated into autologous stem-cell transplantation (ASCT) as up-front therapy for newly diagnosed MM. However, several reports have raised concerns about the impact of novel agent-based induction regimens on PBSC collection. Furthermore, the ability to successfully collect PBSCs following initial therapy with two of these newer drugs needs to be confirmed in large phase III clinical trials. Methods: The GIMEMA Italian Myeloma Network designed a phase III study to compare VTD with thalidomide-dexamethasone (TD) as induction therapy prior to double ASCT. Primary study endpoint was the rate of complete or near complete response to each of these two induction regimens, while their toxicity profile – including the impact on PBSC mobilization and collection - was a secondary study endpoint. To address this latter issue, we performed a post-hoc analysis to compare the effect of the triplet VTD induction regimen versus the doublet TD combination on CD34+ cell collection. After three 21-day cycles of VTD or TD induction therapy, patients received intermediate dose cyclophosphamide (CTX 4 g/m2) followed by G-CSF (10 mcg/Kg/die) to mobilize and collect PBSCs. The target threshold to safely perform double ASCT was 4 × 106 CD34+ cells/Kg. Results: Patients evaluable for PBSC collection were 435 out of the 474 who received induction therapy. Of these, 223 were initially randomized to VTD and 212 to TD induction therapy. The median number of collected CD34+ cells was 9.7 × 106/Kg in the VTD arm and 10.7 × 106/Kg in the TD arm (p= n.s.). The planned yield of 4 × 106 CD34+ cells/Kg was achieved with a single harvest in more than 90% of patients in both treatment groups (96% in VTD and 92% in TD, p= n.s.). A yield of CD34+ cells >10 × 106 /Kg was reported in 51% and 56% of patients treated with VTD and TD, respectively (p= n.s.). Only 5 patients (2%) in VTD group and 2 patients (1%) in the TD arm failed to collect more than 2 × 106 CD34+ cells/Kg (p= n.s.). The majority of patients (86% in VTD and 82% in TD, p=n.s.) received CTX as an in-patient procedure, the median time of hospitalization being 4 days. Less than 5% of patients developed grade 3–4 infectious complications (2% in the VTD group vs 3% in TD, p=n.s.) which required hospitalization in only 2 patients. Following ASCT, no significant difference was observed between the two treatment arms in terms of hematologic recovery and non hematological toxicity. Kaplan-Meier curves of TTP and PFS were almost superimposable for patients with a CD34+ yield >10 × 106/Kg and in the range between 4 and 10 × 106/Kg (group 1). These curves were very similar also for patients who collected between 2 and 4 × 106/Kg CD34+ cells or <2 × 106/Kg (group 2). These two groups had significantly different clinical outcomes. Indeed, the 40-month estimates of TTP and PFS were 75% for group 1 vs 40% for group 2 and 60% vs 25%, respectively. OS at 40 months for patients with >10 × 106/Kg CD34+ cells was in the 90% range, a value significantly better than what was seen in the remaining subgroups. In a multivariate Cox regression analysis, yields of CD34+ cells >10 × 106/Kg and in the range of 4 to 10 × 106/Kg were independently associated with prolonged PFS (p=0.001 and =0.027, respectively), while CD34+ cells >10 × 106/Kg predicted for extended OS (p=0.002). Absence of t(4;14) and/or del(17q), and ISS stage 1 or 2 were additional favorable prognostic factors for both PFS and OS, while randomization to VTD independently predicted for longer PFS. Conclusions: Results of the present analysis showed that both TD and VTD shared the advantage of no adverse impact on PBSC collection and the engraftment potential of collected PBSCs. The target for CD34+ cell collection (>4 × 106/Kg) was achieved with a single harvest in more than 90% of patients in both treated groups and a collection failure was reported in 1% to 2% of patients. These favorable results are due to early PBSC collection, which was performed after 3 cycles of TD and VTD, and use of CTX plus G-CSF which allows better stem cell collection and less likelihood of a collection failure. Of particular note, both VTD and TD were associated with a 50% to 59% probability to collect >10 × 106 CD34+ cells/Kg, a variable independently associated with extended PFS and OS. Disclosures: Off Label Use: bortezomib and thalidomide used as induction therapy for newly diagnosed multiple myeloma patients. Baccarani:Bristol-Meyers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Cavo:Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Millennium: Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria; Genzyme: Honoraria.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3024-3024
Author(s):  
Tomer Mark ◽  
David Jayabalan ◽  
Roger N. Pearse ◽  
Jessica Stern ◽  
Jessica Furst ◽  
...  

