scholarly journals Children with Acute Leukemia Given Hematopoietic Stem Cell Transplantation (HSCT) from an HLA-Compatible Sibling, or an Unrelated Donor (UD) or an HLA-Haploidentical Relative after Alpha/Beta T-Cell Depletion Have a Comparable Outcome

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 195-195 ◽  
Author(s):  
Alice Bertaina ◽  
Barbarella Lucarelli ◽  
Riccardo Masetti ◽  
Pietro Merli ◽  
Roberto Rondelli ◽  
...  

Abstract Background: Allogeneic HSCT is a widely used treatment for children with acute leukemia (AL) either relapsed or at high risk of treatment failure. However, an HLA-identical sibling is available for only 20-25% of patients and an UD can be located in a suitable time only for a portion of the remaining population. HSCT from an HLA-haploidentical relative (haplo-HSCT) is now considered an alternative option, especially in view of the recent insights in graft manipulation. We recently developed a novel method of more selective T-cell depletion based on physical elimination of α/β T cells (ClinicalTrial.gov identifier: NCT01810120), shown to be effective for both preventing graft-versus-host disease (GvHD) and for conferring improved protection against infections in comparison to haplo-HSCT performed through the infusion of positively selected CD34+ cells. The initial results on 40 patients with AL were reported at the ASH Meeting in 2013 (Bertaina et al). We now present the comparison of the outcome of 80 children with AL given haplo-HSCT after α/β T-cell depletion (group 1) with that of patients transplanted from an HLA-identical sibling (group 2) or an UD (group 3) in the same time period. Patients and methods: All patients with AL were transplanted at the Bambino Gesù Children's Hospital in Rome, Italy, between December 2010 and September 2014; 80 patients were included in group 1, 41 in group 2 and 51 in group 3. Patients were offered α/β T-cell-depleted haplo-HSCT in the absence of suitable conventional donor (HLA identical sibling or 10/10 UD evaluated using high resolution typing) or if affected by rapidly progressive disease not permitting time to identify an UD. Clinical characteristics of patients assigned to the 3 groups and those of their donor are shown in Table1. All children were given a fully myeloablative regimen. No group 1 patient was given any post-transplantation GvHD prophylaxis, while patients of group 2 and 3 were given Cyclosporine-A and short-term methotrexate. Group 1 and 3 patients received ATG Fresenius® (4 mg/Kg/day) from day -5 to -3 for preventing both graft rejection and GvHD. Results: All group 2 and 3 patients had sustained engraftment of donor cells, while 1 of the 80 patients included in group 1 experienced primary graft failure and was rescued by haplo-HSCT from the other parent. The cumulative incidence (CI) of acute GvHD was 30%, 41% and 42%, respectively. Remarkably, all children of the group 1 who developed acute GvHD had a skin-only involvement, while 17% and 16.3% of those of group 2 and 3 had either gut or liver involvement (p<0.001). The CI of chronic GvHD was significantly lower in group 1 children than in those of groups 2 and 3 (p=0.02, see also Figure 1-Panel A). None of the 4 group 1 patients experiencing chronic GvHD had the extensive form of the disease, while the CI of extensive chronic GvHD of group 2 and 3 was 8% and 14%, respectively (p=0.01). Four, 1 and 6 children of patients assigned in group 1, 2 and 3, respectively, died for transplant-related causes; the