scholarly journals Novel Therapeutic Strategy Targeting NHE1 and Its Upstream Activators in Acute Myeloid Leukemia

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 913-913
Author(s):  
Cheuk-Him Man ◽  
Chae-Yin Cher ◽  
Stephen S.Y. Lam ◽  
Eric S.K. Ho ◽  
Nelson K.L. Ng ◽  
...  

Abstract Increase in Tescalcin (TESC) gene expression and intracellular pH (pHi) have been associated with drug resistance in acute myeloid leukemia (AML). Tescalcin was shown to stabilize the membrane sodium/hydrogen exchanger (NHE1) that maintains a high pHi by H+ efflux in exchange for Na+. NHE1 has also been shown to be activated by PDGFR, PKC, calmodulin, p90-RSK and ROCK-RhoA, but their relevance to leukemogenesis and drug resistance in AML was unknown. We hypothesized that targeting NHE1 and its upstream activators might offer a novel and effective therapeutic strategy in AML. AML cell lines and mononuclear cell fraction from peripheral blood (PB) or bone marrow (BM) of AML patients (comprising primarily myeloblasts as shown by microscopic review of cytospin preparations) were treated with inhibitors for 3 days (concentrations: 0.1nM to 10mM) that target potential activators of NHE1. The anti-leukemia effects of these inhibitors were evaluated by PrestoBlue® Cell Viability Reagent as a measure of viable cell number. Their effects on pHi and apoptosis were evaluated by SNARF-1 and Annexin V/7-AAD staining respectively by flow cytometry. AML cell lines ML2, Kasumi-1, MOLM-13 and MV4-11 (IC50 in mM: 12.2, 13.1, 11.6 and 9.2 respectively) were more sensitive than KG1, NB4, THP-1 and OCI-AML3 (IC50 in mM: 30.7, 24.8, 119.2 and 49.4 respectively) to the growth inhibitory effects of NHE1 inhibitor, 5-(N,N-hexamethylene) amiloride (HMA), accompanied with a larger extent of cellular acidification and apoptosis induction in those 4 HMA-sensitive lines. To look for the upstream activators of NHE1 relevant to AML, the cell lines were treated with specific inhibitors targeting potential NHE1 activators. Both HMA-sensitive and insensitive cell lines were susceptible to the intracellular acidification and growth inhibition by PDGFR and p90-RSK inhibitors. Furthermore, FLT3 inhibitors, sorafenib and quizartinib, also reduced pHi of FLT3-ITD+ (Fms-Like Tyrosine Kinase 3 - Internal Tandem Duplication) AML cell lines, MOLM-13 and MV4-11, suggesting that FLT3-ITD might also activate NHE1, resulting in high pHi of FLT3-ITD+ AML. Different primary AML samples were treated with inhibitors to NHE1 (n=50), PDGFR (n=50) and p90-RSK (n=36) (Concentration: 100nM to 10mM) in vitro. Their response to the growth inhibitory effect of HMA, accompanied by effective pHi reduction (n=10), correlated with that of PDGFR and p90-RSK inhibitors (Pearson r=0.74, p<0.001 and r=0.73, p<0.001 respectively), supporting the proposition that these signaling pathways might be the critical and common activators of NHE1. Synergism of anti-leukemia effects could also be demonstrated between HMA and PDGFR inhibitors, calculated by Excess over Bliss Additivism (EOBA). To evaluate the clinical relevance of the study, serum was obtained from medical patients treated with high dose amiloride (20 mg daily), an NHE1 inhibitor, for underlying congestive heart failure. Compared with the serum of healthy volunteers, the amiloride-containing serum significantly reduced the pHi (n=10, p=0.001), induced apoptosis (n=4, p=0.04) and potentiated the inhibitory effects of PDGFR inhibitors (n=4, p=0.04) in primary AML samples. NHE1 might be a potential target in drug-resistant AML and activated by PDGFR, PKC, p90-RSK or both in a patient-specific fashion. Therefore, employing specific inhibitors to target NHE1 and its upstream activators should be explored as novel therapeutic strategy in this group of patients. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 84-84
Author(s):  
Steffan T Nawrocki ◽  
Claudia M Espitia ◽  
Kevin R. Kelly ◽  
William G. Bornmann ◽  
Jennifer S Carew

