Procoagulant Activity In Stored Units Of Red Blood Cells

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1157-1157
Author(s):  
Saulius Butenas ◽  
Maya Aleshnick ◽  
Jonathan H Foley ◽  
Friederike K. Keating

Abstract It has been observed that the procoagulant activity of stored units of red blood cells (RBC) increases over time, which is, in part, related to the expression/exposure of tissue factor (TF) on blood cells and microparticles (Keating et al, Transfusion 2011;51:1086). However, in many instances there is a discrepancy between the levels of TF measured in stored units of RBC and changes in procoagulant activity observed over the storage time. We hypothesized that, in addition to TF, an exposure of an acidic phospholipid, phosphatidylserine (PS), on blood cells (Whelihan et al, Blood 2012;120:3837), could be the cause of an elevated procoagulant activity. Four healthy donors were recruited. RBC units were prepared and stored at 4°C for 30 days. On selected days, aliquots were removed, reconstituted with autologous plasma and recalcified, and were tested in the presence of corn trypsin inhibitor in the thromboelastography assay for procoagulant activity. For all 4 donors, the clotting time decreased from ∼3000-4000 s on day 1 to ∼1000-1600 s on day 30, with the most dramatic changes occurring between days 1 and 10. Addition of an inhibitory anti-TF antibody slightly prolonged clotting times, suggesting the presence of endogenous TF in RBC units. The concentration of TF, quantitated in an activity-based assay, did not change significantly over time for 3 of 4 donors and was within the range of 40-130 fM. For the fourth donor, TF concentration reached a maximum of 310 fM on day 10 and then decreased steadily to 60 fM on day 30. In an attempt to identify other components in RBC units responsible for the procoagulant activity, the effect of lactadherin, which binds to the phosphatidylserine exposed on cell membranes, was investigated. An addition of 100 nM lactadherin substantially prolonged the clotting time of the reconstituted RBC. Thus, in days 3-5 the clotting time in the presence of lactadherin was by 2.4-3.4-fold longer than in the absence of it. With increasing age of the RBC units, the effect of lactadherin diminished and at day 30, a prolongation of the clotting time did not exceed 1.3-1.8-fold. The addition of anti-TF monoclonal antibody in the presence of lactadherin further enhanced the clotting time of the reconstituted RBC. In conclusion, our data indicate that in stored units of RBC, the procoagulant activity is dependent upon the presence of active monocyte TF and phosphatidylserine exposed on blood cells and platelets. However, the failure of lactadherin in combination with the anti-TF antibody to completely inhibit the procoagulant activity in RBC units suggests that other components of blood (most likely platelets) support this activity as well. Disclosures: No relevant conflicts of interest to declare.

2020 ◽  
Author(s):  
Rodney C Daniels ◽  
Hyesun Jun ◽  
Robertson D Davenport ◽  
Maryanne M Collinson ◽  
Kevin R Ward

Abstract Background Stored Red Blood Cells (RBCs) may undergo oxidative stress over time, with functional changes affecting critical tasks such as oxygen delivery. Central to these changes are oxidation-reduction (redox) reactions and the redox potential (RP) that must be maintained for proper cell function. RP imbalance can lead to oxidative stress that may contribute to storage lesions and transfusion-related morbidities. Direct measures of RP may allow for evaluation of erythrocyte quality and enable corrections of RP prior to transfusion. Methods Multiple random RBC segments were tested, ranging in age from 5 to 40 days at 5 day intervals. RP was recorded by measuring open circuit potential of RBCs using novel nanoporous gold electrodes with Ag/AgCl reference. RP measures were also performed on peripheral venous blood samples from 10 healthy volunteers. RP measures were compared between groups of aged RBCs, and with volunteer blood. Results Stored RBCs show time-dependent increases in RP. There were significant differences in Day 5 RP compared to all other groups (p≤0.005), Day 10-15 vs ages ≥ Day 20 (p≤0.025), Day 20-25 vs Day 40 (p=0.039), and all groups compared to healthy volunteers. RP became more positive over time suggesting ongoing oxidation as RBCs age. However, storage time alone does not predict the ultimate RP value measured from a given unit.Conclusions There are significant differences in RP between freshly stored RBCs and all others, with RP becoming more positive over time. However, storage time alone does not predict RP, indicating RP screening may be important independent of storage time and may serve as a marker of RBC quality and state of oxidative stress. RP measurements may also provide a target by which to restore RP balance in aged pRBCs, improving their clinical effectiveness while reducing associated morbidities.


