Philadelphia Chromosome (Ph)-Positive Leukemia Patients Who Fail ABL1 Tyrosine Kinase Inhibitors Without BCR-ABL1 Kinase Domain Point Mutations Demonstrate Sensitivity To PI3-K/AKT Inhibitors

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3994-3994
Author(s):  
Christopher A. Eide ◽  
Samantha L. Savage ◽  
Jade Bryant ◽  
Anupriya Agarwal ◽  
Daniel Bottomly ◽  
...  

Abstract Despite the impressive success of imatinib in chronic myeloid leukemia (CML), resistance to therapy remains an issue for approximately 15-20% of newly diagnosed chronic phase patients by 5 years and transient responses are the rule for patients with blast crisis CML or Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL). The most frequent and well-characterized mechanism of resistance to imatinib is acquisition of point mutations in the BCR-ABL1 kinase domain which compromise drug binding. This form of resistance is largely well-handled by the newer, more potent ABL1 inhibitors nilotinib, dasatinib, and ponatinib. However, in the remainder of patients with resistance sustained inhibition of BCR-ABL1 kinase activity is necessary but no longer sufficient to inhibit cell growth, implicating activation of additional, thus far, poorly understood BCR-ABL1-independent mechanisms of growth and survival. In an effort to identify and validate novel pathways important in BCR-ABL-independent resistance to ABL1 kinase inhibitors, we screened a cohort of 30 patients with CML or Ph+ ALL exhibiting clinical resistance to at least one ABL1 kinase inhibitor without evidence of a drug-resistant BCR-ABL1 kinase domain mutation. Following informed consent, fresh primary mononuclear cells were isolated from each sample by Ficoll gradient centrifugation, plated ex vivo in the presence of a panel of clinical and pre-clinical small-molecule kinase inhibitors, and assessed for effects on viability after 3 days. Ex vivo resistance to ABL1 kinase inhibitors largely tracked with clinical resistance profiles, and considerable variation in sensitivity profiles for other inhibitors was observed. Among these data, we found a particularly interesting subset of patients whose cells demonstrated ex vivo sensitivity to one or more PI3-K/AKT inhibitors (n=6/30; 20%) including PI-103, BEZ235, CAL-101, and MK-2206. These findings are consistent with previous studies demonstrating PI3-K activation in select ABL1 kinase inhibitor-resistant CML cell lines (Quentmeier et al., J Hem Onc 2011) and in response to imatinib in pre-overt resistance (Burchert et al., Leukemia 2005). Among the effective PI3-K/AKT inhibitors, the most prominent were the dual class IA PI3-K/mTOR inhibitor PI-103 (IC50 range:38-110 nM) and BEZ235 (IC50 range: 20-210 nM). To further interrogate the mechanism(s) behind dependence on this pathway, samples of interest were analyzed by deep sequencing using a custom capture library encompassing ∼2000 kinases, phosphatases, and adaptor proteins. However, in contrast to previous reports of activating PIK3CA mutations in imatinib-resistant KCL-22 cells, we found PIK3CA to be wild-type in all samples. Despite a common sensitivity to PI3-K/AKT pathway inhibition, we found sequence variants were somewhat heterogeneous and direct kinase targets in this pathway were wild-type, suggesting other causative lesions which activate this pathway. Variants were prioritized based on known associations to this pathway, generated and evaluated in vitro for Ba/F3 cell transformation capacity, and validated for pathway activation and kinase inhibitor sensitivity. These results will be presented. Taken together, our findings suggest that a subset of patients with Ph+ leukemia who become refractory to ABL1 kinase inhibitors without a BCR-ABL1 kinase domain mutation demonstrate acquired dependence on the PI3-K/AKT axis, warranting further investigation of inhibitors of this pathway alone and in combination with ABL1 inhibitors as a molecularly targeted therapeutic strategy in patients. Disclosures: Off Label Use: Ruxolitinib - a JAK1/2 inhibitor that we propose can be used off-label for disease management of CSF3R-mutant neutrophilic leukemia. Deininger:BMS: Consultancy, Research Funding; ARIAD: advisory board, advisory board Other, Consultancy; Novartis: advisory board, advisory board Other, Consultancy, Research Funding; Celgene: Research Funding; Gilead: Research Funding. Tyner:Incyte Corporation: Research Funding. Druker:Novartis, Bristol-Myers Squibb, ARIAD & Incyte: Clin trial funding. OHSU holds contracts; Druker receives no salary/lab research funds. OHSU & Druker have financial interest in MolecularMD; technology used in some studies licensed to MolecularMD. This conflict has been reviewed and managed by OHSU. Other.

