In Vivo Selection Of Genetically Manipulated Hematopoietic Stem Cells For Platelet Gene Therapy Of Hemophilia A

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2329-2329
Author(s):  
Qizhen Shi ◽  
Jocelyn A. Schroeder ◽  
David A. Wilcox ◽  
Robert R. Montgomery ◽  
Yingyu Chen

Abstract Our previous studies have demonstrated that targeting FVIII expression to platelets (2bF8) by lentiviral (LV) gene delivery to hematopoietic stem cells (HSCs) corrects bleeding diathesis in hemophilia A mice with or without inhibitors. Although the bleeding diathesis is improved in transduced recipients, the transduction efficiency using our current 2bF8 LV, is only about 10%, resulting a median level of platelet-FVIII (Plt-F8) of 1.5 mU/108 platelets even thought a myeloablative conditioning regimen was employed. It has been shown in clinical trials that efficient stem cell gene transfer and myeloablation is not required when there is a powerful selective advantage to the genetically modified cells. We hypothesize that incorporating a drug-resistance gene into the 2bF8 LV construct will allow for in vivo selection of 2bF8 LV-transduced cells which will result in the increase of therapeutic levels of Plt-F8 for hemophilia A gene therapy and reduce the potential for genotoxicity. To address our hypothesis, we constructed a new lentiviral vector, pWPT-2bF8/MGMT, which harbors dual genes, the 2bF8 gene and a drug-resistance gene, the MGMTP140K cassette. To explore the feasibility of the MGMT-based in vivo selection system, HSCs from FVIIInull mice were transduced with 2bF8/MGMT LV at an MOI (multiplicity of infectious) of 1, which is 1/10 of the MOI used for our regular 2bF8 LV transduction, and transplanted into littermates pre-conditioned with a non-myeloablative regimen, 660 cGy total body irradiation (TBI). We chose a low MOI because one of the goals of using the MGMT selection system is to reduce the potential for genotoxicity. After bone marrow (BM) reconstitution, the recipients were treated with O6-benzylguanine (BG) followed by 1, 3-bis-2 chloroethyl-1-nitrosourea (BCNU) monthly for 3 or 4 times. As determined by a chromogenic assay on platelet lysates, functional Plt-F8 expression in recipients was only 0.22 ± 0.15 mU/108 platelets before the drug treatment, but remarkably increased to 4.33 ± 5.48 mU/108 platelets (n = 16) after BG/BCNU drug-selective treatments. The levels of Plt-F8 in the untreated transduced control group remained low over the study period. FVIII activity was not detected in the plasma in any of the recipients even with Plt-F8 as high as 22 mU/108 platelets. The average copy number of 2bF8/MGMT proviral DNA per cell was determined by quantitative real-time PCR. 2bF8 proviral DNA was barely detectable (0.01 ± 0.02 copies/cell) in recipients before drug-selective treatment, but it increased to 0.42 ± 0.15 copies/cell after BG/BCNU treatments, confirming that 2bF8/MGMT genetically modified cells were effectively enriched in vivo after drug-selective treatment. When the tail clip survival test was used to assess phenotypic correction of the FVIIInull coagulation defect, 15 of 16 treated animals survived the tail clip challenge; in contrast, none of the untransduced FVIIInull control mice survived. When ROTEM analysis was used to determine the whole blood clotting time (CT), the CT was shortened from 3043 ± 728 seconds (n = 7) to 931± 273 seconds (n = 6) (P < 0.0001) in treated transduced recipients when compared to FVIIInull mice. There was no significant difference between wild type (722 ± 270 seconds, n = 7) and treated recipients. To ensure sustained Plt-F8 expression in BG/BCNU treated transduced recipients, some primary recipients were sacrificed 9 months after transplantation and BM mononuclear cells were transplanted into secondary recipients. Platelet lysate FVIII activity assays showed that the levels of Plt-F8 in secondary recipients were similar to those in primary recipients, confirming that long-term repopulating HSCs were successfully genetically modified by 2bF8/MGMT LV. When a low intensity pre-conditioning regimen of 440 cGy TBI was used, the levels of Plt-F8 increased from 0.06 ± 0.12 mU/108 platelets to 1.86 ± 2.06 mU/108 platelets after BG/BCNU drug-selective treatment. It is notable that no anti-FVIII inhibitory antibodies were detected in the treated recipients even after rhFVIII challenge, indicating that immune tolerance was induced in the treated animals. In contrast, all FVIIInull mice under the same challenge developed various levels of inhibitors. Taken together, we have established a powerful in vivo selective system that allows us to enrich 2bF8 LV-transduced cells and to enhance platelet-FVIII expression for hemophilia A gene therapy. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3270-3270
Author(s):  
Brian C. Beard ◽  
Kate Beebe ◽  
Julia Piasecki ◽  
Christina Gooch ◽  
David Dickerson ◽  
...  