CI of transplantation-related mortality (TRM) in the 3 groups is shown in Figure 1-Panel B. Relapse was the main cause of treatment failure and occurred at a comparable CI in all the 3 groups (see also Panel C of Figure 1). The 3-year probability of Event-Free Survival (EFS) was comparable in the 3 groups (Figure 1 - Panel D). In multivariate analysis, a Total Body Irradiation (TBI)-containing regimen was the only variable favourably influencing EFS of group 1 children (hazard ratio 2.93, 95% Confidence Interval 1.24-6.95). No variable influenced EFS of group 2 and 3 patients. Conclusions: Overall, these data indicate that haplo-HSCT after α/β T-cell depletion is associated with a risk of TRM and leukemia recurrence comparable to that of transplantation from an HLA-identical sibling or an UD, this translating in a similar probability of EFS. In view of the low incidence of chronic GvHD, this transplant option has to be considered a competitive alternative for children with AL in need of an allograft. Table. Sibling (n=41) MUD (n=51) Haplo (n=80) Sex p=0.77 M 27 32 55 F 14 19 25 Age at Transplantation (years) 10.6 9.4 9.7 p=0.20 Disease p=0.23 ALL 34 35 56 AML 7 16 24 Disease status at Transplantation p=0.13 CR1 20 30 30 CR2 21 20 47 ≥CR3 0 1 3 CMV serology (Donor/Recipient) p=0.001 neg/neg 8 5 6 neg/pos 8 21 7 pos/neg 1 4 11 pos/pos 24 21 56 Source of Stem Cells p<0.0001 BM 40 40 0 PBSC 1 11 80 Conditioning regimens p=0.10 TBI-based 26 29 60 non TBI-based 15 22 20 Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
1991 ◽  
Vol 78 (8) ◽  
pp. 2120-2130 ◽  
Author(s):  
AM Marmont ◽  
MM Horowitz ◽  
RP Gale ◽  
K Sobocinski ◽  
RC Ash ◽  
...  

We analyzed the effects of T-cell depletion on the outcome of HLA- identical sibling bone marrow transplants for leukemia by comparing 731 T-cell-depleted transplants with 2,480 non-T-cell-depleted transplants. T-cell depletion decreased acute graft-versus-host disease (GVHD) (relative risk [RR] 0.45; P less than .0001) and chronic (GVHD) (RR 0.56; P less than .0001). However, it increased graft failure (RR 9.29; P less than .0001). Leukemia relapse also was increased. In first remission acute leukemia or chronic phase chronic myelogenous leukemia, leukemia relapse was 2.75 times more likely after T-cell-depleted transplants (P less than .0001). T-cell depletion increased the risk of treatment failure (RR 1.35; P less than .0003) and decreased leukemia- free survival. We also studied controllable variables associated with outcome of T-cell-depleted transplants. The unique findings were that among recipients of T-cell-depleted transplants for early leukemia, radiation doses greater than or equal to 11 Gy (RR 0.54; P less than .01), dose rates greater than 14 cGy/min (RR 0.56; P less than .002), and additional posttransplant immune suppression with cyclosporine alone (RR 0.53; P less than .0006) or cyclosporine plus methotrexate (RR 0.36; P less than .01) were associated with fewer treatment failures. Use of monoclonal antibodies rather than physical techniques for T-cell depletion (RR 2.01; P less than .03) and fractionated radiation (RR 1.69; P less than .05) were associated with increased treatment failure and lower leukemia-free survival. These data may be useful in designing strategies to improve results of T-cell-depleted transplants.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2305-2305 ◽  
Author(s):  
Robert J Soiffer ◽  
Jennifer LeRademacher ◽  
Vincent T Ho ◽  
Fangyu Kan ◽  
Andrew Artz ◽  
...  