Author(s):  
Michael J. Mauro

Resistance in chronic myelogenous leukemia is an issue that has developed in parallel to the availability of rationally designed small molecule tyrosine kinase inhibitors to treat the disease. A significant fraction of patients with clinical resistance are recognized to harbor point mutations/substitutions in the Abl kinase domain, which limit or preclude drug binding and activity. Recent data suggest that compound mutations may develop as well. Proper identification of clinical resistance and prudent screening for all causes of resistance, ranging from adherence to therapy to Abl kinase mutations, is crucial to success with kinase inhibitor therapy. There is currently an array of Abl kinase inhibitors with unique toxicity and activity profiles available, allowing for individualizing therapy beginning with initial choice at diagnosis and as well informed choice of subsequent therapy in the face of toxicity or resistance, with or without Abl kinase domain mutations. Recent studies continue to highlight the merits of increasingly aggressive initial therapy to subvert resistance and importance of early response to identify need for change in therapy. Proper knowledge and navigation amongst novel therapy options and consideration of drug toxicities, individual patient characteristics, disease response, and vigilance for development of resistance are necessary elements of optimized care for the patient with chronic myelogenous leukemia.


Blood ◽  
2006 ◽  
Vol 108 (4) ◽  
pp. 1328-1333 ◽  
Author(s):  
Nikolas von Bubnoff ◽  
Paul W. Manley ◽  
Jurgen Mestan ◽  
Jana Sanger ◽  
Christian Peschel ◽  
...  

Abstract In advanced-phase chronic myeloid leukemia (CML), resistance to imatinib mesylate is associated with point mutations in the BCR-ABL kinase domain. A new generation of potent ABL kinase inhibitors is undergoing clinical evaluation. It is important to generate specific resistance profiles for each of these compounds, which could translate into combinatorial and sequential treatment strategies. Having characterized nilotinib (AMN107) against a large panel of imatinib mesylate–resistant Bcr-Abl mutants, we investigated which mutants might arise under nilotinib therapy using a cell-based resistance screen. In contrast to imatinib mesylate, resistance to nilotinib was associated with a limited spectrum of Bcr-Abl kinase mutations. Among these were mutations affecting the P-loop and T315I. Rarely emerging resistant colonies at a concentration of 400 nM nilotinib exclusively expressed the T315I mutation. With the exception of T315I, all of the mutations that were identified were effectively suppressed when the nilotinib concentration was increased to 2000 nM, which falls within the peak-trough range in plasma levels (3.6-1.7 μM) measured in patients treated with 400 mg twice daily. Our findings suggest that nilotinib might be superior to imatinib mesylate in terms of the development of resistance. However, our study indicates that clinical resistance to nilotinib may be associated with the predominant emergence of T315I.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4589-4589
Author(s):  
Corynn Kasap ◽  
Christopher Weier ◽  
Neil P. Shah

Abstract The optimal management of patients with chronic myeloid leukemia (CML) is increasingly reliant upon molecular studies. Loss of response to imatinib in CML is most commonly associated with selection for a limited number of BCR-ABL kinase domain mutations that impair the ability of imatinib to effectively bind to BCR-ABL Molecular understanding of imatinib resistance mechanisms has led to the development of effective “second generation” BCR-ABL kinase inhibitors, such as dasatinib and nilotinib, which have clinical activity against most, but not all, drug-resistant mutations. Analysis of the BCR-ABL kinase domain in patients who develop resistance to second-generation inhibitors has implicated further selection of drug-resistant BCR-ABL kinase domain mutants in nearly all cases reported to date. Encouragingly, the number of resistant mutations capable of conferring clinical resistance to the most clinically-advanced second-generation agents, dasatinib (approved by the US FDA and EMEA) and nilotinib (approved in Mexico and Switzerland), appears to be restricted to a relatively small number of amino acid substitutions. As clinical experience with dasatinib and nilotinib grows, an understanding of the relative sensitivities of dasatinib- and nilotinib-resistant BCR-ABL mutants to other kinase inhibitors, both approved and investigational, is critical to optimize clinical outcomes in patients with resistance to dasatinib or nilotinib. At the present time, kinase inhibitor therapy options for patients with resistance to one of these agents include the investigational options bosutinib and MK-0457 (VX-680), as well as dasatinib and nilotinib (for patients not yet exposed to one of these agents) and re-exposure imatinib. It is likely that the success of therapeutic intervention in these cases can be predicted based upon the preclinical sensitivity of the mutation(s) involved with the agent chosen. We have therefore conducted a thorough biochemical and biological cross-analysis of the activities of each of these clinically-useful kinase inhibitors against mutations that confer clinical resistance to dasatinib or nilotinib. These studies provide clinicians with a useful reference for choosing an appropriate kinase inhibitor based upon the identity of the resistant BCR-ABL kinase domain mutation(s) detected at the time of relapse when faced with a patient who has lost response to dasatinib or nilotinib. It is hoped that the application of such “personalized medicine” strategies to the clinical management of CML cases will further improve outcomes in patients treated with kinase inhibitor therapy.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4580-4580
Author(s):  
Cintia C. Mascarenhas ◽  
Anderson F. Cunha ◽  
Katia B.B. Pagnano ◽  
Rosana A. Silveira ◽  
Fernando F. Costa ◽  
...  