Abstract In vivo selection strategies that convey a survival advantage to genetically modified cells carrying mutant forms of methylguanine methyltransferase (MGMT-P140K) have the potential to improve autologous and allogeneic stem cell gene therapy and transplantation. For some applications such as genetic diseases or anti-HIV strategies, in vivo selection may be required to increase initially low levels of gene-modified cells while for malignant diseases hematopoietic stem cell (HSC) chemo-protection may be necessary during chemotherapy dose escalation. Thus we have explored the use of gammaretrovirally expressed MGMT(P140K) mutant in three baboons. Animals received CD34−enriched cells transduced with a GALV-pseudotyped retroviral vector expressing a bicistronic message containing P140K and GFP. Two of the animals were part of a competitive repopulation assay in which one half of the cells were gene-modified with a GALV-pseudotyped vector expressing only YFP. After stable engraftment all three baboons were treated with various regimens of O6-benzylguanine (O6BG) and temozolomide (TMZ) or BCNU. Following treatment with O6BG/TMZ the selection was transient for ‘protected’ cells gene-modified with MGMT(P140K)-GFP, and the expected negative selection of ‘unprotected’ gene-modified cells (YFP transgene alone) was subtle. Conversely, positive selection of MGMT(P140K)-GFP gene-modified cells and negative selection of YFP gene-modified cells was dramatic and sustained following treatment with only a single dose of O6BG/BCNU. The increase in gene-marking (up to ~85%) is stable following selection out to 22 months. Importantly, selection of hematopoietic cells was polyclonal and no evidence of insertional mutagenesis has been detected. Aside from transient elevated liver enzymes following O6BG/BCNU treatment no additional extra-hematopoietic toxicity has been observed. We suspect that the delivery/absorption of TMZ in non-human primates is a contributing factor to transient selection because in animals with low levels (<1%) of MGMT(P140K) gene-modified cells no pronounced or sustained drop in white blood cell or platelet counts was observed following O6BG/TMZ. This is the case even up to TMZ dose levels of 700 mg/m2 that is above dose limiting toxicity in humans. In summary, MGMT selection is efficient and well tolerated in monkeys and we believe that these large animal studies closely reflect a clinical setting and will help to further improve clinical HSC gene therapy. Figure 1. Efficient in vivo selection and chemo-protection in non-human primates. (A) Representative gene-marking data in a baboon following chemotherapy treatment with either O6BG (120 mg/m2) and TMZ (600–1400 mg/m2) (solid arrows) or O6BG (120 mg/m2) and BCNU (40 mg/m2) (dashed arrows). The data is plotted as FACS+ MGMT-GFP granulocytes (closed circles) and FACS+ YFP granulocytes (open circles). (B) Absolute neutrophil counts following initial conditioning and subsequent chemotherapy treatment with O6BG/TMZ (solid arrows) or O6BG/BCNU (dashed arrow). Figure 1. Efficient in vivo selection and chemo-protection in non-human primates. (A) Representative gene-marking data in a baboon following chemotherapy treatment with either O6BG (120 mg/m2) and TMZ (600–1400 mg/m2) (solid arrows) or O6BG (120 mg/m2) and BCNU (40 mg/m2) (dashed arrows). The data is plotted as FACS+ MGMT-GFP granulocytes (closed circles) and FACS+ YFP granulocytes (open circles). (B) Absolute neutrophil counts following initial conditioning and subsequent chemotherapy treatment with O6BG/TMZ (solid arrows) or O6BG/BCNU (dashed arrow).


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2590-2590
Author(s):  
Christopher C. Porter ◽  
James DeGregori

