scholarly journals Bortezomib + MEC (Mitoxantrone, Etoposide, Cytarabine) for Relapsed/ Refractory Acute Myeloid Leukemia: Final Results of an Expanded Phase 1 Trial

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 978-978 ◽  
Author(s):  
Anjali S. Advani ◽  
Paul Elson ◽  
Matt E. Kalaycio ◽  
Sudipto Mukherjee ◽  
Aaron T. Gerds ◽  
...  

Abstract MEC (mitoxantrone, etoposide, cytarabine) is a standard regimen for relapsed/ refractory (R/R) acute myeloid leukemia (AML), but outcomes remain poor. The overexpression of proteasomes and constitutive activation of NF-KB in AML cells suggest that proteasome inhibitors (PI) such as bortezomib (Bz) may be effective anti-leukemia therapy. PI or a decoy NF-KB oligonucleotide increase chemosensitivity to both anthracyclines and cytarabine. To test the hypothesis that PI may improve the efficacy of MEC, we conducted a phase 1 trial of Bz in combination with MEC. Here, we present final results of this trial: response rate, toxicity, and correlation of outcomes with mutation analysis. As CD74 expression may identify a subset NF-KB-dependent AML with predicted increased sensitivity to PI (Clin Can Res 2008; 14: 1446-54), we also explored this correlation. Methods: All pts were treated at the Cleveland Clinic from Aug 2010-Mar 2014. This protocol was approved by the institution’s review board. Eligibility included: age 18-70 yrs, R/R AML, cardiac ejection fraction ≥ 45%. CD74 was assessed by flow cytometry using CD45 PE (BD Biosciences San Jose, CA) and CD74-Alexa 488 (AbD Serotec Raleigh, NC). A myeloid panel mutational analysis was performed on extracted DNA in pts with banked samples (n=26). All pts received 1 cycle of MEC: mitoxantrone (6 mg/m2/d), etoposide (80 mg/ m2), and cytarabine (1000 mg/ m2) Days 1-6. Bz was administered IV on Days 1, 4, 8, and 11. Dose was escalated using a standard 3 x 3 design. Dose levels (DL) were: -1 (0.40 mg/ m2), 1 (0.70 mg/ m2), 2 (1.0 mg/ m2), and 3 (1.3 mg/m2). Response was defined by IWG criteria (Cheson, 2006). The maximum tolerated dose (MTD) of Bz with MEC was 1.0 mg/m2 (Advani et al, ASH 2012, Abstract 3595). Results: Of 35 pts enrolled, the median age was 55 yrs (range 33-69), 13 (38%) were male, and median baseline WBC was 4.0 K/ µL (range 0.82-84.7). The median time from initial diagnosis of AML to enrollment was 8.4 months (range 1.1-88.2) and 6 pts (17%) had an antecedent hematologic disorder. Salvage status (S) at enrollment: S1 (24 pts, 69%), S2 (7 pts, 20%), S4 (4 pts, 11%). Nine pts (26%) were refractory to all prior therapies, and 3 pts (9%) had received prior allogeneic hematopoietic cell transplant (AHCT). Adverse cytogenetics per CALGB/ Alliance 8461 criteria occurred in 19% of pts at study entry and 15 of 26 pts (58%) had poor-risk molecular mutations (RUNX1, ASXL1, TET2, p53, IDH1, MECOM, FLT3 ITD). Ten pts were enrolled on DL1, 13 pts on DL2, 11 pts on DL3, and 1 pt died prior to treatment. Overall, 3 pts (9%) died during induction. In addition to febrile neutropenia and Gr 4 hematologic toxicity, the most commonly reported adverse events (AEs) were metabolic, constitutional, gastrointestinal (GI), and dermatologic, with the majority of these being Gr 1 or 2. GI toxicity was the only reported AE attributable to Bz: 12 pts had constipation or ileus (10: Gr 1 or 2; 2: Gr 3 or 4). Seventeen of the 33 evaluable pts (52%) have achieved a complete remission (CR) or complete remission with incomplete count recovery (CRi); with 1 pt inevaluable due to donor lymphocyte infusion. The estimated median overall survival was 7.2 months; median duration of response was 10.3 months. DL did not correlate with response. Eleven pts (32%) went on to receive AHCT. Among pts with poor-risk molecular mutations, 64% achieved CR/ CRi. Inhibition of NF-KB signaling in leukemia cells with mutated RUNX1 efficiently blocks growth and development of leukemia (Blood 2011; 118: 6626-37). Of the 5 pts with RUNX1 mutations, 3 (60%) achieved CR/ CRi, suggesting that Bz may have promising clinical benefit in this difficult subset of pts. Among the 17 pts with CD74 expression testing who were evaluable for response, the mean CD74 expression trended higher in non-responding pts (32.6%) than in responders (11.1%) (p=0.14). Conclusions: The combination of MEC/Bz was well-tolerated and resulted in high response rates, even within a molecularly-defined poor risk population of pts with R/R AML. Our data do not confirm the expectation that higher CD74 expression would correlate with response in this R/ R AML cohort, but larger pt numbers are needed. These results, especially in pts with poor-risk mutations, support development of a randomized study to address the benefit of adding Bz to MEC in the treatment of R/R AML. Disclosures Advani: Takeda: Research Funding. Carew:Takeda: Research Funding. Sekeres:Celgene Corp.: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; Boehringer Ingelheim: Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4433-4433
Author(s):  
Sandrine Niyongere ◽  
Vu H. Duong ◽  
Dominique R Bollino ◽  
Rena G. Lapidus ◽  
Erin T. Strovel ◽  
...  