Abstract Point mutations within the ABL kinase domain are the most frequent mechanism for reactivation of kinase activity of the BCR-ABL gene and have been associated with clinical resistance to tyrosine kinases (TK) inhibitors in CML patients conferring in some of them a poor prognosis. The T315I (Treonine → Isoleucine) is a mutation described in exon 6 of BCR-ABL gene that makes the protein resistant to all kinase inhibitors most currently used for treating CML (imatinib, nilotinib and dasatinib). D-HPLC allows for high throughput mutation screening. This technique is based on heteroduplex formation by PCR products amplified from wild type and mutant alleles. Under optimized denaturing conditions, these heteroduplexes can be distinguished from homoduplex. In this study we screened mutations in exon 6 of BCR-ABL gene in patients treated with kinase inhibitors, in different phases of the disease. We evaluated 85 patients: 9 at diagnosis, 81 in chronic phase, 3 in accelerated phase, one in blast crisis. Thirty four were resistant to imatinib, 10 of them to dasatinib and three had suboptimal response to imatinib. In 9 of 85 (10,5%) samples, D-HPLC showed an abnormal elution profile suggesting the presence of nucleotide changes. Automated sequencing confirmed the presence of two point mutations: T315I (two patients) and F359V (two patients). Five patients requires sequencing confirmation. Patients with T315I mutation failed to imatinib and dasatinib. One of them relapsed after bone marrow transplantation in blast crisis. Patients with F359V mutation were resistant to imatinib. One of them has partial hematological response with dasatinib and the other is in complete molecular response after bone marrow transplantation. D-HPLC seems to be a ship and practical method for routine clinical monitoring for emergence of kinase domain mutations and may be useful for optimizing therapy in CML. Early detection of emerging mutant clones may help in decision-making of alternative treatment.


2017 ◽  
Vol 11 ◽  
pp. 117955491770287 ◽  
Author(s):  
Ana P Azevedo ◽  
Alice Reichert ◽  
Celina Afonso ◽  
Maria D Alberca ◽  
Purificação Tavares ◽  
...  

Introduction: The identification of BCR-ABL expression as the defining leukemogenic event in chronic myeloid leukemia (CML) and the introduction of BCR-ABL tyrosine kinase inhibitors in 2001 have revolutionized disease management, leading to a reduction in mortality rates and accordingly an increase in the estimated prevalence of CML. Case report: Based on medical records and clinical follow-up, the authors present the case of a Philadelphia chromosome–positive CML patient who developed resistance to imatinib. Quantitative reverse transcription-polymerase chain reaction testing revealed a V280G BCR-ABL mutation. Discussion and conclusions: This is the first report describing a new BCR-ABL kinase domain mutation—V280G—that might be associated with resistance to imatinib. Approximately 15% to 30% of patients treated with imatinib discontinue treatment due to resistance or intolerance. More than 90 BCR-ABL mutations were detected so far, conferring variable degrees of drug resistance, with consequent clinical, therapeutic, and prognostic impact.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1376-1376
Author(s):  
Nikolas von Bubnoff ◽  
Silvia Thoene ◽  
Sivahari P. Gorantla ◽  
Jana Saenger ◽  
Christian Peschel ◽  
...  