Abstract Abstract 2305 HCT using RIC regimens has increased steadily over the past decade. In vivo administration of anti-T cell antibodies, such as alemtuzumab and anti-thymocyte globulin (ATG) preparations, is often employed to promote engraftment and limit graft-versus-host disease (GVHD). While these antibodies might reduce the severity and incidence of GVHD, they may also blunt the allo-immune graft-versus-tumor effect of HCT. Transplant outcomes after in vivo T-cell depletion (n=584 ATG; n=213 alemtuzumab) were compared to those after T-cell replete (n=879) RIC transplants for myeloid and lymphoid malignancies. Patients were aged 21–69 yrs and transplanted from 2000–2007. Median follow-up of patients is 3 years. Conditioning regimens consisted of an alkylating agent (melphalan, busulfan, or cyclophosphamide) with fludarabine. 792 patients (47%) received allografts from a HLA-matched sibling, 650 (39%) from an 8/8 and 234 (14%) from a 7/8 HLA-matched unrelated donor. In vivo T-cell depletion was used for 35% of matched sibling HCT, 57% of 8/8 and 64% of 7/8 HLA matched unrelated donor HCT. Results of multivariable analysis adjusted for age, disease and disease stage, donor, year of transplant, conditioning regimen, and GVHD prophylaxis are shown in Table below. Grade 2–4 acute GVHD was lower with alemtuzumab containing regimens (20%) than ATG containing (41%) or T replete (42%) regimens. Chronic GVHD occurred in 27% of recipients of alemtuzumab, 43% of ATG, and 57% of T replete regimens, respectively. Compared to T-cell replete regimens, relapse risks were higher with ATG and alemtuzumab containing regimens (38%, 49% and 51%, respectively) and non-relapse mortality, higher with ATG containing regimens only. Treatment failure (relapse or death) was higher with both ATG and alemtuzumab containing regimens compared to T replete regimens. Overall mortality was highest with ATG containing regimens. These observations are independent of disease, disease status and donor type including 7/8 HLA-matched HCT. The 3-year probabilities of disease-free survival (DFS) were 25%, 30% and 39% with ATG-containing, alemtuzumab-containing and T-cell replete regimens, respectively. Corresponding probabilities for overall survival were 38%, 50% and 46%. There were no differences in disease-free and overall survival at 3-years by ATG source or dose. The incidence of EBV-PTLD was higher with alemtuzumab and ATG containing compared to T-cell replete regimens (2% vs. 2% vs. 0.2%). These results suggest in-vivo T-cell depletion with RIC regimens containing an alkylating agent and fludarabine significantly lowers DFS despite lower GVHD. The routine use of in-vivo T-cell depletion in this setting warrants a cautious approach in the absence of a prospective randomized trial. Alemtuzumab vs. T-cell replete ATG vs. T-cell replete Alemtuzumab vs. ATG Hazard ratio, p-value Hazard ratio, p-value Hazard ratio, p-value Grade 2-4 acute GVHD 0.33, p<0.0001 0.88, p=0.12 0.38, p<0.001 Grade 3-4 acute GVHD 0.42, p<0.0001 0.86, p=0.20 0.48, p=0.001 Chronic GVHD 0.34, p<0.0001 0.69, p<0.0001 0.49, p<0.0001 Non-relapse mortality 1.04, p=0.85 1.34, p=0.01 0.78, p=0.19 Relapse 1.54, p=0.0001 1.53, p<0.0001 1.01, p=0.94 Treatment failure 1.40, p=0.0003 1.46, p<0.0001 0.96, p=0.67 Overall mortality 1.09, p=0.46 1.25, p=0.002 0.87, p=0.22 Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 547-547 ◽  
Author(s):  
John Koreth ◽  
Kwang Woo Ahn ◽  
Joseph Pidala ◽  
James L. Gajewski ◽  
Hailin Wang ◽  
...  