Abstract Abstract 84 New therapeutic strategies are urgently needed to improve clinical outcomes for patients with acute myeloid leukemia (AML), which is an extremely aggressive disease with very few long-term survivors. The sirtuin deacetylases (SIRTs) are critical regulators of genes that are essential for longevity, cell growth, tumor suppression, and apoptosis. Elevated SIRT expression has been reported in several types of cancer and may promote pathogenesis and drug resistance by increasing the lifespan and survival capacity of malignant cells. Our preliminary analysis of SIRT expression indicated that SIRT1 was consistently expressed at significantly higher levels in AML cell lines and primary AML blasts as compared with normal controls. In order to investigate the potential role of SIRT1 as a regulator of AML pathogenesis, we utilized shRNA to stably knockdown its expression in MV4-11 and KG-1 AML cells. Cells with targeted SIRT1 knockdown displayed an altered gene expression profile as compared with non-targeted controls. Moreover, antagonizing SIRT1 expression significantly impeded the progression of AML in a xenograft mouse model. A number of deacetylase inhibitors have been clinically evaluated for cancer therapy. However, disrupting SIRT function as an anticancer strategy remains to be rigorously investigated as none of these previously studied drugs significantly inhibit the activity of this class of NAD+-dependent deacteylases. Tenovin-6 is a novel small molecule SIRT inhibitor. We investigated the efficacy and pharmacodynamic effects of tenovin-6 in AML cell lines, primary blasts from patients with AML, and mouse models. Treatment with tenovin-6 induced apoptosis and dramatically diminished AML clonogenic survival. Tenovin-6 promoted a dose-dependent increase in the acetylated levels of the SIRT-regulated gene p53 in AML cells and triggered the induction of several p53 transcriptional targets including p21 and PUMA. Targeted knockdown of PUMA with shRNA significantly reduced the pro-apoptotic effects of tenovin-6, indicating that it is a critical mediator of its anti-leukemic activity. Notably, administration of tenovin-6 to mice implanted with AML cells was well-tolerated and led to a highly significant reduction in disease burden and increase in overall survival. Our collective findings demonstrate that SIRT1 is a promising novel therapeutic target in AML. Further investigation aimed to elucidate the safety, efficacy, and mechanism of action of tenovin-6 is warranted. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 220-220 ◽  
Author(s):  
Florian H Heidel ◽  
Henning Schulze-Bergkamen ◽  
Binje Vick ◽  
Daniel B Lipka ◽  
Fian K Mirea ◽  
...  

Abstract Acute myeloid leukemia (AML) cannot be cured by chemotherapy in approximately 60% of cases. Several prognostic factors have been evaluated, such as cytogenetic changes or molecular mutations. Length mutations of the FLT3-gene (internal tandem duplications, FLT3-ITD) confer a significantly worse prognosis with an increased rate of relapsed and refractory disease upon chemotherapy. The high rate of induction failure and of relapse upon chemotherapy in FLT3-ITD positive patients raises the question whether dysregulation at the level of the apoptotic machinery promotes resistance of AML blasts. Myeloid cell leukemia-1 (Mcl-1) protein is an anti-apoptotic member of the Bcl-2 family and blocks cytochrome c-release from mitochondria by interacting with proapoptotic members of the BCL-2 protein family, e.g. BAX and BAK, thereby preventing their activation and mitochondrial outer membrane permeabilization (MOMP). By Western blotting, high levels of Mcl-1 protein expression could be demonstrated in 6/6 FLT3-ITD positive patient samples versus 2/6 in FLT3-wildtype patient samples. Upregulation of Mcl-1 at a RNA and protein level could also be demonstrated in FLT3-ITD positive cell lines using transfected murine 32D cells (32D-FLT3-ITD vs 32D-FLT3- wt) and human FLT3-ITD positive cell lines (MV4;11 (ITD positive) vs RS4;11 (ITD negative)). To functionally investigate the role of Mcl-1 overexpression in resistance to chemotherapy, 32D-FLT3-ITD cells were transfected with a murine Mcl-1-wildtype construct. 32D-FLT3-ITD positive cells stably expressing Mcl-1 and controls were tested for induction of apoptosis upon cytotoxic treatment using various apoptosis assays (TMRE, AnnexinV-Staining, DNA content analysis by FACS). Overexpression of Mcl- 1 in 32D-FLT3-ITD cells conferred a striking decrease in induction of apoptosis upon chemotherapy (daunorubicine/cytarabine) and tyrosine kinase inhibitor treatment in comparison to the empty vector control. To analyze the influence of Mcl-1 expression on drug resistance in primary blasts, we perfomed siRNA knockdown experiments on primary AML blasts; siRNA silencing of Mcl-1 expression in primary AML-blasts was shown to result in increased apoptosis rates of up to 25% upon growth factor starvation or treatment with cytotoxic drugs. Constitutively activated FLT3-receptor phosphorylates and activates downstream signaling nodes as AKT and ERK, which are known upstream modifiers of Mcl-1. Thus, we hypothesized that phosphorylation of Mcl-1 by these pathways may be involved in differential Mcl-1-expression in FLT3-ITD positive AML. To investigate the role of Mcl-1 phosphorylation on drug resistance, a wildtype MCL-1 construct was mutagenized at different phosphorylation sites (serine/threonine to alanine). Experiments analyzing the functional role of mutated Mcl-1 when stably expressed in the hematopoietic cell line 32D-FLT3-ITD are in progress and will be presented. In conclusion, we here present evidence that Mcl-1 is critically involved in mediating resistance in FLT3-ITD positive AML. Our findings provide a rationale to clinically investigate agents that inactivate Mcl-1 in FLT-ITD positive AML.