Abstract BCR-ABL kinase domain mutations constitute the major mechanism of resistance in patients with chronic myelogenous leukemia treated with the ABL kinase inhibitor imatinib. Mutations causing resistance to therapeutic kinase inhibition were also identified in other target kinases in various malignant diseases, such as FLT3-ITD in acute myelogenous leukemia, cKit in gastrointestinal stromal tumors, EGFR in patients with lung cancer, and FIP1L1-PDGFRalpha in hypereosinophilic syndrome. Thus, mutations in kinase domains seem to be a general mechanism of resistance to therapeutically applicated tyrosine kinase inhibitors. We recently developed a cell-based screening strategy that allows one to predict the pattern and relative abundance of BCR-ABL resistance mutations emerging in the presence of imatinib, and the novel ABL kinase inhibitor AMN107 (nilotinib). We therefore intended to determine, if this method would also allow the generation of resistant cell clones with other oncogeneic tyrosine kinases as targets in the presence of specifically acting kinase inhibitors. When FLT3-ITD and su5614 were used as drug/target combination in our cell-based method, the frequency of resistant clones in the presence of su5614 at 10 times the IC50 was 0.17 per million cells. In 40 per cent of resistant clones, point mutations were detected leading to amino acid exchanges within the FLT3-ITD split kinase domain. The yield of resistant clones was increased by the factor of 14 to 2.37 per million cells by adding ethyl-nitrosourea (ENU), a potent inducer of point mutations. Also, the proportion of mutant clones increased from 40 to 74 per cent. In 83 mutant clones that were examined so far, we detected eight exchanges affecting kinase domain two (TK2) of the split kinase domain within or shortly behind the FLT3-ITD activation loop (A-loop). We did not detect exchanges affecting TK1. We next examined whether resistant clones would also come up with FIP1L1-PDGFRalpha-transformed cells in the presence of imatinib. Again, the yield of resistant clones increased when cells were pretreated with ENU, and a proportion of resistant clones contained mutations in the FIP1L1-PDGFRalpha kinase domain, affecting the nucleotide-binding loop (P-loop) and A-loop. We conclude that cell-based resistance screening is a simple and powerful tool that allows prediction of resistance mutations towards kinase inhibitors in various relevant oncogeneic kinases.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1119-1119 ◽  
Author(s):  
Christopher A. Eide ◽  
Daniel Bottomly ◽  
Samantha L. Savage ◽  
Libbey White ◽  
Beth Wilmot ◽  
...  