Abstract Background: Despite new therapeutic advances, acute myeloid leukemia (AML) still has poor outcomes, especially in patients with relapsed or refractory (R/R) disease with complex karyotype (CK) and/or TP53 mutation. Venetoclax (Ven), an oral BCL-2 inhibitor, in combination with DNA methyltransferase inhibitors (DNMTIs) has been approved by the FDA for treatment of newly diagnosed AML in adults who are unfit for intensive therapy with encouraging results, but the combination has been found to be less effective in patients with R/R AML. AML cells have been shown to be sensitive to extracellular glutamine depletion or manipulation of intracellular glutamine metabolism. Asparaginase converts asparagine and glutamine to aspartate and glutamate, decreasing plasma concentrations of asparagine and glutamine, with anti-leukemia activity. We previously published that crisantaspase produced complete plasma glutamine depletion in patients without dose-limiting toxicities and was associated with anti-leukemic activity in R/R AML (Emadi et al. Cancer Chemother Pharmacol 2018). In preclinical studies, we found that Pegcrisantaspase (PegC), a long-acting crisantaspase, not only had potent single-agent anti-AML activity, but also synergized with Ven in CK-AML cell lines and primary cells in vitro and in vivo (Emadi et al. Leukemia 2021). Ven-PegC targets the mTOR-eIF4E-driven ribosomal translational protein synthesis apparatus in AML. With no standardized treatment and poor outcomes for R/R AML, there is an unmet need for effective treatment options. Trial Design: We present an ongoing, non-randomized, open-label Phase 1 clinical trial evaluating Ven administered orally daily in combination with PegC administered intravenously every 14 days in 28-day treatment cycles in adults patients with R/R AML. The trial consists of two phases: dose escalation (four cohorts) and dose expansion at the final recommended phase 2 doses (RP2Ds). Adult patients with a pathologically confirmed diagnosis of AML whose disease has relapsed or is refractory to at least one line of AML therapy and with adequate organ function and no prior history of pancreatitis or ≥ Grade 3 thrombohemorrhagic events are eligible for this trial. All patients with FLT3, IDH1 or IDH2 mutation must have received at least one line of therapy with an available FLT3/IDH1/IDH2 inhibitor to be eligible for this trial. The study will include CK-AML and TP53-mutated AML. The primary objectives of the trial are to evaluate the safety and tolerability of Ven-PegC and estimate the maximum tolerated doses (MTDs) and/or biologically active doses (e.g. RP2D) of Ven-PegC in patients with R/R AML. The primary endpoints of the trial are incidences of regimen-limiting toxicities (RLTs) and treatment-emergent adverse events (TEAEs). The secondary endpoints include the rates of complete remission (CR) and composite complete remission (CR+CRh+CRi), event-free survival, overall survival, the rate of conversion from transfusion dependence to transfusion independence, and achievement of MRD <0.02% within 2 cycles of treatment with Ven-PegC. If a patient does not achieve at least hematologic improvement within 3 cycles of treatment, the patient will be taken off study. Responding patients can continue with the assigned doses until progression. The study uses a 3+3 design. Up to 24 subjects will be enrolled during dose escalation (in case exactly one RLT occurs in the first three patients enrolled at each of the four dose levels). Another 10 subjects will be enrolled at the final RP2D in an expansion cohort, for a total of 16 patients treated at the RP2D. The study is currently open at the University of Maryland Greenebaum Comprehensive Cancer Center. ClinicalTrials.gov Identifier is NCT04666649. Figure 1 Figure 1. Disclosures Emadi: Jazz Pharmaceuticals: Research Funding; NewLink Genetics: Research Funding; Servier: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; Servier: Membership on an entity's Board of Directors or advisory committees; Secura Bio.: Consultancy; KinaRx, Inc.: Membership on an entity's Board of Directors or advisory committees, Other: Co-founder.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 338-338
Author(s):  
Bradstock Kenneth ◽  
Emma Link ◽  
Juliana Di Iulio ◽  
Jeff Szer ◽  
Paula Marlton ◽  
...  

Abstract Background: Anthracylines are one of the major classes of drugs active against acute myeloid leukemia (AML). Increased doses of daunorubicin during induction therapy for AML have been shown to improve remission rates and survival. The ALLG used idarubicin in induction therapy at a dose of 9 mg/m2 x 3 days (total dose 27 mg/m2) in combination with high-dose cytarabine and etoposide (Blood 2005, 105:481), but showed that a total idarubicin dose of 36 mg/m2 was too toxic in this context (Leukemia 2001, 15:1331). In order to further improve outcomes in adult AML by anthracycline dose escalation, we conducted a phase 3 trial comparing standard to an increased idarubicin dose during consolidation therapy. Methods: Patients achieving complete remission after 1 or 2 cycles of intensive induction therapy (idarubicin 9 mg/m2 daily x3, cytarabine 3 g/m2 twice daily on days 1,3,5 and 7, and etoposide 75 mg/m2 daily x7; ICE protocol) were randomized to receive 2 cycles of consolidation therapy with cytarabine 100 mg/m2 per day for 5 days, etoposide 75 mg/m2 for 5 days, and idarubicin 9mg/m2 daily for either 2 or 3 days (standard and intensive arms respectively). No further protocol therapy was given. The primary endpoint was leukemia-free survival from randomization to consolidation therapy (LFS) with overall survival (OS) as secondary endpoint. Results: A total of 422 patients with AML (excluding cases with CBF rearrangements or APL) aged 16 to 60 years were enrolled between 2003-10, with 345 (82%) achieving complete remission, and 293 being randomized to standard (n=146) or intensive (n=147) consolidation arms. The median age was 45 years in both arms (range 16- 60), and both groups were balanced for intermediate versus unfavorable karyotypes and for frequency of mutations involving FLT3-ITD and NPM1 genes. Of the randomized patients, 120 in the standard arm (82%) and 95 in the intensive arm (65%) received the second consolidation cycle (p<0.001). The median total dose of idarubicin received in the 2 consolidation courses was 36 mg/m2 (range 17-45), or 99% (47-125%) of the protocol dose in the standard arm, versus 53 mg/m2 (18-73), or 98% (33-136%) of the protocol dose in the intensive arm. The durations of grades 3-4 neutropenia and thrombocytopenia were significantly longer in the intensive arm, but there were no differences in grade 3 or 4 non-hematological toxicities. There were no non-relapse deaths during consolidation on the standard arm and 2 in the intensive (0% vs 1%; p =0.50). Subsequently, 41 patients in the standard arm and 37 in the intensive arm underwent elective allogeneic BMT during first remission. On intention to-treat analysis uncensored for transplant and with a median follow-up time of 5.3 years (range 0.6 - 9.9), there was improvement in LFS in the intensive arm compared with the standard arm (3 year LFS 47% (95% CI 40-56%) versus 35% (28-44%); HR 0.74 (95% CI 0.55-0.99); p=0.045) (Figure 1). The 3 year OS for the intensive arm was 61% (95% CI 54-70%) and 50% (95% CI 43-59%) for the standard arm; HR 0.75 (95% CI 0.54-1.05); p=0.092). Although adverse cytogenetics, presence of FLT3-ITD mutation, and absence of NPM1 mutation were all associated with poorer outcomes, there was no evidence of a benefit of intensive consolidation being confined to specific cytogenetic or gene mutation sub-groups. Conclusion: We conclude that in adult patients in complete remission after intensive induction chemotherapy an increased dose of idarubicin delivered during consolidation therapy results in improved LFS, without increased non-hematologic toxicity. Figure 1. Figure 1. Disclosures Szer: Ra Pharma: Honoraria, Membership on an entity's Board of Directors or advisory committees; Alexion Pharmaceuticals, Inc.: Honoraria, Membership on an entity's Board of Directors or advisory committees; Alnylam: Honoraria, Membership on an entity's Board of Directors or advisory committees. Marlton:Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; AbbVie: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees; Roche: Honoraria, Membership on an entity's Board of Directors or advisory committees. Wei:Novartis: Consultancy, Honoraria, Research Funding; Roche: Consultancy, Honoraria; CTI: Consultancy, Honoraria; Abbvie: Honoraria, Research Funding; Servier: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria, Research Funding. Cartwright:ROCHE: Consultancy, Membership on an entity's Board of Directors or advisory committees. Roberts:Servier: Research Funding; Janssen: Research Funding; Genentech: Research Funding; AbbVie: Research Funding. Mills:Novartis: Membership on an entity's Board of Directors or advisory committees, Other: Meeting attendance sponsorship. Gill:Janssen: Membership on an entity's Board of Directors or advisory committees. Seymour:Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Gilead: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Genentech: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel support, Speakers Bureau; AbbVie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel support, Research Funding, Speakers Bureau; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3895-3895
Author(s):  
Hannah Asghari ◽  
Dasom Lee ◽  
Yehuda E. Deutsch ◽  
Onyee Chan ◽  
Najla Al Ali ◽  
...  