Abstract In myeloablative unrelated donor allogeneic hematopoietic cell transplantation (HCT) a 1-locus HLA-mismatch (-A, -B, -C, -DRB1) is associated with lower survival compared to fully matched pairs. However data in reduced-intensity and non-myeloablative conditioning (together called RIC) HCT are limited. We analyzed adult AML/ALL/CML/MDS recipients of first 8/8 HLA-matched or 1-locus mismatched unrelated donor (MUD, MMUD) RIC HCT performed in the period 1999-2011 and registered in the CIBMTR. HLA-A, -B, -C and -DRB1 loci were typed in all pairs at high resolution; -DQB1 and -DPB1 loci could not be evaluated in all pairs. Transplants involving ex-vivo T-cell depletion, CD34+ selection, or post-transplant cyclophosphamide were excluded. Overall survival (OS) was the primary outcome. Secondary outcomes included non-relapse mortality (NRM), relapse, disease-free survival (DFS) and acute and chronic GVHD. Individual locus mismatch was also assessed. Apart from HLA matching, variables related to patient (age, race, sex, KPS, diagnosis, disease-risk), donor (age, parity), both (sex match/ABO match/CMV match) treatment (conditioning intensity, TBI use, in-vivo T-cell depletion (ATG), graft source (PB, BM) and GVHD prophylaxis (CyA-, Tac-based)) were considered. 2588 RIC HCT (8/8 MUD: 2025; 7/8 MMUD: 563) from 144 centers and 12 countries were analyzed. Median follow up in 8/8 MUD and 7/8 MMUD was 38 and 48 months respectively. Diagnoses were AML (65%), ALL (8%), CML (7%), MDS (20%). Conditioning intensity was RIC (79%), NMA (21%). 58% received in-vivo T-cell depletion. Graft source was PBSC (85%), BM (15%). GVHD prophylaxis was Tac-based (70%), CyA-based (27%). Mismatches involved HLA-A (188), -B (81), -C (219), and -DRB1 (75); with -DPB1 and -DQB1 typing available in 1382 and 2502 cases respectively. Compared to 8/8 MUD, 7/8 MMUD recipients were more likely to be younger and ethnic minorities and to have older and parous donors. In univariate analyses DQB1- and -DPB1 mismatch was not associated with worse OS, DFS, or NRM and was not further evaluated. There was a trend toward more grade II-IV acute GVHD in -DPB1 double (p=0.02) but not single mismatches. In multivariate models 7/8 MMUD RIC HCT had worse grade II-IV and III-IV acute GVHD, NRM, DFS and OS, but not relapse or chronic GVHD (Table). No significant interactions were identified between degree of HLA matching and other clinical variables. Adjusted 1- and 3-year NRM for 8/8 MUD vs. 7/8 MMUD was 20.4% vs. 28.9% (p<0.0001) and 29.2% vs. 38.1% (p<0.0007) respectively. Adjusted 1- and 3-year OS was 54.7% vs. 48.8% (p=0.01) and 37.4% vs. 30.9% (p=0.005) respectively (Figure). There was no difference between allele and antigen mismatches. HLA-A, -B, -C, and -DRB1 locus mismatches were each associated with 1 or more impaired outcomes (acute GVHD, NRM, DFS, and/or OS). Table 1 7/8 vs. 8/8 HLA HR (95% CI) p-value Acute GVHD II-IV 1.29 (1.09-1.53) 0.003 Acute GVHD III-IV 1.69 (1.00-3.36) 0.05 Chronic GVHD 1.11 (0.96-1.28) 0.15 Relapse 1.01 (0.87-1.17) 0.92 NRM 1.52 (1.29-1.79) <0.0001 DFS 1.20 (1.07-1.34) 0.0015 OS 1.25 (1.11-1.40) 0.0001 Compared to 8/8 MUD, both 7/8 allele and antigen MMUD RIC HCT have greater treatment toxicity and worse survival, of a magnitude similar to that seen in myeloablative transplantation. An isolated mismatch at HLA-A, -B, -C, or -DRB1 was associated with 1 or more adverse outcomes. In unrelated donor RIC HCT, matching for all alleles of HLA-A, -B, -C and -DRB1 loci results in superior outcomes. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1206-1206
Author(s):  
Olivia Laverick ◽  
Amy Publicover ◽  
Laura Jardine ◽  
Kile Green ◽  
Alan Potter ◽  
...  