Abstract Despite the well-established success of ABL1 tyrosine kinase inhibitors (TKIs) in the treatment of patients with chronic myeloid leukemia (CML), approximately 20% of patients treated with frontline imatinib develop resistance by 5 years on therapy. The majority (~60%) of such resistant cases are explained by acquired mutations within the BCR-ABL1 kinase domain that compromise inhibitor binding, and nearly all of these mutations are effectively targeted by one or more of the 2nd and 3rd generation ABL1 kinase inhibitors. In contrast, the remaining ~40% of imatinib-resistant cases harbor no explanatory BCR-ABL1 kinase domain mutation, presumably attributable to BCR-ABL1 kinase-independent mechanisms. We hypothesized that resistance in these patients results from acquired auxiliary molecular aberrations which persistently activate signaling pathways downstream despite inhibition of BCR-ABL1 kinase activity. To identify such mechanisms, we performed whole exome sequencing and RNA sequencing on a cohort of 135 CML patients comprising the following subgroups: newly diagnosed/TKI naïve (n=28), BCR-ABL1 kinase-dependent resistance (n=31), and BCR-ABL1 kinase-independent resistance (n=65), and TKI-induced remission (n=7). Resistant patients were required to have demonstrated clinical resistance to one or more ABL1 kinase inhibitors in the form of suboptimal response or loss of cytogenetic response; the subtype of resistance was defined based on the presence or not of an explanatory BCR-ABL1 kinase domain mutation at the time of resistance. The majority of samples collected were from patients with chronic phase CML (n=97), although smaller cohorts of accelerated phase CML, blast crisis CML, and Ph+ ALL were also profiled (n=20, 19, and 9, respectively). Among the 44,413 protein-altering and 902 splice site variants detected across the 120 WES samples, there were on average 908 missense, 146 truncation and 69 splice variants per sample. Genes with truncation and missense variants were compared between BCR-ABL1 kinase-independent and -dependent resistant chronic phase samples. A total of 44 genes were seen with a frequency difference of at least 10%, including PLEKHG5 and NKD2 (30% and 28% difference, respectively), which are involved in regulation of NF-kB and Wnt signaling. Consistent with previous reports, we also detected EZH2 and TET2 as exclusively mutated in the BCR-ABL1 kinase-independent resistance patients (6% and 3%, respectively). Further analyses stratifying variants among resistant patients according to specific ABL1 kinase inhibitor therapy failed and comparing, where available, serial samples from pre- and post-treatment for clonal expansion are underway. Additionally, sufficient material was available to perform ex vivo small-molecule inhibitor screening for 48 patient specimens, the resultant data of which was used to generate putative effective drug target profiles and integrated with exome sequencing variants to prioritize variants of functional relevance (HitWalker; Bottomly et al., Bioinformatics 2013). Among 23 patient samples exhibiting BCR-ABL1 kinase-independent resistance, the mutated genes most frequently ranked in the top 10 functional-prioritized variants were: ABL1 (which included non-kinase domain variants; 34.7%), MAP3K1, MUC4, FGF20 (each 17.4%), ARHGEF15, MEF2A, EPHA8, TYRO3, BMP2K, and IRS1 (each 13.0%). Notably, the top six candidates are members of the neutrophin (ABL1, MAP3K1, and IRS1), EPHA forward (EPHA8, ARHGEF15), and p38 MAPK signaling pathways (MAP3K1 and MEF2A). Taken together, these findings suggest that several of the same pathogenic molecular abnormalities seen in other myeloid malignancies are also present in CML patients with BCR-ABL1 kinase-independent resistance, including a subset which align to persistent re-activation of signaling pathways involved in CML disease pathogenesis and progression. As such, genetic and/or functional profiling of these patients in the clinic may translate to actionable candidates for combination therapy to maximize disease control and improve patient outcomes. Disclosures Agarwal: CTI BioPharma Corp: Research Funding. Radich:Novartis: Consultancy, Research Funding; BMS: Consultancy; Ariad: Consultancy. Deininger:Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Consultancy, Research Funding; Incyte: Consultancy, Membership on an entity's Board of Directors or advisory committees; Gilead: Research Funding; CTI BioPharma Corp.: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding; Bristol Myers Squibb: Consultancy, Research Funding; Ariad: Consultancy, Membership on an entity's Board of Directors or advisory committees. Druker:Pfizer: Patents & Royalties; Dana-Farber Cancer Institute: Patents & Royalties: Millipore royalties via Dana-Farber Cancer Institute; Curis: Patents & Royalties; Array: Patents & Royalties; CTI: Consultancy, Equity Ownership; Pfizer: Patents & Royalties; Curis: Patents & Royalties; Array: Patents & Royalties; Dana-Farber Cancer Institute: Patents & Royalties: Millipore royalties via Dana-Farber Cancer Institute; Oncotide Pharmaceuticals: Research Funding; Novartis: Research Funding; BMS: Research Funding; ARIAD: Patents & Royalties: inventor royalties paid by Oregon Health & Science University for licenses, Research Funding; Roche: Consultancy; Gilead Sciences: Consultancy, Other: travel, accommodations, expenses; D3 Oncology Solutions: Consultancy; AstraZeneca: Consultancy; Ambit BioSciences: Consultancy; Agios: Honoraria; MolecularMD: Consultancy, Equity Ownership, Patents & Royalties; Lorus: Consultancy, Equity Ownership; Cylene: Consultancy, Equity Ownership.


Blood ◽  
2008 ◽  
Vol 112 (13) ◽  
pp. 4839-4842 ◽  
Author(s):  
Elias Jabbour ◽  
Hagop M. Kantarjian ◽  
Dan Jones ◽  
Neeli Reddy ◽  
Susan O'Brien ◽  
...  

Abstract Mutations in codon 317 after treatment with imatinib and dasatinib have been reported. We reviewed patients with chronic myeloid leukemia and mutations after tyrosine kinase inhibitor (TKI) therapy. F317L was detected in 20, including 12/99 (12%) with mutation after imatinib failure, and 8/16 (50%) after dasatinib (P = .001). Median follow-up from mutation detection was 25 months. At the time of F317L, 8 patients were in chronic phase (CP), 6 in accelerated phase, and 6 in blast phase. There was no difference in characteristics between patients with or without F317L mutations, or with no mutations. A complete cytogenetic response was acheived in 3 of 6 patients treated with nilotinib, 2 of 2 with imatinib, and 0 of 3 with dasatinib. Survival of patients with F317L was similar to those with other mutations (P = .45). Patients in CP had better outcome, with a 2-year survival of 75%. F317L mutation is resistant to dasatinib but sensitive to other TKIs. The prognosis is dependent mostly on the disease stage.