Background The therapeutic landscape for acute myeloid leukemia (AML) has become complex with recent drug approvals. CPX-351 has become standard-of-care for patients (pts) with therapy-related AML and AML with myelodysplasia-related changes. Moreover, earlier phase studies combining hypomethylating agents (HMA) and Venetoclax (HMA+Ven) in the frontline setting for elderly patients have demonstrated high response rates and improved survival. Given the overlapping indications, yet lack of comparative outcome data between these therapeutic regimens, treatment decisions have become challenging in the frontline setting. Therefore, we compared the outcomes of newly diagnosed AML pts receiving HMA+Ven vs. CPX-351. Methods We retrospectively annotated 119 pts that received frontline treatment with HMA+Ven and CPX-351 at Moffitt Cancer Center and Memorial Healthcare System between 2013 and 2019. Pts were divided in two cohorts: HMA+Ven (Cohort A) or CPX-351(Cohort B). Via comprehensive chart review of each patient that received HMA+Ven, we further classified a subgroup of pts meeting criteria to receive CPX-351 as CPX-351eligible. Clinical and molecular data were abstracted for each patient in accordance with IRB requirements. Overall response rate (ORR) was the combined total of complete remission (CR), complete remission with incomplete count recovery (CRi), and morphologic leukemia free state (MLFS). Fisher's Exact method was used to determine significance. Kaplan-Meier analysis was performed to estimate median overall survival (mOS) with log-rank test to determine significance. All p-values are two-sided. Results Out of 119 total pts, 41 pts received HMA+Ven (Cohort A) and 78 pts received CPX-351 (Cohort B) with baseline characteristics outlined in Table 1. Among 111 response evaluable pts, ORR was 64.1% in Cohort A, including 28.2% with CR and 28.2% with CRi (Table 2). ORR was 50.0% in Cohort B, comprised of CR in 29.2% and CRi in 18.1%. There was no difference in ORR between Cohort A and Cohort B (64.1% vs. 50%, p 0.17). A significantly greater fraction of pts in Cohort B underwent allogeneic stem cell transplant (allo-SCT) (24.4% vs. 2.4%, p=0.004). ORR was higher in pts with European LeukemiaNet (ELN)-defined favorable/intermediate (fav/int) risk compared to adverse risk group in Cohort A (100% vs. 58.3%, p=0.03), however there was no difference in Cohort B (52.6% vs. 49.1%, p=1.0). ORR was similar among adverse risk groups in both cohorts (58.3% in Cohort A vs. 49.1% in Cohort B, p=0.47). Among responders, median time to best response was significantly longer in Cohort A (61.0 days vs. 40.5 days, p<0.0001). Median duration of response was not reached (NR) in both cohorts. Impact of somatic mutations on ORR is represented in Figure 3. Median follow-up was 6.5 months (mo) in Cohort A and 13.0mo in Cohort B. Median OS was similar in both cohorts (A vs. B, 13.8mo vs. 11.1mo, p=0.82) (Figure 1). Among responders, mOS was NR in Cohort A and 18.2mo in Cohort B (p=0.88) (Figure 2). Compared to Cohort B, mOS was superior for pts with fav/int risk disease in Cohort A (14.2mo (B) vs. NR (A), p=0.045) and not different for adverse risk group (11.1mo (B) vs. 7.3mo (A), p=0.2). Prior HMA exposure was 26.8% in Cohort A and 29.5% in Cohort B for an antecedent hematologic malignancy, however it did not impact mOS (p=0.86) or ORR (p=0.7). Early mortality rates for Cohort A and B were similar at day 30 (2.4% vs. 0%) and day 60 (4.9% vs. 3.8%). Rate of relapse was similar between cohorts A and B (16.0% vs. 30.6%, p=0.24). We then compared the outcomes of pts in Cohort B to CPX-351eligible arm from Cohort A (n=14). ORR and mOS were similar in Cohort B and CPX-351 eligible arm (ORR: 50% vs. 50%, p=1.0; mOS 11.1mo vs. 13.8mo, p=0.43). Only 1 patient (7.1%) of the CPX-351eligible arm underwent allo-SCT. Conclusion Our study demonstrates that HMA+Ven results in comparable response rates and survival outcomes to patients receiving CPX-351 when used as an initial remission therapy for patients with newly diagnosed AML, however the median follow up for patients receiving HMA+Ven was short. Survival did not appear to be impacted by a significantly greater proportion of patients proceeding to allo-SCT in the CPX-351 arm. Overall, HMA+Ven may represent a reasonable frontline remission therapeutic choice in patients with AML and a randomized trial would seem justified. Disclosures Kuykendall: Abbvie: Honoraria; Janssen: Consultancy; Incyte: Honoraria, Speakers Bureau; Celgene: Honoraria. List:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding. Lancet:Pfizer: Consultancy, Research Funding; Agios, Biopath, Biosight, Boehringer Inglheim, Celator, Celgene, Janssen, Jazz Pharmaceuticals, Karyopharm, Novartis: Consultancy; Daiichi Sankyo: Consultancy, Other: fees for non-CME/CE services . Sallman:Celyad: Membership on an entity's Board of Directors or advisory committees. Komrokji:celgene: Consultancy; Agios: Consultancy; pfizer: Consultancy; DSI: Consultancy; JAZZ: Speakers Bureau; JAZZ: Consultancy; Novartis: Speakers Bureau; Incyte: Consultancy. Sweet:Abbvie: Membership on an entity's Board of Directors or advisory committees; Stemline: Consultancy; Agios: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Incyte: Research Funding; Astellas: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Pfizer: Consultancy; Celgene: Speakers Bureau; Jazz: Speakers Bureau. Talati:Agios: Honoraria; Jazz Pharmaceuticals: Honoraria, Speakers Bureau; Celgene: Honoraria; Daiichi-Sankyo: Honoraria; Astellas: Honoraria, Speakers Bureau; Pfizer: Honoraria.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 11-12
Author(s):  
Justin M. Watts ◽  
Tara Lin ◽  
Eunice S. Wang ◽  
Alice S. Mims ◽  
Elizabeth H. Cull ◽  
...  