Abstract Many variables influence the risk of graft versus host disease following hematopoietic stem cell transplantation. Comparison between preparative regimens is hampered by the use of many different combinations of chemotherapy and radiotherapy, varying intensity of conditioning, use of T cell depletion and donors who are either siblings or unrelated volunteers. Many reduced intensity regimens also incorporate enhanced GVHD prophylaxis with in vivo T cell depletion. Here we describe a cohort of patients prepared in a modular fashion with either reduced or full intensity conditioning combined with a uniform GVHD prophylaxis regimen for all transplants with sibling donors (alemtuzumab 30mg) and for all with unrelated donors (UD; alemtuzumab 60mg). Thus it was possible to dissect independently the effect of conditioning intensity and sibling or UD type upon GVHD risk in this settig of in vivo T cell depletion. Patients and analysis: the study was a retrospective analysis of 258 sequential transplants performed in adults with hematological malignancy between September 2005 and September 2013 at a single UK institution. Reduced intensity conditioning (n = 221) included fludarabine 150mg/m2 plus melphalan 140mg/m2 or fludarabine 150mg/m2 plus busulfan 9.6mg/kg. Full intensity transplants (n = 37) received 12Gy TBI plus melphalan 140mg/m2, 12Gy TBI plus cyclophosphamide 120mg/kg, or busulfan 16mg/kg plus cyclophosphamide 120mg/kg. All patients with sibling donors received 30mg alemtuzumab and those with UD received a 60mg of alemtuzumab. UD matching was similar in both reduced intensity and full intensity cohorts (92.2% and 86.5% 10/10 matches, respectively) but patients receiving reduced intensity were older than those receiving full intensity conditioning (median age 51 vs 31; p < 0.001). Outcome was analyzed according to EBMT guidelines. Relapse, non-relapse mortality and cGVHD were treated as competing risks and analysed as cumulative incidence. Outcome: the incidence of acute GVHD grades I-IV was comparable between reduced intensity and full intensity sibling transplants (45% vs 45%; p = NS) indicating a lack of effect of conditioning intensity upon GVHD risk in this setting. There was a slight increase in the risk of GVHD between reduced intensity UD compared with reduced intensity sibling donor transplants (57% vs 45%; p = NS) but a marked synergistic increase between UD transplants performed with full intensity compared with reduced intensity conditioning (100% vs 57%; p = < 0.001). The incidence of grades III-IV acute GVHD was also higher in full intensity UD transplants (16%) compared with reduced intensity UD transplants (5%). The incidence of chronic GVHD was also highest in full intensity UD transplants but both conditioning intensity and UD contributed in an additive manner: the rate of chronic GVHD progressed from 33% to 44% in reduced intensity and full intensity sibling transplants respectively and from 57% to 75% for reduced and full intensity UD transplants, respectively. Two year overall survival was comparable in all groups, ranging from 55% to 70%. In keeping with the higher rates of acute GVHD in full intensity transplants performed with UD, this group experienced the lowest relapse risk (15% vs 29% for all the other groups combined; p = 0.04) but the highest non-relapse mortality, reaching 41% at 2 years compared with 28% for all the other groups combined (p = 0.08). Conclusion: these results show that alemtuzumab provides good protection from acute GVHD in reduced intensity transplantation from sibling and UD. In sibling transplants given identical GVHD prophylaxis, full intensity conditioning does not increase the risk of GVHD. In contrast, a slight increase in GVHD risk with UD transplants seen with reduced intensity conditioning, is amplified in a synergistic manner by full intensity conditioning. This is associated with a high non-relapse mortality, even though the median age of full intensity patients is more than 20 years younger than those receiving reduced intensity conditioning. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3912-3912 ◽  
Author(s):  
Maria Chiara Finazzi ◽  
Cristina Boschini ◽  
Janice Ward ◽  
Charles Craddock ◽  
Alessandro Rambaldi ◽  
...  

