Double-Unit Umbilical Cord Blood Transplantation Induces MHC-Matched Single-Unit Dominance with Development of Immunocompetent Lymphocytes in Recipient Mice

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4097-4097
Author(s):  
Koichi Ito ◽  
Akira Nakano ◽  
Kyoko Ito ◽  
Ikuo Kashiwakura ◽  
Hideaki Sato

Abstract Abstract 4097 Background: Double-unit umbilical cord blood cell (dUCBC) transplantation has emerged as an effective strategy for improving the engraftment of umbilical cord blood stem cells in the bone marrow of recipients. Due to a lack convenient animal models, analyses of the differentiation capacity of dUCBC in recipients have been limited to in vivo xenogeneic experiments and clinical observations. In the present study, we evaluated the characteristics of immune reconstitution induced by dUCBC transplantation in mice. Materials and Methods: Natural killer cells were depleted from female C57BL/6 (B6) [H-2b] recipient mice by intraperitoneal administration of rabbit anti-asialo GM1 polyclonal antibody 1 day before transplantation. On the following day, the lethal X-ray-irradiated B6 recipients were given transplants of three different combinations of dUCBC {group (1) GFP-Tg B6 [H-2b] and BALB/c [H-2d]; group (2) GFP-Tg B6 [H-2b] and C3H [H-2k]; group (3) BALB/c [H-2d] and C3H [H-2k]}, each combination containing an equal number of cells. At 16 weeks after transplantation, reconstitution of immune cells was evaluated by flow cytometric analysis utilizing specific antibodies against lineage markers such as CD3 (T cells), CD45R/B220 (B cells), CD11b (macrophages), or Ly-6G (granulocytes). The donor origin of each lineage population was determined by anti-H-2Kk (for C3H) and/or H-2Kd (for BALB/c) antibody staining. GFP+ lineage cells were identified as being of B6 donor origin. Skin grafting was then performed in all recipients to assess the functional maturity of the newly developed T and B cells induced by dUCBC transplantation. Results: The survival rate at 16 weeks after transplantation was 73% (8/11) for case (1), 92% (12/13) for case (2), and 50% (3/6) for case (3). In the great majority of cases (1) and (2), in which dUCBC were administered as a stem cell source, the MHC-matched single unit from GFP-Tg B6 acts as the sole source of long-term hematopoiesis (75% (6/8) for case (1); 100% (12/12) for case (2)). CD3+ T cell peripheral blood chimerism from BALB/c was observed in two of the eight B6 survival recipient mice in case (1) at an early stage of hematopoiesis, predicting the long-term engrafting unit. On the other hand, hematopoiesis in case (3) with fully allogenenic dUCBC transplantation was reconstituted by the B6 recipients' own X-ray-resistant hematopoietic stem cells (HSC). Our results indicate that MHC-matched UCBC-HSC predominantly engraft in the recipient's bone marrow after dUCBC transplantation. However, the nature of this selective mechanism remains largely unknown. In all cases, alloreactive cytotoxic cells in recipient may participate in such selection. In dUCBC transplantation, the included allogeneic cells probably act as stimulators for promoting the differentiation and maturation of MHC-matched HSC through activation of certain types of signal transduction (for example, through cytokine secretion). Currently, we are investigating the possible presence of alloreactive cytotoxic cells in bone marrow. Functionally, these recipients were tolerant of skin grafted from B6, whereas they rejected skin from BALB/c and C3H within 20 days, indicating that both CD4+ helper and CD8+ killer T cells were functionally mature in the recipient mice. Correspondingly, only the alloantibody to BALB/c and C3H was produced in the recipients. One of two chimeric recipient mice in case (1) reacted to only C3H skin with T and B cells. Conclusions: dUCBC transplantation clearly rescued mice that had been subjected to lethal X-ray irradiation. Furthermore, our observations indicate that T and B cells derived from dUCBCs transplants are immunologically fully competent with the ability to distinguish self from non-self MHC antigens. However, a clear understanding of the mechanisms underlying the predominant engraftment of MHC-matched HSCs in the recipient's bone marrow will be necessary. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
1994 ◽  
Vol 84 (11) ◽  
pp. 3653-3659 ◽  
Author(s):  
R Pettengell ◽  
T Luft ◽  
R Henschler ◽  
JM Hows ◽  
TM Dexter ◽  
...  

Limiting-dilution analysis of long-term culture-initiating cells (LTCIC) is a quantitative method of estimating hematopoietic stem cell activity in clinical samples. We compared the numbers of LTCIC in bone marrow (BM), umbilical cord blood, and blood progenitor cells (obtained from patients with solid tumors at leukapheresis after mobilization with induction chemotherapy and filgrastim administration), using a two- stage long-term culture system and a limiting-dilution technique, scoring cobblestone areas of greater than 15 hematopoietic cells weekly for up to 8 weeks. Samples were obtained from 30 normal BMs, 20 human umbilical cords, and 32 leukapheresis products. Direct comparison of LTCIC in the three sources showed that the median proportions of cells generating hematopoietic foci from unfractionated mononuclear cells at 5 and 8 weeks, respectively, were 1:13,314 and 1:33,949 for BM, 1:12,506 and 1:34,546 for umbilical cord blood, and 1:10,302 and 1:12,891 for leukapheresis product. The estimated proportions of LTCIC from unfractionated mononuclear cells and CD34+ cells were similar in experiments with leukapheresis product. Leukapheresis product was superior to umbilical cord blood and cord blood to BM at 5 and 8 weeks of culture (P = .01). In two-stage long-term cultures, more colonies per flask and CD34+ cells were found in assays of leukapheresis product than in BM or umbilical cord blood cultures (P = .0005). Results obtained by this simplified limiting-dilution analysis correlated well with standard long-term cultures and can be used as a measure of the stem cell population. These data suggest that the incidence of putative stem cells in leukapheresis product and umbilical cord blood are at least comparable with that of BM.