Introduction Immunotherapy offers the promise of a new paradigm for patients with relapsed/refractory (R/R) acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). CD123, the IL-3 receptor alpha-chain, represents an attractive target for antibody therapies because of its high expression on AML/MDS blasts and leukemic stem cells compared to normal hematopoietic stem and progenitor cells. APVO436, a novel bispecific anti-CD123 x anti-CD3 ADAPTIR™ molecule, depleted CD123+ cells in AML patient samples ex vivo (Godwin et al. ASH 2017), reduced leukemia engraftment in a systemic AML xenograft model (Comeau et al. AACR 2018), and transiently reduced peripheral CD123+ cells in non-human primates with minimal cytokine release and in a dose-dependent fashion (Comeau et al. AACR 2019). These data provide a basis for the clinical application of APVO436 as a treatment in AML and MDS. Here, we report preliminary data from a first-in-human dose-escalation study of APVO436 in patients with R/R AML and high-risk MDS. Study Design/Methods This ongoing Phase 1/1b study (ClinicalTrials.gov: NCT03647800) was initiated to determine the safety, immunogenicity, pharmacokinetics, pharmacodynamics, and clinical activity of APVO436 as a single agent. Major inclusion criteria were: R/R AML with no other standard treatment option available, R/R MDS with &gt; 5% marrow blasts or any peripheral blasts and failure of a hypomethylating agent, ECOG performance status ≤ 2, life expectancy &gt; 2 months, white blood cells ≤ 25,000 cells/mm3, creatinine ≤ 2 x upper limit of normal (ULN), INR and PTT &lt; 1.5 x ULN and alanine aminotransferase &lt; 3 x ULN. Patients were not restricted from treatment due to cytogenetic or mutational status. Intravenous doses of APVO436 were administered weekly for up to six 28-day cycles (24 doses) with the option to continue dosing for up to 36 total cycles (144 doses). Flat and step dosing regimens were escalated using a safety-driven modified 3 + 3 design. Pre-medication with diphenhydramine, acetaminophen, and dexamethasone was administered starting with dose 1 to mitigate infusion related reactions (IRR) and cytokine release syndrome (CRS). First doses and increasing step doses of APVO436 were infused over 20-24 hours followed by an observation period of 24 hours or more. Bone marrow biopsies were performed every other cycle with responses assessed by European Leukemia Net 2017 criteria for AML or International Working Group (IWG) 2006 criteria for MDS. Results The data cut-off for this interim analysis was July 9, 2020. Twenty-eight patients with primary R/R AML (n=19), therapy-related R/R AML (n=3), or high-risk MDS (n=6) have been enrolled and received a cumulative total of 186 doses. The number of doses received per patient ranged from 1 to 43 (mean of 6.4 doses). Most patients discontinued treatment due to progressive disease; however, blast reduction was achieved in 2 patients, with one patient with MDS maintaining a durable response for 11 cycles before progressing. APVO436 was tolerated across all dose regimens in all cohorts tested. The most common adverse events (AEs), regardless of causality, were edema (32%), diarrhea (29%), febrile neutropenia (29%), fever (25%), hypokalemia (25%), IRR (21%), CRS (18%), chills (18%), and fatigue (18%). AEs ≥ Grade 3 occurring in more than one patient were: febrile neutropenia (25%), anemia (18%), hyperglycemia (14%), decreased platelet count (11%), CRS (11%), IRR (7%), and hypertension (7%). After observing a single dose limiting toxicity (DLT) at a flat dose of 9 µg, step dosing was implemented and no DLTs have been observed thereafter. No treatment-related anti-drug antibodies (ADA) were observed. Transient serum cytokine elevations occurred after several reported IRR and CRS events, with IL-6 most consistently elevated. Conclusions Preliminary results indicate that APVO436 is tolerated in patients with R/R AML and MDS at the doses and schedules tested to date, with a manageable safety profile. Dose escalation continues and the results will be updated for this ongoing study. Disclosures Watts: BMS: Membership on an entity's Board of Directors or advisory committees; Aptevo Therapeutics: Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Rafael Pharma: Membership on an entity's Board of Directors or advisory committees; Jazz: Membership on an entity's Board of Directors or advisory committees; Genentech: Membership on an entity's Board of Directors or advisory committees. Lin:Ono Pharmaceutical: Research Funding; Pfizer: Research Funding; Abbvie: Research Funding; Bio-Path Holdings: Research Funding; Astellas Pharma: Research Funding; Aptevo: Research Funding; Celgene: Research Funding; Genetech-Roche: Research Funding; Celyad: Research Funding; Prescient Therapeutics: Research Funding; Seattle Genetics: Research Funding; Mateon Therapeutics: Research Funding; Jazz: Research Funding; Incyte: Research Funding; Gilead Sciences: Research Funding; Trovagene: Research Funding; Tolero Pharmaceuticals: Research Funding. Wang:Abbvie: Consultancy; Macrogenics: Consultancy; Astellas: Consultancy; Jazz Pharmaceuticals: Consultancy; Bristol Meyers Squibb (Celgene): Consultancy; PTC Therapeutics: Consultancy; Stemline: Speakers Bureau; Genentech: Consultancy; Pfizer: Speakers Bureau. Mims:Leukemia and Lymphoma Society: Other: Senior Medical Director for Beat AML Study; Syndax Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Kura Oncology: Membership on an entity's Board of Directors or advisory committees; Novartis: Speakers Bureau; Agios: Consultancy; Jazz Pharmaceuticals: Other: Data Safety Monitoring Board; Abbvie: Membership on an entity's Board of Directors or advisory committees. Cull:Aptevo Therapeutics: Research Funding. Patel:Agios: Consultancy; Celgene: Consultancy, Speakers Bureau; DAVA Pharmaceuticals: Honoraria; France Foundation: Honoraria. Shami:Aptevo Therapeutics: Research Funding. Walter:Aptevo Therapeutics: Research Funding. Cogle:Aptevo Therapeutics: Research Funding; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees. Chenault:Aptevo Therapeutics: Current Employment, Current equity holder in publicly-traded company. Macpherson:Aptevo Therapeutics: Current Employment, Current equity holder in publicly-traded company. Chunyk:Aptevo Therapeutics: Current Employment, Current equity holder in publicly-traded company. McMahan:Aptevo Therapeutics: Current Employment, Current equity holder in publicly-traded company. Gross:Aptevo Therapeutics: Current Employment, Current equity holder in publicly-traded company. Stromatt:Aptevo Therapeutics: Current equity holder in publicly-traded company.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2862-2862
Author(s):  
Andre Manfred Willasch ◽  
Christina Peters ◽  
Adriana Balduzzi ◽  
Jean-Hugues Dalle ◽  
Marco Zecca ◽  
...  