Folia Medica ◽  
2018 ◽  
Vol 60 (4) ◽  
pp. 617-623 ◽  
Author(s):  
Alexandar J. Linev ◽  
Hristo J. Ivanov ◽  
Ivan G. Zhelyazkov ◽  
Hristina Ivanova ◽  
Veselina S. Goranova-Marinova ◽  
...  

Abstract Chronic myeloid leukemia (CML) arises from the fusion of the BCR and the ABL1 genes. The BCR gene (chromosome 22q11.2) and the ABL1 gene (chromosome 9q34) fuse together due to reciprocal chromosome translocation forming the Philadelphia chromosome (Ph). This fusion gene codes tyrosine kinase which accelerates the cell division and reduces DNA repair. Imatinib mesylate is a selective inhibitor of this tyrosine kinase. It is the first-line treatment for CML-patients. However, it became clear that Philadelphia-positive (Ph+) cells could evolve to elude inhibition due to point mutations within the BCR-ABL kinase domain. To date more than 40 mutations have been identified and their early detection is important for clinical treatment. With the development of the new tyrosine kinase inhibitors (TKIs), associated with these mutations, the resistance problem seems to diminish, as some of the new drugs are less prone to resistance. The aim of this review is to focus on the diff erent mutations leading to resistance.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1831-1831
Author(s):  
Dan Jones ◽  
Rayjalakshmi Luthra ◽  
Hagop M. Kantarjian ◽  
Megan Breeden ◽  
Susan O’Brien ◽  
...  

Abstract Bcr-Abl kinase domain (KD) point mutations are detected in the dominant clone(s) in approximately 45% of CML at the time of disease resistance, developing after an average of 20–35 months of imatinib therapy. However, low numbers of Philadelphia chromosome (Ph)+ tumor cells with KD mutations could be present at earlier timepoints providing a pool of potential resistant subclones. Since current therapy of Ph+ ALL relies on imatinib maintenance therapy, the pattern of Bcr-Abl KD mutations in this tumor is an important and understudied phenomenon. We assessed the frequency and levels of Bcr-Abl KD mutations at different points in ALL, including at diagnosis, upon relapse and following salvage therapy with kinase inhibitors. We performed Bcr-Abl KD mutational analysis by direct sequencing in 25 cases of Ph+ ALL at the time of diagnosis and 25 cases upon disease persistence/relapse. For comparison, we analyzed 22 cases of lymphoid blast crisis of CML (LyBC), most of which transformed following long-term imatinib monotherapy. To track the emergence of mutated clones, we also performed more sensitive analysis for the T315I mutation by pyrosequencing (5% sensitivity) and allele-specific oligonucleotide probe (ASO) PCR (1:500 sensitivity). KD mutations were not seen by direct sequencing in ALL cases at diagnosis. The T315I mutation was also not detected by pyrosequencing (n =25) or ASO-PCR (n = 10) in newly diagnosed ALL. In contrast, Bcr-Abl KD mutations (Y253H in 3, Q252H, T315I, F317L, E355Q, H396R in 1 each) were seen in 8 of 25 (32%) relapsed/persistent ALL, occurring in patients who had been receiving imatinib for a median of 14 months (range 2–26). An additional 3 patients treated with dasatinib or nilotinib for relapse subsequently developed KD mutations (T315I and Y253H, and F317L) after 1, 4 and 9 months of second therapy. KD mutations were seen in 16 of 22 (73%) patients with lymphoid blast crisis, including T315I in 7, E255K and M244V in 2 each, and Y253H, V299L, F311I, E355G, F359V in 1 each. All KD mutations in LyBC developed following imatinib or nilotinib therapy. As with CML, kinase inhibitor therapy particularly in the relapse/salvage setting is the primary risk factor for emergence of Bcr-Abl KD mutations in Ph+ ALL. There is a high frequency of Bcr-Abl KD mutations associated the lymphoid transformation of CML. However, Bcr-Abl KD mutations develop more rapidly in persistent or relapsed Ph+ ALL than in CML and there is a higher frequency of Y253H mutations noted. These findings will likely have consequences for the timing and dosages of imatinib and other kinase inhibitors in maintenance and relapsed ALL regimens.


Sign in / Sign up

Export Citation Format

Share Document