Abstract Introduction Graft-versus-Host Disease (GvHD) is one of the leading causes of mortality and morbidity following allogeneic stem cell transplant. In vivo T cell depletion by alemtuzumab as part of the transplant conditioning is an effective strategy to reduce the risk of GvHD. While it is recognised that the overall incidence of GvHD is reduced by alemtuzumab, the incidence of chronic GvHD as defined by the National Institute of Health (NIH) consensus criteria, the impact on outcome, and the pattern of organ involvement have not been defined yet in this transplant setting. Methods Consecutive patients (n = 323) undergoing allogeneic stem cell transplantation at the Queen Elizabeth Hospital, Birmingham, between January 1 2008 and June 30 2012 were reviewed in this retrospective, single centre study. Medical records were examined and data regarding the development of GvHD were collected; NIH consensus criteria for diagnosis and staging of chronic GvHD were stringently applied. Clinical characteristics of GvHD occurring in patients transplanted following T cell depletion by alemtuzumab administration (n=248) were compared with those of patients transplanted with a T cell replete graft (n=75). Patients receiving alemtuzumab were mainly treated with reduced-intensity conditioning protocols, while patients in the no-T-cell depletion group were mainly treated with a myeloablative, sibling transplant. Results After a median follow up of 38.4 months, the cumulative incidence (CI) of grade II-IV classic acute GvHD was 35% and 48% for patients transplanted respectively with or without T cell depletion by alemtuzumab (p= 0.041, Figure 1); with a CI of grade III-IV classic acute GvHD of 13% and 27% (p=0.007). The 2-years CI of grade II-IV late acute GvHD was not significantly different in the two groups (20% and 23% for patients respectively treated with or without alemtuzumab, p=0.589, Figure 2). T cell depletion by alemtuzumab significantly reduces the 3 years cumulative incidence of classic chronic GvHD (5% versus 31%, p<0.0001, Figure 3.A), but without a significant difference in the incidence of overlap syndrome between patients with and without T cell depletion (3 years CI respectively 6% and 7%, p=0.839, Figure 3.B). The pattern of organ involvement by classic acute GvHD was similar in patients with and without T cell depletion. The pattern of organ involvement by late acute GvHD in the alemtuzumab group was, however, significantly different compared to the T cell replete group (skin-gut-liver involvement reported respectively in 83%-28%-4% of patients and 56%-48%-20% of patients, p=0.003). Distribution of organ involvement by classic chronic and overlap syndrome was similar in the two groups; however, it seems that alemtuzumab prevents the development of lung GvHD (lung GvHD developed in 4 patients over the 75 patients of the no-T-cell depletion group, while none of the 248 patients transplanted with alemtuzumab experienced lung GvHD). In a multivariate analysis, the development of chronic GvHD was an independent predictor of higher mortality risk (HR 1.66, p = 0.04) and severe NIH global score at peak was confirmed as a poor prognostic factor for survival (HR 2.27, p=0.02). The negative impact of chronic GvHD and of the severe forms of chronic GvHD was independent of age and alemtuzumab administration. Conclusion This retrospective analysis provides for the first time data on the incidence rates of NIH-defined GvHD categories in patients transplanted after T cell depletion by alemtuzumab. Patients transplanted with alemtuzumab experienced a lower incidence of classic acute and classic chronic GvHD compared to patients not receiving T cell depletion. In contrast, alemtuzumab conditioning appeared to have no effect on the incidence of late acute GvHD or overlap syndrome, suggesting that these two entities of GvHD are driven by different immunological mechanisms as compared to classic acute and classic chronic GvHD. We also confirmed the utility of the NIH classification of GvHD and of the NIH global severity score to predict survival in alemtuzumab-conditioned allogeneic stem cell transplant. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2280-2280
Author(s):  
Avichai Shimoni ◽  
Myriam Labopin ◽  
Bipin N. Savani ◽  
Rose-Marie Hamladji ◽  
Dietrich W. Beelen ◽  
...  