Abstract Background: Pediatric patients younger than two years of age with acute myeloid leukemia (AML) commonly receive a chemotherapy-based myeloablative conditioning regimen before allogeneic hematopoietic stem cell transplantation (HSCT). The optimal choice of cytotoxic agents is still controversial. Methods: A retrospective EBMT-registry based study was conducted to investigate the impact of different chemotherapy-based conditionings on the outcomes in young children. Children younger than two years of age receiving a first HSCT of bone marrow (BM), peripheral blood stem cells (PBSC) or cord blood (CB) from matched siblings (MSD) or unrelated donors (UD) in first complete remission (CR1) between 2000 and 2019 were included. Busulfan/Cyclophosphamide (BuCy) and BuCy/Melphalan (BuCyMel) were the most frequent combinations on which this analysis focused. The primary endpoint was leukemia-free survival (LFS). Multivariate analysis adjusting for differences between the conditioning regimens and risk factors influencing outcome was performed using the Cox's proportional hazards regression model. Results: 289 patients (56% male) transplanted at a median age of 1.2 years (IQR 0.9-1.6) after BuCy (164, 57%) or BuCyMel (125, 43%) were included. 184 (64%) patients received BM, 71 (24%) CB and 34 (12%) PBSC from UD (201, 70%) and MSD (88, 30%). In-vivo T-cell-depletion (TCD) was performed in 160 (58%, missing data 14) of the HSCTs with anti-thymocyte-globulin (ATG, 153) or alemtuzumab (7). Ex-vivo TCD was performed in 13 (5%, missing data 3) of the HSCTs. Graft-versus-host-disease (GvHD)-prophylaxis was Cyclosporin-A-based in 90% of the HSCTs. Median follow-up (FU) was 4.9 years (95% CI 3.9-5.5). After a median FU of 4 years, 4-y-LFS after BuCyMel (74.3%, 95% CI 65.1-81.4) was significantly better compared to BuCy (59.7%, 95% CI 51.2-67.2), hazard ratio (HR) 0.56 (95% CI 0.35-0.90, P=0.02). Overall survival (4-y-OS) after BuCyMel (77.2%, 95% CI 68.1-84.0) was significantly better compared to BuCy (66.6%, 95% CI 58.0-73.8), HR=0.58 (95% CI 0.35-0.97, P=0.04). No significant differences were found in the probability of relapse (4-y-RI (whole cohort) 26.2% (95% CI 21.0-31.7), HR of BuCyMel 0.59 (95% CI 0.34-1.02), P=0.06), non-relapse mortality (4-y-NRM (whole cohort) 7.8% (95% CI 5.0-11.4), HR of BuCyMel 0.49 (95% CI 0.19-1.24), P=0.13) and incidence of acute grade II-IV GvHD at day 100 (day-100-aGvHD II-IV (whole cohort) 36.8% (95% CI 31.2-42.5), HR of BuCyMel 0.59 (95% CI 0.35-1.01), P=0.06). Incidence of chronic GvHD (4-y-cGvHD (whole cohort)) was 9.8% (95%-CI 6.3-14.2). The donor type had no significant influence on the outcome. Conclusion: Bu-based conditionings of HSCT for infants with AML at high risk of relapse offer a high probability of cure. Conditioning with three alkylators (BuCyMel) resulted in better LFS and OS compared with two alkylators (BuCy) without significantly increasing the risk of both NRM and aGvHD. Future trials will evaluate the impact of the more recently introduced alkylator Treosulfan within the conditioning of HSCT in pediatric AML. Disclosures Peters: Amgen: Membership on an entity's Board of Directors or advisory committees, Other: Travel grants. Locatelli: Amgen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Miltenyi: Speakers Bureau; Medac: Speakers Bureau; Jazz Pharamceutical: Speakers Bureau; Takeda: Speakers Bureau. Moraleda: Pfizer: Other: Educational Grants, Research Funding; Sanofi: Other: Educational Grants, Research Funding; MSD: Other: Educational Grants, Research Funding; ROCHE: Consultancy, Honoraria, Other: Educational Grants, Research Funding; Takeda: Consultancy, Honoraria, Other: Educational Grants, Research Funding; Sandoz: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Other: Educational Grants, Research Funding; Gilead: Consultancy, Honoraria, Other: Educational Grants, Research Funding; Jazz Pharmaceuticals: Consultancy, Honoraria, Other: Educational Grants, Research Funding; NovoNordisk: Other: Educational Grants, Research Funding; Janssen: Other: Educational Grants, Research Funding; Celgene: Other: Educational Grants, Research Funding; Amgen: Other: Educational Grants, Research Funding. Biffi: BlueBirdBio: Consultancy, Other: Advisory Board. Corbacioglu: Gentium/Jazz Pharmaceuticals: Consultancy, Honoraria.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 24-25
Author(s):  
Cindy M. Pabon ◽  
Zhiguo Li ◽  
Therese Hennig ◽  
Carlos De Castro ◽  
Jadee Neff ◽  
...  

Allogeneic hematopoietic cell transplant (HCT) improves survival in patients with relapsed or high risk acute myeloid leukemia (AML). Complete remission (CR) is typically a pre-requisite for transplantation, though many do not achieve a formal CR. The traditional AML treatment starts with induction chemotherapy, followed by assessment of response to guide next steps. Response criteria definitions differ between that of the National Comprehensive Cancer Network (NCCN), utilized by the majority of clinicians, and the Center for International Blood and Marrow Research (CIBMTR) data registry utilized by transplant centers, making interpretation of the impact of HCT difficult. Definitions for morphologic complete remission (CR) are the same, however complete remission with incomplete hematologic recovery (CRi) differs and the CIBMTR does not recognize the morphologic leukemia-free state (MLFS), thus mis-identifying such patients and preventing clear treatment guidelines for this population. We conducted a retrospective study, identifying a cohort of 35 AML patients at our center who underwent allogeneic HCT while in MLFS, to evaluate characteristics in patient demographics, disease status, treatment(s), and outcomes. From our cohort, the median overall survival (OS) was 14 months, however 37% were alive and in remission with median follow-up of survivors of five years. Twenty three percent had progression of disease following transplant. Non-relapse mortality (NRM) was 35% with leading cause of death being infection. Our study reveals that transplant can induce long-term survival in patients with acute leukemia who are in MLFS at the start of induction, similar to data for patients with high risk disease in early relapse or in later remissions. Early transplantation while in MLFS and not waiting for full count recovery may protect patients from toxicities of further chemotherapeutic agents or prevent unnecessary delays that may allow for infections or other barriers to arise, and requires further study. Disclosures Leblanc: American Cancer Society, BMS, Duke University, NINR/NIH, Jazz Pharmaceuticals, Seattle Genetics: Research Funding; UpToDate: Patents & Royalties: Royalties; Agios, AbbVie, and Bristol Myers Squibb/Celgene: Speakers Bureau; AstraZeneca: Research Funding; AbbVie, Agios, Amgen, AstraZeneca, CareVive, BMS/Celgene, Daiichi-Sankyo, Flatiron, Helsinn, Heron, Otsuka, Medtronic, Pfizer, Seattle Genetics, Welvie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Rizzieri:Karyopharm: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Kite: Honoraria, Speakers Bureau; Incyte: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Stemline: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Sanofi: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Mustang: Membership on an entity's Board of Directors or advisory committees; Celltrion: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Gilead: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Jazz: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Seattle Genetics: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; AROG: Membership on an entity's Board of Directors or advisory committees; abbvie: Membership on an entity's Board of Directors or advisory committees; Teva: Membership on an entity's Board of Directors or advisory committees; Acrobiotech: Membership on an entity's Board of Directors or advisory committees; Bayer: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2549-2549
Author(s):  
Jacqueline S Garcia ◽  
Helen I. Gandler ◽  
Geoffrey Fell ◽  
Ashlee J. Fiore ◽  
Donna S Neuberg ◽  
...  