Abstract Multiple Myeloma (MM) therapy has evolved over recent years to include powerful new therapeutic agents. The goal for most patients with MM, however, still remains high-dose chemotherapy followed by autologous stem cell transplantations as this procedure has been proven to have a therapeutic benefit. Therefore, the selection of an induction therapy must take into consideration the potential impact on the ability to collect enough stem cells for future transplantation. Recent studies have discussed difficulty in collecting stem cells in patients receiving lenalidomide-based induction therapy using filgastrim (G-CSF) in preparation for autologous stem cell transplantation in MM. It also has been recommended that the duration of lenalidomide induction therapy be limited to 4–6 cycles, since longer treatment time can hinder collection yields. We sought to determine if the addition of cyclophosphamide (CTX) to G-CSF as a mobilization regimen could rescue the ability to collect adequate stem cells for at least two autologous stem cell transplants for patients who had induction therapy with the BiRD (Biaxin® [clarithromycin]/Revlimid® [lenalidomide]/dexamethasone) regimen. BiRD therapy is as follows for each 28-day cycle: Clarithromycin 500mg po BID for days 1–28, Lenalidomide 25mg po daily for days 1–21, and Dexamethasone 40mg po weekly on days 1, 8, 15, and 21. All patients had either Stage II or III MM by Salmon-Durie criteria and were treatment naïve. Patients were advised to undergo stem cell collection after either maximum disease response or disease plateau had been achieved. Prior to stem cell mobilization, BiRD therapy was held for a minimum of 14 days. Stem cell collection was performed after either G-CSF alone at a dose 10 mcg/kg/day for 5–10 consecutive days until a total of 10 × 106/kg CD34+ stem cells had been collected or with the addition of cyclophosphamide (CTX) at a dose of 3g/m2 once prior to the initiation of G-CSF therapy. A total of 28 patients underwent stem cell collection. Stem cell mobilization was attempted with G-CSF alone in 9 instances and with CTX+G-CSF in 20 instances (1 patient underwent mobilization with both G-CSF alone and CTX+G-CSF). In comparison to the G-CSF monotherapy, CTX+G-CSF yielded a significantly greater stem cell collection (mean CD34+ cells collected: 3.78 × 106/kg vs. 32.33 × 106/kg, P < 0.0001). Only 33% of patients who attempted stem cell mobilization with G-CSF alone obtained sufficient CD34+ cell yield vs. 100% of the patients mobilized with CTX+G-CSF (P < 0.0001). The extent of BiRD therapy prior to stem cell mobilization ranged from 2–27 cycles. The number of cycles of BiRD did not significantly impact the success rate of stem cell collection (P = 0.14). In conclusion, the patients mobilized with CTX+G-CSF had a higher number of CD34+ cells collected and were all able collect enough stem cells for two autologous transplants. There was no association with the duration of BiRD therapy and successful CD34+ cell collection. We therefore recommend continuing lenalidomide-based induction therapy until desired tumor reduction goal is achieved and using the CTX in addition to G-CSF to ensure successful stem cell harvest prior to autologous transplantation.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5831-5831
Author(s):  
Jun Ishiko ◽  
Kazuaki Sato ◽  
Ruri Kato ◽  
Manabu Kawakami ◽  
Masashi Nakagawa ◽  
...  