Blood ◽  
2017 ◽  
Vol 130 (14) ◽  
pp. 1603-1604
Author(s):  
Rosa Lapalombella

In this issue of Blood, Marlein et al1 identify a tumor-specific NOX2-dependent transfer of mitochondria from bone marrow stromal cells (BMSCs) to acute myeloid leukemia (AML) cells via AML-derived tunneling nanotubes (see figure), supporting inhibition of NOX2 as a novel therapeutic strategy in AML.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Yang Li ◽  
Guojun Zhang ◽  
Bin Wu ◽  
Wei Yang ◽  
Zhuogang Liu

Chemotherapy resistance is still a primary clinical obstacle to the successful treatment of acute myeloid leukemia (AML). The underlying mechanisms of drug resistance are complicated and have not been fully understood. Here, we found that miR-199a-5p levels were significantly reduced in refractory/relapsed AML patients compared to those who achieved complete remission after chemotherapy. Consistently, miR-199a-5p was markedly decreased in Adriamycin-resistant AML K562/ADM cells in contrast with Adriamycin-sensitive K562 cells, and its decrement dramatically correlated with the chemoresistance of AML cells. Furthermore, we demonstrated that the basic and Adriamycin-induced autophagic activity in K562/ADM cells was higher than that in K562 cells. This inducible autophagy played a prosurvival role and contributed to the development of acquired drug resistance. Importantly, we investigated that miR-199a-5p could negatively regulate autophagy, at least in part, by inhibiting damage regulator autophagy modulator (DRAM1) expression at both the transcriptional and posttranscriptional level. miR-199a-5p bound directly to the 3′-UTR of DRAM1 mRNA which was a functional target of miR-199a-5p. Indeed, downregulation of DRAM1 gene by siRNA in K562/ADM cells resulted in autophagy suppression and chemosensitivity restoration. These results revealed that the miR-199a-5p/DRAM1/autophagy signaling represented a novel pathway regulating chemoresistance, indicating a potential therapeutic strategy for the intervention in drug-resistant AML.


2014 ◽  
Vol 34 (6) ◽  
pp. 1675-1680 ◽  
Author(s):  
HYENG-SOO KIM ◽  
GA YOUNG LIM ◽  
JUNMO HWANG ◽  
ZAE YOUNG RYOO ◽  
TAE-LIN HUH ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1576-1576
Author(s):  
Chen Tian ◽  
Guoguang Zheng ◽  
M. James You ◽  
Yizhuo Zhang

Abstract Acute myeloid leukemia (AML) is not sensitive to chemotherapy partially because of the protection of AML cells by mesenchymal stromal cells (MSCs). Our previous studies found that MSCs protected AML cells from apoptosis through the c-Myc-dependent pathway. However, the mechanism by which MSCs regulate c-Myc in AML cells is still unknown. To elucidate the mechanism, we performed microRNA array analysis of AML cell lines and validated by TaqMan realtime PCR. The results showed that the expression of microRNA-494 (miR-494) in AML cells after coculture with MSCs was down-regulated. Reporter gene analysis confirmed miR-494 as one of the regulators of c-Myc. In the coculture system, activation of miR-494 in AML cells suppressed proliferation and induced apoptosis of AML cells in vitro. After addition of mitoxantrone to the coculture system, the proliferation of AML cells with miR-494 activation was suppressed more than that of control cells. After subcutaneous injection of AML cell lines in combination with MSC, tumor growth was suppressed in mice injected with miR-494-overexpressing AML cells. The rate of tumor formation was even lower after mitoxantrone treatment in the miR-494 overexpressing group. Moreover, miR-494 activation resulted in a decrease of leukemic cell counts in peripheral blood and bone marrow and prolonged survival in mice injected with miR-494-overexpressing AML cellls and MSCs compared to the control mice. Our results indicate that miR-494 suppresses drug resistance in AML cells by down-regulating c-Myc through interaction with MSCs and that miR-494 therefore is a potential therapeutic target. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document