Background: Increased expression of hepatocyte growth factor (HGF), causing activation of its receptor MET, is found in a subset of patients with acute myeloid leukemia (AML). Inhibition of HGF-MET signaling with the specific MET kinase inhibitor crizotinib led to a transient therapeutic effect in AML cells; however, resistance rapidly emerged via increased HGF expression due to activation of alternative kinase pathways such as FGFR1 (Kentsis et al., Nat Medicine, 2012). Thus, simultaneous inhibition of activated MET and FGFR represents a potential therapeutic opportunity to forestall resistance to MET inhibition, in part by promoting downregulation of oncogenic STAT transcription factors. The MET/RON inhibitor merestinib and the pan-FGFR inhibitor LY2874455 are investigational small molecules. While they have been tested as single agents in phase 1 solid tumor cancer trials, they have neither been tested individually or in combination in AML patients (pts). Methods: We are conducting a phase 1 combination study to determine the safety and tolerability of dose-escalated merestinib and LY2874455 in pts with R/R AML or secondary AML. Eligible pts include AML pts ≥ 18 y inappropriate for intensive chemotherapy, for whom no approved available therapy exists, and ECOG ≤ 2. A merestinib safety lead-in cohort (dose level (DL) 0) assessed merestinib alone (n=6) at a dose of 80 mg daily for a 28-day cycle (Cycle 0). In the absence of ≥ gr 3 adverse events (AEs), LY2874455 10 mg twice daily on days 1-21 was added to merestinib on day 1 of Cycle 1. Subsequent cohorts (DL 1-3) included a 7-day lead-in (day -6 through day 0) of merestinib alone (80 mg or 120 mg per assigned DL) for pharmacodynamic studies. DL1 is merestinib 80 mg daily for days 1-28 and LY2874455 10 mg po BID days 1-21. DL2 is merestinib 120 mg daily for days 1-28 and LY2874455 10 mg po BID days 1-21. DL3 is merestinib 120 mg daily for days 1-28 plus LY2874455 12 mg po BID days 1-28. Dose-limiting toxicity (DLT) is defined as non-hematologic AEs ≥ gr 3 (excluding fatigue or reversible electrolyte abnormalities), gr 4 infection, or gr 4 neutropenia > 42 days in absence of disease. Results: The merestinib safety lead-in cohort consisted of 7 pts (2M, 5F) with a median age 76 y (range, 46-80) and a diagnosis of refractory (n=2) or relapsed (n=5) AML. One pt was replaced due to insufficient treatment doses administered. Four of 6 pts with available pre-treatment samples had adverse risk baseline mutations (TP53, RUNX1 and ASXL1) and 4 of 7 had poor risk cytogenetics including complex karyotype (n=3) and del 5q (n=1). Median duration on study was 2.4 months (90% CI, 0.8-5.6 months). AEs included 1 DLT due to gr 3 elevation of ALT and AST during merestinib monotherapy phase, which resolved with dose interruption and did not recur after dose modification. Other AEs were gr 3 bacteremia (n=1), gr 3 febrile neutropenia (n=1), gr 2 emesis (n=2), gr 2 nausea (n= 3), gr 3 diarrhea (n=1), gr 3 hypophosphatemia (n=2), gr 3 hyponatremia (n=1) and gr 3 QTc prolongation (n=1). SAEs included gr 4 ARDS (n=1), gr 3 back spasms (n=1), and gr 3 bruising (n=1), all considered to be unrelated to study drug. Five of 6 evaluable pts had LY2874455 added to their treatment per protocol; 1 progressed at the end of merestinib-lead in. In this safety cohort, 1 achieved a CR (after 28 days of merestinib only), 4 had stable disease, and 1 had disease progression. The pt with a CR remained on merestinib monotherapy until progression at the end of cycle 4, at which point LY2874455 was added per protocol. Notably, this responder had baseline normal cytogenetics and mutations in DNMT3A (R882H), FLT3 (N676K), NPM1 (W288fs), TET2 (E227fs) and TET2 (L1231P). This activating FLT3 (N676K) mutation was not detected by repeat NGS with > 200X mean at remission. Exploration of the phosphorylation state of key signaling molecules (STAT3, STAT5, FGFR, and MET) potentially modified by merestinib and LY2874455 inhibitors was carried out in pts with circulating disease (Fig 1). The responder (pt 5) exhibited reduced signaling in pSTAT3, pSTAT5, pFGFR, and pMET during merestinib monotherapy concomitant with clearance of blasts, though this effect was lost shortly before relapse. Conclusions: Preliminary clinical data suggest that merestinib is tolerable and the safety of adding dose-escalated LY2874455 is under investigation. Correlative studies to evaluate the significance of changes in HGF production and in STAT3/5 target genes are on-going. Disclosures Garcia: Abbvie: Research Funding; Genentech: Research Funding. Neuberg:Pharmacyclics: Research Funding; Madrigal Pharmaceuticals: Equity Ownership; Celgene: Research Funding. Winer:Jazz Pharmaceuticals, Pfizer: Consultancy. Galinsky:AbbVie Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Pfizer Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Merus Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; ABIM: Other: Member of specialty oncology board. DeAngelo:Glycomimetics: Research Funding; Blueprint: Consultancy, Research Funding; Amgen, Autolus, Celgene, Forty-seven, Incyte, Jazzs, Pfizer, Shire, Takeda: Consultancy; Abbvie: Research Funding; Novartis: Consultancy, Research Funding. Frank:Janpix, Roche-Genentech, Biolojib Design: Research Funding. Stone:Argenx, Celgene, Takeda Oncology: Other: Data and Safety Monitoring Board/Committee: ; Novartis, Agios, Arog: Research Funding; AbbVie, Actinium, Agios, Argenx, Arog, Astellas, AstraZeneca, Biolinerx, Celgene, Cornerstone Biopharma, Fujifilm, Jazz Pharmaceuticals, Amgen, Ono, Orsenix, Otsuka, Merck, Novartis, Pfizer, Sumitomo, Trovagene: Consultancy. OffLabel Disclosure: Merestinib and LY2874455 are investigational small molecular inhibitors that were tested in combination in a phase 1 clinical trial in AML.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 7-8
Author(s):  
Philip C. Amrein ◽  
Eyal C. Attar ◽  
Geoffrey Fell ◽  
Traci M. Blonquist ◽  
Andrew M. Brunner ◽  
...  