1996 ◽  
Vol 76 (03) ◽  
pp. 322-327 ◽  
Author(s):  
Dominique Helley ◽  
Amiram Eldor ◽  
Robert Girot ◽  
Rolande Ducrocq ◽  
Marie-Claude Guillin ◽  
...  

SummaryIt has recently been proved that, in vitro, red blood cells (RBCs) from patients with homozygous β-thalassemia behave as procoagulant cells. The procoagulant activity of β-thalassemia RBCs might be the result of an increased exposure of procoagulant phospholipids (i. e. phosphatidylserine) in the outer leaflet of the membrane. In order to test this hypothesis, we compared the catalytic properties of RBCs of patients with β-thalassemia and homozygous sickle cell disease (SS-RBCs) with that of controls. The catalytic parameters (Km, kcat) of prothrombin activation by factor Xa were determined both in the absence and in the presence of RBCs. The turn-over number (kcat) of the reaction was not modified by normal, SS- or (3-thalassemia RBCs. The Km was lower in the presence of normal RBCs (mean value: 9.1 µM) than in the absence of cells (26 µM). The Km measured in the presence of either SS-RBCs (mean value: 1.6 µM) or β-thalassemia RBCs (mean value: 1.5 pM) was significantly lower compared to normal RBCs (p <0.001). No significant difference was observed between SS-RBCs and p-thalassemia RBCs. Annexin V, a protein with high affinity and specificity for anionic phospholipids, inhibited the procoagulant activity of both SS-RBCs and (3-thalassemia RBCs, in a dose-dependent manner. More than 95% inhibition was achieved at nanomolar concentrations of annexin V. These results indicate that the procoagulant activity of both β-thalassemia RBCs and SS-RBCs may be fully ascribed to an abnormal exposure of phosphatidylserine at the outer surface of the red cells.


1998 ◽  
Vol 21 (6_suppl) ◽  
pp. 17-19
Author(s):  
G. Menichella ◽  
M. Ciarli ◽  
R. Serafini ◽  
L. Pierelli ◽  
M. Vittori ◽  
...  

Blood donation allowed by cell separators can offer higher performance and higher yield to guarantee better quality and pureness of collected products. New systems for the collection of platelet concentrate (PC) and packed red blood cells (PRBC) are currently available. The aim of our work was to test the possibility of preparing PC routinely from normal apheresis donors in a minimum amount of time while providing a second product. Over a 3-month period we performed 40 procedures using the Hemonetics MCS3P blood cell separator and the Dideco Excel. The mean values of platelet yield were 2.8 x 1011 (range 1.4-4.1) with the MCS3P and 3.49 x 1011 (range 2.9-3.9) with the Excel, in a plasma volume of 240 ml and 215 ml respectively; the PRBC units were added with SAG-Mannitol allowing a storage time of 42 days. Collection times were 71’ and 48’ respectively. Donor tolerance was analogous to phateletapheresis or plasmapheresis.


