Hematopoietic Stem Cells Survive Warm Ischemia and the Bone Marrow Upregulates a Significant Number of Genes

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4694-4694
Author(s):  
Jana Michalova ◽  
Ludek Sefc ◽  
Filipp Savvulidi ◽  
Katarina Forgacova ◽  
Katerina Faltusova ◽  
...  

Abstract Abstract 4694 Background: Quiescent hematopoietic stem cells (HSCs) located in stem cell niches are characterized by a relative resistance to hypoxia. This study is focused primarily on maintainance of the repopulating ability of HSCs in structurally intact BM exposed to anoxia, lack of metabolic substrates and accumulation of metabolic waste products during a period of ischemia at three different temperatures. In the case of a warm ischemia at 37°C, changes in gene expression profile in the whole bone marrow has been also examined. Methods: Murine congenic model C57Bl/6 Ly5.1/Ly5.2 was used in the experiments. Normal mice or mice recovering from a bone marrow damage induced either by cyclophosphamide or a sublethal irradiation were sacrified. Their BM was maintained in intact femurs at 37°C for different time periods up to 6 hours. For normal bone marrow, exposure to ischemia at 20°C and 4°C was also used for up to 20 and 48 hours, respectively. Afterwards, bone marrow cells were harvested and cells corresponding to a half of the femur were transplanted to sublethally (6 Gy) irradiated recipients in a competitive repopulation assay. Resulting chimerism was examined up to 6 months after transplantation to test for STRCs and LTRCs (Short and Long Term Repopulating Cells). Subpopulations of erythropoietic (Ter119+), B-lymphopoietic (B220+), granulo- and monocytopoietic (Gr-1/Mac+), and LSK (Lin-Sca-1+c-Kit+) bone marrow cells were analyzed for dead cells and apoptosis. Total RNA was isolated from bone marrow exposed to warm ischemia ranging 0 to 4 hours and dynamics of changes in its gene expression profile was determined by Illumina MouseRef8 BeadChip. Results: Repopulating ability of ischemic BM was fully preserved for 2 hour of the warm (37°C) ischemia and for 6 hours and 8 hours of 20°C and 4°C ischemia, respectively. There was no difference between STRCs and LTRCs in survival. STRCs and LTRCs from the bone marrow collected 2 days or 5 days after a single dose of cyclophosphamide exposed to warm ischemia showed decreased repopulating ability in comparison with those of normal mice. STRCs significantly prevailed over LTRCs in bone marrow collected 20 days after a sublethal irradiation and showed increased sensitivity to warm ischemia. B220+ cells were the most sensitive cells of the bone marrow to warm ischemia, LSK and Ter119 cells being the most resistant ones. Gene expression profile in bone marrow exposed to warm ischemia changed progressively over time. Despite the highly unfavorable metabolic conditions, hypoxia and lack of energy, a set of overexpressed genes equaled in number the one inhibited. Conclusions: HSCs exposed to warm or cold ischemia maintain their repopulating ability for a considerable time. Bone marrow ischemia activates specific gene expression in paralel with supression of others. Supported by projects LC06044, MSM 0021620806 and the grant SVV-2010-254260507. Disclosures: No relevant conflicts of interest to declare.

2010 ◽  
Vol 10 (1) ◽  
pp. 12 ◽  
Author(s):  
Leilei Tang ◽  
Saskia M Bergevoet ◽  
Christian Gilissen ◽  
Theo de Witte ◽  
Joop H Jansen ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (7) ◽  
pp. 2713-2721 ◽  
Author(s):  
Qizhen Shi ◽  
Scot A. Fahs ◽  
David A. Wilcox ◽  
Erin L. Kuether ◽  
Patricia A. Morateck ◽  
...  

Abstract Although genetic induction of factor VIII (FVIII) expression in platelets can restore hemostasis in hemophilia A mice, this approach has not been studied in the clinical setting of preexisting FVIII inhibitory antibodies to determine whether such antibodies would affect therapeutic engraftment. We generated a line of transgenic mice (2bF8) that express FVIII only in platelets using the platelet-specific αIIb promoter and bred this 2bF8 transgene into a FVIIInull background. Bone marrow (BM) from heterozygous 2bF8 transgenic (2bF8tg+/−) mice was transplanted into immunized FVIIInull mice after lethal or sublethal irradiation. After BM reconstitution, 85% of recipients survived tail clipping when the 1100-cGy (myeloablative) regimen was used, 85.7% of recipients survived when 660-cGy (nonmyeloablative) regimens were used, and 60% of recipients survived when the recipients were conditioned with 440 cGy. Our further studies showed that transplantation with 1% to 5% 2bF8tg+/− BM cells still improved hemostasis in hemophilia A mice with inhibitors. These results demonstrate that the presence of FVIII-specific immunity in recipients does not negate engraftment of 2bF8 genetically modified hematopoietic stem cells, and transplantation of these hematopoietic stem cells can efficiently restore hemostasis to hemophilic mice with preexisting inhibitory antibodies under either myeloablative or nonmyeloablative regimens.


Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 74-83 ◽  
Author(s):  
SJ Szilvassy ◽  
S Cory

Abstract Efficient gene delivery to multipotential hematopoietic stem cells would greatly facilitate the development of effective gene therapy for certain hematopoietic disorders. We have recently described a rapid multiparameter sorting procedure for significantly enriching stem cells with competitive long-term lymphomyeloid repopulating ability (CRU) from 5-fluorouracil (5-FU)-treated mouse bone marrow. The sorted cells have now been tested as targets for retrovirus-mediated delivery of a marker gene, NeoR. They were cocultured for 4 days with fibroblasts producing a high titer of retrovirus in medium containing combinations of the hematopoietic growth factors interleukin-3 (IL-3), IL-6, c-kit ligand (KL), and leukemia inhibitory factor (LIF) and then injected into lethally irradiated recipients, together with sufficient “compromised” bone marrow cells to provide short-term support. Over 80% of the transplanted mice displayed high levels (> or = 20%) of donor- derived leukocytes when analyzed 4 to 6 months later. Proviral DNA was detected in 87% of these animals and, in half of them, the majority of the hematopoietic cells were marked. Thus, infection of the stem cells was most effective. The tissue and cellular distribution of greater than 100 unique clones in 55 mice showed that most sorted stem cells had lymphoid as well as myeloid repopulating potential. Secondary transplantation provided strong evidence for infection of very primitive stem cells because, in several instances, different secondary recipients displayed in their marrow, spleen, thymus and day 14 spleen colony-forming cells the same proviral integration pattern as the primary recipient. Neither primary engraftment nor marking efficiency varied for stem cells cultured in IL-3 + IL-6, IL-3 + IL-6 + KL, IL-3 + IL-6 + LIF, or all four factors, but those cultured in IL-3 + IL-6 + LIF appeared to have lower secondary engraftment potential. Provirus expression was detected in 72% of the strongly marked mice, albeit often at low levels. Highly efficient retroviral marking of purified lymphomyeloid repopulating stem cells should enhance studies of stem cell biology and facilitate analysis of genes controlling hematopoietic differentiation and transformation.


Blood ◽  
1990 ◽  
Vol 75 (6) ◽  
pp. 1240-1246 ◽  
Author(s):  
I McAlister ◽  
NS Wolf ◽  
ME Pietrzyk ◽  
PS Rabinovitch ◽  
G Priestley ◽  
...  

Abstract Hematopoietic stem cells were purified from murine bone marrow cells (BMC). Their characteristic density, size, internal complexity, Hoechst 33342 dye uptake, and wheat germ agglutinin (WGA) affinity were used to distinguish them from other cells in the bone marrow. BMC suspensions were centrifuged over Ficoll Lymphocyte Separation Media (Organon Teknika, Durham, NC; density 1.077 to 1.08). The lower-density cells were drawn off, stained with Hoechst and labeled with biotinylated WGA bound to streptavidin conjugated to phycoerythrin (WGA-B*A-PE) or with WGA conjugated to Texas Red. These cells were then analyzed and sorted by an Ortho Cytofluorograph 50-H cell sorter. The cells exhibiting medium to high forward light scatter, low to medium right angle light scatter, low Hoechst intensity, and high WGA affinity were selected. Sorted BMC (SBMC) were stained with Romanowsky-type stains for morphologic assay, and were assayed in lethally irradiated (LI) mice for their ability to produce colony-forming units in the spleen (CFU-S) and for their ability to produce survival. The spleen seeding factor for day 8 CFU-S upon retransplantation of the isolated cells was 0.1. The isolated cells were found to have consistent morphology, were enriched up to 135-fold as indicated by day 8 CFU-S assay, 195-fold as indicated by day 14 CFU-S assay, and 150 sorter-selected BMC were able to produce long-term survival in LI mice with retention of donor karyotype. When recipients of this first transplantation were themselves used as BMC donors, their number of day 8 and day 12 CFU-S were found to be reduced. However, 3 X 10(5) of their BMC provided 100% survival among secondary recipients. When the previously SBMC were competed after one transplantation against fresh nonsorted BMC in a mixed donor transplant, they showed the decline in hematopoietic potency normally seen in previously transplanted BMC. We conclude that the use of combinations of vital dyes for fluorescence-activated cell sorting (FACS) selection of survival-promoting murine hematopoietic stem cells provides results comparable with those produced by antibody- selected FACS and has the advantage of a method directly transferable to human BMC.


Blood ◽  
2011 ◽  
Vol 117 (14) ◽  
pp. 3737-3747 ◽  
Author(s):  
Dirk Heckl ◽  
Daniel C. Wicke ◽  
Martijn H. Brugman ◽  
Johann Meyer ◽  
Axel Schambach ◽  
...  