Introduction: Outcomes for acute myeloid leukemia (AML) among older patients has remained largely unchanged for decades. Long-term survival for patients aged &gt;60 years is poor (median survival 10.5 months). Targeting the proteasome in AML is attractive, since leukemia stem cells have demonstrated sensitivity to proteasome inhibition in preclinical models, perhaps through down regulation of nuclear NF-KB (Guzman, Blood 2001). AML cell lines are susceptible to synergistic cytotoxicity when bortezomib, a proteasome inhibitor, is combined with daunorubicin and cytarabine. We have shown that adding bortezomib to standard treatment in AML results in a high remission rate, although grade 2 sensory neurotoxicity was noted in approximately 12% of treated patients. A newer generation proteasome inhibitor, ixazomib, is less frequently associated with neurotoxicity, and, therefore, was selected for combination with conventional chemotherapy in this phase I trial. The primary objective of this study was to determine the maximum tolerated dose (MTD) of ixazomib in combination with conventional induction and consolidation chemotherapy for AML. Herein are the initial results of this trial. Methods: Adults &gt;60 years of age with newly diagnosed AML were screened for eligibility. Patients with secondary AML were eligible, including those with prior hypomethylating agent therapy for myelodysplastic syndromes (MDS). We excluded those with promyelocytic leukemia. There were 2 phases in this study. In the first phase (A), the induction treatment consisted of the following: cytarabine 100 mg/m2/day by continuous IV infusion, Days 1-7; daunorubicin 60 mg/m2/day IV, Days 1, 2, 3, and ixazomib was provided orally at the cohort dose, Days 2, 5, 9, and 12. Consolidaton or transplant was at the discretion of the treating physician in phase A. In the second phase (B), induction was the same as that with the determined MTD of ixazomib. All patients were to be treated with the following consolidation: cytarabine at 2 g/m2/day, days 1-5 with ixazomib on days 2, 5, 9, and 12 at the cohort dose for consolidation. A standard 3 + 3 patient cohort dose escalation design was used to determine whether the dose of ixazomib could be safely escalated in 3 cohorts (1.5 mg/day, 2.3 mg/day, 3.0 mg/day), initially in induction (phase A) and subsequently in consolidation (phase B). The determined MTD of ixazomib in the first portion (A) of the trial was used during induction in the second portion (B), which sought to determine the MTD for ixazomib during consolidation. Secondary objectives included rate of complete remission, disease-free survival, and overall survival (OS). Results: Thirty-six patients have been enrolled on study, and 28 have completed dose levels A-1 through A-3 and B1 through B-2. Full information on cohort B-3 has not yet been obtained, hence, this report covers the experience with the initial 28 patients, cohorts A-1 through B-2. There were 12 (43%) patients among the 28 with secondary AML, either with prior hematologic malignancy or therapy-related AML. Nineteen patients (68%) were male, and the median age was 68 years (range 61-80 years). There have been no grade 5 toxicities due to study drug. Three patients died early due to leukemia, 2 of which were replaced for assessment of the MTD. Nearly all the grade 3 and 4 toxicities were hematologic (Table). There was 1 DLT (grade 4 platelet count decrease extending beyond Day 42). There has been no grade 3 or 4 neurotoxicity with ixazomib to date. Among the 28 patients in the first 5 cohorts, 22 achieved complete remissions (CR) and 2 achieved CRi, for a composite remission rate (CCR) of 86%. Among the 12 patients with secondary AML 8 achieved CR and 2 achieved CRi, for a CCR of 83%. The median OS for the 28 patients has not been reached (graph). The 18-month OS estimate was 65% [90% CI, 50-85%]. Conclusions: The highest dose level (3 mg) of ixazomib planned for induction in this trial has been reached safely. For consolidation there have been no serious safety issues in the first 2 cohorts with a dose up to 2.3 mg, apart from 1 DLT in the form of delayed platelet count recovery. The recommended phase 2 dose of ixazomib for induction is 3 mg. Accrual to cohort B-3 is ongoing. Notably, to date, no grade 3 or 4 neurotoxicity has been encountered. The remission rate in this older adult population with the addition of ixazomib to standard chemotherapy appears favorable. Figure Disclosures Amrein: Amgen: Research Funding; AstraZeneca: Consultancy, Research Funding; Takeda: Research Funding. Attar:Aprea Therapeutics: Current Employment. Brunner:Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Forty-Seven Inc: Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Research Funding; Takeda: Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Research Funding. Hobbs:Constellation: Honoraria, Research Funding; Novartis: Honoraria; Incyte: Research Funding; Merck: Research Funding; Bayer: Research Funding; Jazz: Honoraria; Celgene/BMS: Honoraria. Neuberg:Celgene: Research Funding; Madrigak Pharmaceuticals: Current equity holder in publicly-traded company; Pharmacyclics: Research Funding. Fathi:Blueprint: Consultancy; Boston Biomedical: Consultancy; BMS/Celgene: Consultancy, Research Funding; Novartis: Consultancy; Kura Oncology: Consultancy; Trillium: Consultancy; Amgen: Consultancy; Seattle Genetics: Consultancy, Research Funding; Abbvie: Consultancy; Pfizer: Consultancy; Newlink Genetics: Consultancy; Forty Seven: Consultancy; Trovagene: Consultancy; Kite: Consultancy; Daiichi Sankyo: Consultancy; Astellas: Consultancy; Amphivena: Consultancy; PTC Therapeutics: Consultancy; Agios: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Jazz: Consultancy. OffLabel Disclosure: Ixazomib is FDA approved for multiple myeloma. We are using it in this trial for acute myeloid leukemia.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1528-1528
Author(s):  
Sebastian Stasik ◽  
Jan Moritz Middeke ◽  
Michael Kramer ◽  
Christoph Rollig ◽  
Alwin Krämer ◽  
...  

Abstract Purpose: The enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and key epigenetic regulator involved in transcriptional repression and embryonic development. Loss of EZH2 activity by inactivating mutations is associated with poor prognosis in myeloid malignancies such as MDS. More recently, EZH2 inactivation was shown to induce chemoresistance in acute myeloid leukemia (AML) (Göllner et al., 2017). Data on the frequency and prognostic role of EZH2-mutations in AML are rare and mostly confined to smaller cohorts. To investigate the prevalence and prognostic impact of this alteration in more detail, we analyzed a large cohort of AML patients (n = 1604) for EZH2 mutations. Patients and Methods: All patients analyzed had newly diagnosed AML, were registered in clinical protocols of the Study Alliance Leukemia (SAL) (AML96, AML2003 or AML60+, SORAML) and had available material at diagnosis. Screening for EZH2 mutations and associated alterations was done using Next-Generation Sequencing (NGS) (TruSight Myeloid Sequencing Panel, Illumina) on an Illumina MiSeq-system using bone marrow or peripheral blood. Detection was conducted with a defined cut-off of 5% variant allele frequency (VAF). All samples below the predefined threshold were classified as EZH2 wild type (wt). Patient clinical characteristics and co-mutations were analyzed according to the mutational status. Furthermore, multivariate analysis was used to identify the impact of EZH2 mutations on outcome. Results: EZH2-mutations were found in 63 of 1604 (4%) patients, with a median VAF of 44% (range 6-97%; median coverage 3077x). Mutations were detected within several exons (2-6; 8-12; 14-20) with highest frequencies in exons 17 and 18 (29%). The majority of detected mutations (71% missense and 29% nonsense/frameshift) were single nucleotide variants (SNVs) (87%), followed by small indel mutations. Descriptive statistics of clinical parameters and associated co-mutations revealed significant differences between EZH2-mut and -wt patients. At diagnosis, patients with EZH2 mutations were significantly older (median age 59 yrs) than EZH2-wt patients (median 56 yrs; p=0.044). In addition, significantly fewer EZH2-mut patients (71%) were diagnosed with de novo AML compared to EZH2-wt patients (84%; p=0.036). Accordingly, EZH2-mut patients had a higher rate of secondary acute myeloid leukemia (sAML) (21%), evolving from prior MDS or after prior chemotherapy (tAML) (8%; p=0.036). Also, bone marrow (and blood) blast counts differed between the two groups (EZH2-mut patients had significantly lower BM and PB blast counts; p=0.013). In contrast, no differences were observed for WBC counts, karyotype, ECOG performance status and ELN-2017 risk category compared to EZH2-wt patients. Based on cytogenetics according to the 2017 ELN criteria, 35% of EZH2-mut patients were categorized with favorable risk, 28% had intermediate and 37% adverse risk. No association was seen with -7/7q-. In the group of EZH2-mut AML patients, significantly higher rates of co-mutations were detected in RUNX1 (25%), ASXL1 (22%) and NRAS (25%) compared to EZH2-wt patients (with 10%; 8% and 15%, respectively). Vice versa, concomitant mutations in NPM1 were (non-significantly) more common in EZH2-wt patients (33%) vs EZH2-mut patients (21%). For other frequently mutated genes in AML there was no major difference between EZH2-mut and -wt patients, e.g. FLT3ITD (13%), FLT3TKD (10%) and CEBPA (24%), as well as genes encoding epigenetic modifiers, namely, DNMT3A (21%), IDH1/2 (11/14%), and TET2 (21%). The correlation of EZH2 mutational status with clinical outcomes showed no effect of EZH2 mutations on the rate of complete remission (CR), relapse free survival (RFS) and overall survival (OS) (with a median OS of 18.4 and 17.1 months for EZH2-mut and -wt patients, respectively) in the univariate analyses. Likewise, the multivariate analysis with clinical variable such as age, cytogenetics and WBC using Cox proportional hazard regression, revealed that EZH2 mutations were not an independent risk factor for OS or RFS. Conclusion EZH mutations are recurrent alterations in patients with AML. The association with certain clinical factors and typical mutations such as RUNX1 and ASXL1 points to the fact that these mutations are associated with secondary AML. Our data do not indicate that EZH2 mutations represent an independent prognostic factor. Disclosures Middeke: Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees. Rollig:Bayer: Research Funding; Janssen: Research Funding. Scholl:Jazz Pharma: Membership on an entity's Board of Directors or advisory committees; Abbivie: Other: Travel support; Alexion: Other: Travel support; MDS: Other: Travel support; Novartis: Other: Travel support; Deutsche Krebshilfe: Research Funding; Carreras Foundation: Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees. Hochhaus:Pfizer: Research Funding; Incyte: Research Funding; Novartis: Research Funding; Bristol-Myers Squibb: Research Funding; Takeda: Research Funding. Brümmendorf:Janssen: Consultancy; Takeda: Consultancy; Novartis: Consultancy, Research Funding; Merck: Consultancy; Pfizer: Consultancy, Research Funding. Burchert:AOP Orphan: Honoraria, Research Funding; Bayer: Research Funding; Pfizer: Honoraria; Bristol Myers Squibb: Honoraria, Research Funding; Novartis: Research Funding. Krause:Novartis: Research Funding. Hänel:Amgen: Honoraria; Roche: Honoraria; Takeda: Honoraria; Novartis: Honoraria. Platzbecker:Celgene: Research Funding. Mayer:Eisai: Research Funding; Novartis: Research Funding; Roche: Research Funding; Johnson & Johnson: Research Funding; Affimed: Research Funding. Serve:Bayer: Research Funding. Ehninger:Cellex Gesellschaft fuer Zellgewinnung mbH: Employment, Equity Ownership; Bayer: Research Funding; GEMoaB Monoclonals GmbH: Employment, Equity Ownership. Thiede:AgenDix: Other: Ownership; Novartis: Honoraria, Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3402-3402
Author(s):  
Seung-Ah Yahng ◽  
Jae-Ho Yoon ◽  
Sung-Eun Lee ◽  
Seung-Hwan Shin ◽  
Byung-Sik Cho ◽  
...  

Abstract Background The successful induction chemotherapy of acute myeloid leukemia (AML) depends on the ability to achieve complete remission (CR) and to maintain remission status as long as possible. Approach to improve the rate of CR includes the intensification of induction chemotherapy for AML. The primary goal of this study was to evaluate and compare the long-term outcomes between remission induction therapy with and without early intensification added to the standard 3+7 remission induction regimen. Methods A retrospective analysis was performed on de novo AML patients diagnosed and treated at Catholic Blood and Marrow Transplantation Center between January 2001 and December 2010. Six hundred forty-one adults of ages between 16 and 60 were included, all of whom received induction chemotherapy starting with 3 days of idarubicin and 7 days of cytarabine or behenoyl cytarabine (BHAC). Cases with t(9;22) and t(15;17) were excluded. Bone marrow (BM) aspiration study was assessed on day 7 of induction in all patients. Factors which were considered for early intensification of induction were the presence of ≥ 5% BM blasts, patient performance, and other high risk clinical characteristics, such as karyotype. Groups according to early intensification on days 8 to 10 of induction were as followings: no intensification (3+7), n=156; cytarabine or BHAC for 3 days (3+10), n=233; addition of idarubicin for 2 days to 3+10 regimen (5+10), n=252. After a median duration of 5.5 months (3.3-19.0) from diagnosis, 479 patients underwent stem cell transplantation (autologous [auto-SCT], n=144; allogeneic [allo-SCT], n=335). Conditioning regimen for auto-SCT consisted of fractionated total body irradiation (TBI), melphalan, and cytarabine, whereas 83% (n=278) of patients with allo-SCT received myeloablative conditioning, of which was mostly TBI-based regimen (92%). Donors were matched sibling (n=213), matched unrelated (n=63), mismatched unrelated (n=39), and haploidentical related (n=20). Results The median age at diagnosis was 39 years (16-60). Mean values of BM blast % on day 7 of induction was 3.5 in 3+7 group, 7.9 in 3+10, and 33.6 in 5+10 (p=<0.0001), while no significant difference in the proportion of adverse karyotype was shown (11.7% vs. 12.8%, p=0.804). After first induction (3+7, n=165; 3+10/5+10, n=465), the CR/CRi rate was significantly higher in 3+10/5+10 versus 3+7 (78.1% vs. 69.2%, p=0.023), while the rate for death in aplasia was lower (4.3% vs. 9.6%, p=0.013). After re-induction with various regimens, the CR/CRi rate was still significantly higher in intensified group (p=0.012). The relapse rates between the groups in 536 patients achieving CR (83.6%), however, was not significantly different (8.9% vs. 9.9%, p=0.737). SCT was performed at CR1 (n=459), CR2 (n=10), or relapsed/refractory status (n=10). Patients with auto-SCT mostly had better/intermediate cytogenetic risk (96%) at diagnosis, while 12% of allo-SCT had poor karyotype. After the median follow-up duration of 60.2 months (2.2-143.5), the median overall survival (OS) in all patients (n=641) was 65.6 months. The 5-year disease-free survival (DFS) of patients with auto- and allo-SCT was 58.4±4.2 and 64.9±2.7, respectively. Of 334 patients receiving allo-SCT, the 5-year DFS was significantly higher in patients achieving CR1 (n=299) after first induction therapy (p<0.0001), in whom 75% of them had early intensification. Other factors with significant impact on DFS after allo-SCT (n=334) were karyotype at diagnosis (p=0.032) and donor type (HLA-matched vs. HLA-mismatched sibling or unrelated, 58.1%±3.8 vs. 45.1±8.0, p=0.016). The significances were confirmed in multivariate analysis, which demonstrated that achieving CR1 after first induction regimen and its maintenance until SCT was the most powerful predictor for DFS after allo-SCT (67.1±2.9 vs. 34.6±7.8, p=<0.0001). When all patients were analyzed, according to induction intensification, a statistically significant benefit in 10-year OS was observed in 5+10 intensified group (44.8% vs. 52.9%, p=0.032). Conclusion Our results suggest possible benefit of examining day 7 BM aspiration for the strategy of early intensification of induction chemotherapy for adult AML patients and our intensification doses can be safely added with high efficacy in the achievement of CR1 compared to 3+7 standard regimen, and may have affected for better DFS after allo-SCT. Disclosures: Kim: BMS: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Pfizer: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document