Transfusion ◽  
2015 ◽  
Vol 55 (6pt2) ◽  
pp. 1472-1477 ◽  
Author(s):  
Esther Hogervorst ◽  
Rutger Middelburg ◽  
Anneke Brand ◽  
Leo van de Watering ◽  
Henk Schonewille

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1988-1988
Author(s):  
Jadwiga Gasiorek ◽  
Gregory Chevillard ◽  
Zaynab Nouhi ◽  
Volker Blank

Abstract Abstract 1988 Poster Board I-1010 The NF-E2 transcription factor is a heterodimer composed of a large hematopoietic-specific subunit called p45 and widely expressed 18 to 20-kDa small Maf subunits. In MEL (mouse erythroleukemia) cells, a model of erythroid differentiatin, the absence of p45 is inhibiting chemically induced differentiation, including induction of globin genes. In vivo, p45 knockout mice were reported to show splenomegaly, severe thrompocytopenia and mild erythroid abnormalities. Most of the mice die shortly after birth due to haemorrhages. The animals that survive display increased bone, especially in bony sites of hematopoiesis. We confirmed that femurs of p45 deficient mice are filled with bone, thus limiting the space for cells. Hence, we observed a decrease in the number of hematopoietic cells in the bone marrow of 3 months old mice. In order to analyze erythroid progenitor populations we performed flow cytometry using the markers Ter119 and CD71. We found that p45 deficient mice have an increased proportion of early erythroid progenitors (proerythroblasts) and a decreased proportion of late stage differentiated red blood cells (orthochromatic erythroblasts and reticulocytes) in the spleen, when compared to wild-type mice. We showed that the liver of p45 knockout adult mice is also becoming a site of red blood cell production. The use of secondary sites, such as the spleen and liver, suggests stress erythropoiesis, likely compensating for the decreased production of red blood cells in bone marrow. In accordance with those observations, we observed about 2 fold increased levels of erythropoietin in the serum of p45 knockout mice.Overall, our data suggest that p45 NF-E2 is required for proper functioning of the erythroid compartment in vivo. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2534-2534
Author(s):  
Akira Niwa ◽  
Tomoki Fukatsu ◽  
Katsutsugu Umeda ◽  
Itaru Kato ◽  
Hiromi Sakai ◽  
...  

Abstract Abstract 2534 Poster Board II-511 Induced pluripotent stem (iPS) cells, reprogrammed somatic cells with embryonic stem (ES) cell–like characteristics, are generated by the introduction of combinations of specific transcription factors. Despite the controversy surrounding the gene manipulation, it is expected that iPS cells should contribute to regenerative medicine, disease investigation, drug screening, toxicology, and drug development in future. In the fields of hematology, iPS cells could become used as a new feasible source for transplantation therapy without immunological barrier and for the investigation of various kinds of hematological defects. Previous studies on ES / iPS cells have already demonstrated that they can develop into various lineages of hematopoietic cells including erythrocytes following the similar processes occurred in embryo and fetus. However, it is important to establish the more effective system for developing functional blood cells. Here we present the methods for selectively inducing mature red blood cells from ES / iPS cells in vitro, and show the functional equality of them to natural blood cells. First, Flk1+ mesodermal progenitors were derived from ES / iPS cells on OP9 stromal cells at an efficacy of more than 50% and collected by fluorescence activated cell sorter. Then, those sorted cells were cultured in the presence of exogenous erythropoietin and stem cell factor. They highly selectively developed into erythroid lineages including enucleated red blood cells. Sequential FACS analysis using the antibodies against transferrin receptor CD71 and erythroid specific antigen Ter119 in combination with DNA staining dye Hoechst 33342 demonstrated that ES / iPS cell-derived erythropoiesis in our system follow the normal erythroid developmental pathway occurred in vivo. RT-PCR and Western blot analyses proved the expression of heme biosynthesis enzymes on the produced erythrocytes. Finally, the oxygen dissociation curve showed that ES / iPS cell-derived erythroid cells are functionally virtually equivalent to natural red blood cells as oxygen carriers. Taken together, our system can present the effective methods of investigating the mechanisms of normal erythropoiesis and the deficits in syndromes with disrupted red blood cell production. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document