1994 ◽  
Vol 4 (1) ◽  
pp. 1-11 ◽  
Author(s):  
F. M. Cicuttini ◽  
A. W. Boyd

Human umbilical cord blood, which in the past was discarded with the placental tissue, provides a convenient source of fetal hemopoietic cells for scientific analysis and clinical use. Cord blood cells are immature compared to analogous populations in adult peripheral blood. Cord blood B lymphocytes display unique phenotypic and functional characteristics. The antigens CD1C, CD38, CD5, and CD23, although normally expressed on only a small percentage of circulating B cells in adults, are highly expressed on cord blood B cells. Recent studies have demonstrated that whereas cord blood B cells are functionally naive, their potential is similar to that of adult B cells if optimal T-cell help is available. Thus, the failure of B-cell responses in cord blood is due to the T cells. The functional abnormalities of T cells from newborns can be summarized as a dominance of the effects of TH0 cells. Thus, the cytokines produced are immunosuppressive rather than mediating helper activity for B cells. NK activity in cord blood is also depressed compared to that in adults. Cord blood is a very rich source of hemopoietic progenitor cells. The spectrum of progenitors shows a predominance of early progenitor cells when compared with bone marrow. These cells provide an alternative source to adult bone marrow for stem cells to use for hemopoietic reconstitution and as targets in the treatment of hereditary deficiencies by gene therapy. These features make cord blood a unique research tool to investigate hemopoietic ontogeny and a unique clinical tool for transplantation.


2021 ◽  
pp. 106590
Author(s):  
Harumi Kato ◽  
Hirofumi Taji ◽  
Takeshi Kodaira ◽  
Tomohiro Kinoshita ◽  
Kazuhito Yamamoto

2021 ◽  
Vol 10 (2) ◽  
pp. 293
Author(s):  
Gee-Hye Kim ◽  
Jihye Kwak ◽  
Sung Hee Kim ◽  
Hee Jung Kim ◽  
Hye Kyung Hong ◽  
...  

Umbilical cord blood (UCB) is used as a source of donor cells for hematopoietic stem cell (HSC) transplantation. The success of transplantation is dependent on the quality of cord blood (CB) units for maximizing the chance of engraftment. Improved outcomes following transplantation are associated with certain factors of cryopreserved CB units: total volume and total nucleated cell (TNC) count, mononuclear cell (MNC) count, and CD34+ cell count. The role of the storage period of CB units in determining the viability and counts of cells is less clear and is related to the quality of cryopreserved CB units. Herein, we demonstrate the recovery of viable TNCs and CD34+ cells, as well as the MNC viability in 20-year-old cryopreserved CB units in a CB bank (MEDIPOST Co., Ltd., Seongnam-si, Gyeonggi-do, Korea). In addition, cell populations in CB units were evaluated for future clinical applications. The stable recovery rate of the viability of cryopreserved CB that had been stored for up to 20 years suggested the possibility of uses of the long-term cryopreservation of CB units. Similar relationships were observed in the recovery of TNCs and CD34+ cells in units of cryopreserved and fresh CB. The high-viability recovery of long-term cryopreserved CB suggests that successful hematopoietic stem cell (HSC) transplantation and other clinical applications, which are suitable for treating incurable diseases, may be performed regardless of long-term storage.


Hematology ◽  
2010 ◽  
Vol 2010 (1) ◽  
pp. 43-46 ◽  
Author(s):  
Mary Eapen ◽  
Mary M. Horowitz

AbstractPatients with severe aplastic anemia who do not have a human leukocyte antigen (HLA)-identical sibling generally receive immunosuppressive therapy as a first-line therapy, with allogeneic transplantation being reserved for those who do not have an adequate sustained response. Barriers to the use of unrelated-donor transplantation for aplastic anemia include identifying a suitable alternative donor, and risks of graft failure, regimen-related toxicity, and graft-versus-host disease (GVHD). Despite the more than 14 million adults registered with donor registries worldwide, only approximately 50% of patients of Caucasian descent will have an available and fully HLA-matched unrelated adult donor; the rate is substantially lower for non-Caucasians. While umbilical cord blood allows transplantation with greater donor-recipient HLA disparity (without excessive risk of GVHD), risks of graft failure and transplant-related mortality are higher than after transplantation of adult donor grafts. Among patients with a suitable donor, recent changes in pre-transplant conditioning regimens have lowered the risks of organ toxicity and graft failure. Although advances in donor HLA typing and selection practices and improved GVHD prophylaxis have lowered the risk, GVHD remains an important obstacle to long-term symptom-free survival. Despite these limitations, unrelated-donor transplantation offers the best chance of long-term survival for many patients in whom current immunosuppression strategies are not effective. Wider applicability of alternative-donor transplantation for aplastic anemia will require better approaches to prevent graft failure and GVHD and to expand the pool of unrelated-donor grafts. This includes exploring strategies to effectively use alternative grafts such as umbilical cord blood.


Stem Cells ◽  
2009 ◽  
Vol 27 (8) ◽  
pp. 1932-1940 ◽  
Author(s):  
David Steiner ◽  
Juri Gelovani ◽  
Barbara Savoldo ◽  
Simon N. Robinson ◽  
William K. Decker ◽  
...  

2013 ◽  
Vol 3 ◽  
pp. 399-402
Author(s):  
Katarzyna Pawelec ◽  
Dariusz Boruczkowski ◽  
Tomasz Oldak ◽  
Marek Ussowicz ◽  
Urszula Demkow ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document