Abstract Of late years, newly developed agents, such as bortezomib, lenalidomide, thalidomide, are widely used for treatment against multiple myeloma. After induction therapy, candidates for autologous stem cell transplantation are supposed to be followed by stem cell harvesting. There are several reports showing lenalidomide has a negative impact on stem cell mobilization. This opinion tends to let us refrain from using lenalidomide on the myeloma patients who are eligible for transplantation, even lenalidomide is expected promising. We experienced a series of three clinical cases presenting that stem cells were poorly mobilized with cyclophosphamide (CY) plus G-CSF after lenalidomide treatment, but sequential stem cell mobilization was incredibly improved with high-dose cytarabine plus G-CSF. One additional case who was treated with lenalidomide also presented successful stem cell mobilization with high-dose cytarabine plus G-CSF. Here we show all four cases in detail. Case 1: 66 years old male, symptomatic myeloma after smoldering period. After three course of bortezomib induction, the response was insufficient. Sequentially he was treated with lenalidomide (25mg/day, every day for three weeks with one week rest period) and dexamethasone (Dex) (40mg/day, weekly) for two courses, and finally achieved Partial response (PR). First peripheral blood stem cell harvesting was attempted with high-dose CY (2.0 g/m2, day1-2) + lenograstim (5mg/kg daily, on days 7 until leukapheresis), but mobilization was unsuccessful so harvesting was not performed. For subsequent mobilization, high-dose cytarabine was administered at a dose of 2.0 g/m2 twice daily (day1-2) + lenograstim. Second mobilization was markedly improved, and finally 33.0 x 106/kg CD34+ cells were obtained. Case 2: 63 years old male, symptomatic myeloma, IgG type. This patient was treated with bortezomib, CY and Dex but resulted in disease progression. As an alternative therapy, lenalidomide (10mg/day, daily for three weeks with one week rest) and Dex (40mg, weekly) were used for three cycles. The dose of lenalidomide was reduced due to renal dysfunction. PR was obtained, then first harvesting was attempted with high-dose CY + lenograstim, as case 1, and 0.088 x 106/kg of CD34+ cells were collected, which was not sufficient for transplantation. Second mobilization was performed with high-dose cytarabine as case 1, and consequently we could obtain 60.1 x 106/kg of CD34+ cells; the yield was dramatically improved. Case 3: 41 years old female, symptomatic myeloma after one year course of smoldering myeloma. As an induction therapy, bortezomib, CY and Dex were selected, but finally she could not achieved PR after three cycles. We gave up bortezomib-based induction, and then lenalidomide (15-25 mg on day1-21 with 1 week rest) and Dex (40 mg, weekly) were administrated for five courses, followed by PR. As previous two cases, the first peripheral stem cell collection was initiated with high-dose CY + lenograstim, and it was not sufficient (0.059 x 106/kg of CD34+ cells). And the second mobilization with high-dose cytarabine with lenograstim recovered the yield of stem cell up to 6.90 x 106/kg. Case 4: 63 years old male, symptomatic myeloma. He was treated with bortezomib, Dex with/without CY, but this regimen was not very effectual, and CY caused elevation of aminotransferase (CTCAE grade 3). Then lenalidomide (10-15 mg on day 1-21) and Dex (40 mg, weekly) were administrated for four courses, and the patient achieved PR. Due to the adverse effect of liver dysfunction, we could not use high-dose CY for mobilization. For this case, high-dose cytarabine was selected for first mobilization, and it was very successful, 50.2 x 106/kg of CD34+ cells were harvested. The yields of PBSC from all four cases are summarized on Table 1. These four cases suggest mobilization with high-dose cytarabine could be an alternative option for poor mobilizer of myeloma patient treated with lenalidomide-based induction. This fact may enable us to choose lenalidomide, not only bortezomib, for induction even for transplant-eligible cases. Figure 1 Figure 1. Disclosures Ishiko: Celgene: Honoraria.


Sign in / Sign up

Export Citation Format

Share Document