Abstract Inefficient transduction, poor long term expression, and engraftment failure of ex vivo manipulated cells have slowed the practical advancement of gene therapy trials. Thus, the ability to select for or amplify a population of cells that has been modified to express a gene of interest might enhance the effectiveness of gene therapy. Strategies for in vivo expansion of genetically modified cells that have been studied to date have relatively high toxicity or low efficacy in selection of hematopoietic stem cells. We hypothesized that resistance to the purine analog 6-thioguanine (6TG) could be programmed via lentiviruses, and that treatment with 6TG would allow for selection of genetically modified cells in vitro and in vivo. Using short hairpin RNAs, we achieved efficient knockdown of hypoxanthine phosphoribosyl transferase (HPRTkd), the enzyme required for 6TG cytotoxicity, in the murine hematopoietic progenitor cell line FL5.12. In so doing we were able to provide Fl5.12 cells with resistance to 6TG. In the presence of 6TG, HPRTkd cells continued to proliferate for at least 30 days, whereas control transduced cells ceased proliferating after 7-10 days. 6TG treatment of mixed cultures of GFP+-HPRTkd cells and untransduced cells resulted in selective outgrowth of HPRTkd cells. Knockdown of HPRT in FL5.12 cells was found to attenuate the checkpoint activation, cell cycle arrest and apoptosis seen in control transduced cells when treated with 6TG. Knockdown of HPRT in murine primary hematopoietic cells also allowed for selection of transduced cells with 6TG ex vivo. Furthermore, and most importantly, after transduction of whole bone marrow and transplantation into sub-lethally irradiated recipient mice, a single, short course of treatment with 6TG resulted in up to 12 fold greater percentages of circulating transduced granulocytes as compared to untreated controls. These results suggest that genetically modified hematopoietic stem cells can be selected in vivo using 6TG. This strategy may be useful for therapy of a variety of hematopoietic diseases, particularly those that affect hematopoietic progenitors. The benefits of this strategy include the following: 1) the use of a lentivirus with a self inactivating long terminal repeat, 2) a very short cassette encoding drug resistance, making the vector easier to manipulate, and 3) a very well tolerated and relatively non-toxic medication for selection.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 173-173
Author(s):  
François Moreau-Gaudry ◽  
Bing Han ◽  
Emmanuel Richard ◽  
Ike E. Pantazopoulos ◽  
Hubert de Verneuil ◽  
...  

Abstract PNH is an acquired disorder of the hematopoietic stem cell (HSC) caused by a somatic mutation in the PIGA gene. Blood cells carrying the mutation are deficient in all glycosyl phosphatidylinositol-anchored proteins (GPI-APs). Long-term restoration of GPI-AP has been obtained in vitro using lentiviral vectors stably expressing PIGA in human HSCs. However, gene therapy for PNH might be problematic because of the lack of a growth advantage of phenotypically corrected cells. We hypothesized that providing corrected cells with a selective growth advantage might overcome this possible limitation. We chose to test this in a murine model of PNH that has GPI-AP deficient blood cells because of a somatic Piga gene mutation targeted to the HSCs (LF mice). We designed a novel bicistronic lentiviral vector (MMIP) expressing the human PIGA cDNA and the human alkylating drug resistance mutant O6-methylguanine DNA methyltransferase (MGMT G156A) under the control of the MND promoter. MGMT G156A confers protection against alkylating agents. Eight LF donor mice were injected with 5-FU. Bone marrow (BM) was harvested 5 days later for MMIP transduction performed twice at MOI 100. Transduced and mock transduced BM cells were injected into 15 lethally irradiated C57Bl/6 recipient mice. One month after BM transplantation (BMT) 8 MMIP-transduced mice were treated with the alkylating agents BCNU and O6-benzylguanine (BG) (5mg/kg and 30mg/kg). BCNU /BC treatment was repeated twice, each one month apart. Six months after BMT the percentage of donor engraftment was 75.1 ± 25% for granulocytes (G) and 88.4 ± 26% for lymphocytes (L) in the control group (n=3). Donor chimerism in the MMIP-transduced group not treated with BCNU/BG was 84.6 ± 25 and 87.8 ± 5 % (n=4). The highest donor chimerism was obtained in mice treated with BCNU/BG, 98.9 ± 0.4 and 98.6 ± 0.5 % (n=8). Next we determined the proportion of donor blood cells with a restored expression of GPI-linked proteins. Only a small proportion of GPI-AP expressing cells was found in mice receiving the mock transduced BM six months after BMT, 22±37% GPI-AP expressing RBCs; 3.1± 2% GPI-AP expressing G, and 0.5 ± 0.2% GPI-AP expressing L. In contrast, mice receiving the MMIP-transduced BM cells but not treated with BCNU/BG showed a higher level of GPI-AP+ cells: 87.8±16% for RBCs, 70.2 ±23% for G and 56.3 ± 13% for L (n=4). However, mice receiving the MMIP-transduced BM and BG/BCNU treatment, achieved an almost complete restoration of GPI-AP on peripheral blood cells: 98±3% of RBCs, 96.4 ±4.7% of G and 89.6 ± 13% of L (n=8). Findings in BM, in methylcellulose progenitor assays, and in secondary spleen colony assays confirmed that restoration of GPI-AP and BCNU/BG selection had occurred at the HSC level. This is the first report of long-term restoration of GPI-APs expression in vivo using a murine model for PNH. Our results demonstrate that BCNU/BG treatment is well tolerated (100% survival) leading to a strong in vivo selection of HSCs with restored expression GPI-AP. The selective growth advantage of converted HSCs after dual gene therapy followed by BCNU/BG treatment allows us to achieve and possibly maintain a high level of hematopoiesis with restored GPI-AP expression. The selection for the corrected HSCs might allow them to overcome a possible growth disadvantage in the competition between PNH and normal HSCs.