AbstractThpo/Mpl signaling plays an important role in the maintenance of hematopoietic stem cells (HSCs) in addition to its role in megakaryopoiesis. Patients with inactivating mutations in Mpl develop thrombocytopenia and aplastic anemia because of progressive loss of HSCs. Yet, it is unknown whether this loss of HSCs is an irreversible process. In this study, we used the Mpl knockout (Mpl−/−) mouse model and expressed Mpl from newly developed lentiviral vectors specifically in the physiologic Mpl target populations, namely, HSCs and megakaryocytes. After validating lineage-specific expression in vivo using lentiviral eGFP reporter vectors, we performed bone marrow transplantation of transduced Mpl−/− bone marrow cells into Mpl−/− mice. We show that restoration of Mpl expression from transcriptionally targeted vectors prevents lethal adverse reactions of ectopic Mpl expression, replenishes the HSC pool, restores stem cell properties, and corrects platelet production. In some mice, megakaryocyte counts were atypically high, accompanied by bone neo-formation and marrow fibrosis. Gene-corrected Mpl−/− cells had increased long-term repopulating potential, with a marked increase in lineage−Sca1+cKit+ cells and early progenitor populations in reconstituted mice. Transcriptome analysis of lineage−Sca1+cKit+ cells in Mpl-corrected mice showed functional adjustment of genes involved in HSC self-renewal.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1783-1783
Author(s):  
Mariela Sivina ◽  
Takeshi Yamada ◽  
Natalie Dang ◽  
H. Daniel Lacorazza

Abstract Bone marrow suppression is an important cause of death in patients exposed to radiation or in cancer patients treated with conventional chemotherapeutic agents. Myeloablative treatments (i.e. 5-fluorouracil administration) lead to apoptosis of blood forming cells and to regression of blood vessels in bone marrow. It is well known that hematological recovery post-bone marrow insult depends on the capacity of hematopoietic stem cells to regenerate the entire hematopoietic system, however, the transcriptional machinery involved in the regeneration of sinusoidal blood vessels in bone marrow from endothelial progenitor cells is largely unknown. Endothelial cells express the Tie2 receptor tyrosine kinase (a.k.a. Tek), which is involved in the angiogenic remodeling and vessel stabilization. Gene targeting of Tie2 showed that it is not required for differentiation and proliferation of definitive hematopoietic lineages in the embryo although Tie2 is needed during postnatal bone marrow hematopoiesis. ELF is a subgroup of the ETS family of transcription factors composed by ELF1, ELF2 (a.k.a. NERF), ELF3, ELF4 (a.k.a. MEF) and ELF5. ELF1 and ELF2 have been shown to regulate Tie2 expression in vitro. Recently we showed that ELF4 modulates the exit of hematopoietic stem cells (HSC) from quiescence (Lacorazza et al., Cancer Cell2006, 9:175–187). Given the high homology between ELF1 and ELF4 and the same origin of HSC and endothelial progenitor cells, we hypothesize that ELF4 regulates proliferation and Tie2 expression of endothelial cells. We used a luciferase gene reporter system in COS-7 and HEK cells to examine the capacity of ELF proteins to activate Tie2. ELF4 is the strongest activator of Tie2 expression following the hierarchy ELF4>ELF1>ELF2 variant 1>ELF2 variant 2. Site directed mutagenesis of each of the five ETS-binding sites (EBS) present in the Tie2 promoter shows that ELF4 binds preferentially to EBS 1, 3 and 5. Binding of ELF4 to the Tie2 promoter was confirmed by chromatin immunoprecipitation and EMSA. Although Elf1 gene expression is essentially normal in Elf4−/− bone marrow cells collected after 5-FU treatment, we detected diminished Tie2 expression compared to Elf4+/+ bone marrow cells. The association of this effect to human endothelial cells derived from umbilical cord (HUVEC cells) was investigated. All-trans retinoic acid (ATRA) and vascular-endothelial growth factor (VEGF) induced ELF4 expression in HUVEC cells in a dose and time dependent manner which was followed by increased Tie2 expression, suggesting that expression of ELF4 is modulated by angiogenic signals. Moreover, endothelial cells treated with ATRA showed rapid wound colonization in a wound assay. Expression of the pan-endothelial marker MECA-32 was determined by immunohistochemistry to correlate Tie2 with the regeneration of blood vessels: myeloablated Elf4−/− femurs exhibited a reduction of MECA-32 positive arterioles. Finally, temporal and spatial expression of Tie2 during hematological recovery post ablation was measured in bone marrow using transgenic Tie2-LacZ mice crossed to Elf4−/− mice. Collectively, our data suggests that ELF4 regulates Tie2 expression in endothelial cells but most importantly their proliferative capacity in response to angiogenic signals.


Sign in / Sign up

Export Citation Format

Share Document