Blood ◽  
2011 ◽  
Vol 117 (3) ◽  
pp. 798-807 ◽  
Author(s):  
Natalie J. Ward ◽  
Suzanne M. K. Buckley ◽  
Simon N. Waddington ◽  
Thierry VandenDriessche ◽  
Marinee K. L. Chuah ◽  
...  

Abstract Gene therapy for hemophilia A would be facilitated by development of smaller expression cassettes encoding factor VIII (FVIII), which demonstrate improved biosynthesis and/or enhanced biologic properties. B domain deleted (BDD) FVIII retains full procoagulant function and is expressed at higher levels than wild-type FVIII. However, a partial BDD FVIII, leaving an N-terminal 226 amino acid stretch (N6), increases in vitro secretion of FVIII tenfold compared with BDD-FVIII. In this study, we tested various BDD constructs in the context of either wild-type or codon-optimized cDNA sequences expressed under control of the strong, ubiquitous Spleen Focus Forming Virus promoter within a self-inactivating HIV-based lentiviral vector. Transduced 293T cells in vitro demonstrated detectable FVIII activity. Hemophilic mice treated with lentiviral vectors showed expression of FVIII activity and phenotypic correction sustained over 250 days. Importantly, codon-optimized constructs achieved an unprecedented 29- to 44-fold increase in expression, yielding more than 200% normal human FVIII levels. Addition of B domain sequences to BDD-FVIII did not significantly increase in vivo expression. These significant findings demonstrate that shorter FVIII constructs that can be more easily accommodated in viral vectors can result in increased therapeutic efficacy and may deliver effective gene therapy for hemophilia A.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3572-3572
Author(s):  
Brian C Beard ◽  
Grant D Trobridge ◽  
Jeannine S McCune ◽  
Hans-Peter Kiem

Abstract Abstract 3572 Poster Board III-509 Strategies using gene-modified hematopoietic stem cells to treat various severe hematopoietic diseases, including but not limited to hemoglobinopathies, will likely require high levels of gene marking. Here we have established efficient and stable in vivo selection in nonhuman primates using methylguanine methyltransferase (MGMTP140K). In the macaque (Macaca nemestrina) we were able to increase pre-chemotherapy lentiviral gene marking levels of 11.3% in granulocytes and 15.3% in lymphocytes to a post-chemotherapy gene marking level of 76.9% in granulocytes and 49.0% in lymphocytes. Furthermore, stable increases in gene marking were also observed in red blood cells (RBCs) and platelets (PLTs) with a pre-chemotherapy gene marking level of 5.6% and 6.7%, respectively, and a post-chemotherapy gene marking level of 15.2% and 64.0%, respectively. Importantly, the chemotherapy regimen was well tolerated, and engraftment was polyclonal as determined by analyzing long-term repopulating clones by LAM-PCR. In order to minimize extra-hematopoietic toxicity we have began to test a more clinically applicable conditioning regimen in the macaque model. This reduced intensity conditioning regimen should allow treatment of patients with severe hematopoietic or infectious diseases, who may not tolerate a high dose conditioning regimen. We tested targeted busulfan for conditioning to provide sufficient myelosuppression and to facilitate engraftment of chemoprotected hematopoietic stem cells while minimizing extra-hematopoietic toxicity. Following conditioning with busulfan (4 mg/kg/day for 2 days) and infusion of gene modified cells (∼1.7 × 107 CD34-selected cells/kg), there was moderate cytopenia with ANC <500/mL for 7 days and thrombocytopenia with a nadir of 18,000/mL. Following stable hematopoietic recovery, we observed gene marking, determined by RT-PCR, in total white blood cells as a provirus copy number of 0.04 (∼4% gene marking) that, following a single cycle of O6BG (x2) and BCNU, rose to 0.16 (∼16% gene marking). Currently, gene marking has been stable for more than 9 months following chemotherapy. The treatment was well tolerated with only transient elevated liver enzymes following O6BG/BCNU treatment and no additional extra-hematopoietic toxicity has been observed. Clonality studies before and after in vivo selection is underway using a combination of LAM-PCR and a modified whole genome pyrosequencing approach. In summary, we have attained efficient and stable in vivo selection of long-term repopulating cells in nonhuman primates, and have extended this approach to use a reduced intensity conditioning regimen that should be well tolerated in patients with many hematopoietic diseases. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document