Abstract Allogeneic stem cell transplantation (SCT) is a potentially curative therapy for patients with acute myeloid leukemia (AML). Myeloablative conditioning (MAC) is associated with prohibitive rates of non-relapse mortality (NRM) in older and less medically fit patients. Several reduced intensity conditioning regimens (RIC) and more recently the more dose-intensive reduced toxicity myeloablative (RTC) regimens were designed to replace MAC in this setting. The backbone of these regimens is usually fludarabine with busulfan and more recently also with treosulfan, but there is no clear data on the comparative outcomes with these different regimens in the different SCT settings. The current study included 3561 patients with AML given a first allogeneic SCT from an HLA-matched sibling (n=1683) or a 10/10 matched unrelated donor (n=1878) between the years 2000-2014 and reported to the acute leukemia working party (ALWP) of EBMT. Only patients given fludarabine with either intravenous busulfan (ivBu), (FB, n=2990) or treosulfan (FT, n=571) alone were analyzed. Fludarabine and ivBu at 6.4 mg/kg (n=1457) or treosulfan at 30-36 gr/m2 (n=168) were considered RIC regimens while fludarabine with ivBu at a total dose of 9.6-12.8 mg/kg (n=1533) or treosulfan at 42 gr/m2(n=403) were considered RTC regimens according to EBMT criteria. The median age of FB and FT recipients was 55.5 and 58.3 years, respectively (P< 0.0001). The status at SCT was 72.5% CR1, 15.0% CR2 and 12.5% advanced disease in the FB group compared to 55.0%, 20.3% and 24.7% in the FT group, respectively (P<0.0001). More FT recipients had SCT from unrelated donors (64.8% Vs. 50.4%, P<0.0001) but less had in-vivo T-cell depletion (58.4%Vs 70.5%, P<0.0001). Cytogenetic subgroup distribution was similar between the groups. Ninety percent had peripheral blood stem cell grafts in both groups. The median follow-up was 19 and 43 months after FB and FT, respectively. Using univariant analysis, the 2-year relapse incidence (RI) was 32.7% and 35.5%, respectively (P=0.49). NRM was 17.6% and 19.4%, respectively (P=0.09). Leukemia-free survival (LFS) and overall survival (OS) were 49.5% and 54.8% after FB and 45.1% and 52.6% after FT, respectively (P=0.04, P=0.17). Acute GVHD grade II-IV and chronic GVHD were 23.1% and 35.7% after FB and 18.8% and 39.8% after FT, respectively (P=0.03, P=0.04). In all, the GVHD/ relapse-free survival (GRFS) was 36.5% and 31.5%, respectively (P=0.08). After adjusting for the differences in patient characteristics, there was no difference between the FB and FT groups in RI, NRM, LFS, OS and GRFS. However, acute GVHD grade (II-IV) was higher after FB (HR, 1.49, P=0.0004). The same observations were seen when the analysis was limited to RIC or RTC regimens only, or when only patients in remission were analyzed. However, when analyzing only the 516 patients with advanced disease at SCT, 2-year OS was 29.7% and 43.0% after FB and FT (P=0.002) and this difference remained significant in the multivariant analysis (HR, 1.50, p=0.003). Among the entire group, the factors associated with reduced survival were advanced age (HR 1.01, P<0.0001), secondary AML (HR 1.19, P=0.005), CR2 (HR 1.21, P=0.007) and advanced disease (HR 2.02, P<0.0001) compared to CR1, and female donor to male recipient (HR 1.15, P=0.03). Conditioning type and intensity, donor type, CMV status and in vivo T-cell depletion were not significant. Relapse was lower and NRM was higher with RTC compared with RIC, but OS was similar. The same factors predicted for GRFS, a surrogate for quality of life, with the only difference been the positive role of in vivo T-cell depletion (HR 0.8, P=0.0002). In conclusion, RIC and RTC regimens with ivBu or treosulfan-based regimens are associated with similar transplantation outcomes. OS is primarily affected by disease factors such as status of disease at SCT and secondary leukemia. Treosulfan- based conditioning is associated with a lower rate of acute GVHD, but with similar rates of chronic GVHD, NRM and GRFS. Treosulfan conditioning may have some advantage in patients with advanced disease at SCT. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5786-5786
Author(s):  
Mauricette Michallet ◽  
Mohamad Sobh ◽  
Fiorenza Barraco ◽  
Xavier Thomas ◽  
Marie Balsat ◽  
...  

Abstract Background: Reduced-intensity conditioning (RIC) regimens have led to a dramatic reduction of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The concept of RIC is to deliver adequate immunosuppression with manageable graft-versus-host disease (GVHD) and the eventual development of a potent graft-versus-leukemia effect. Nevertheless, GVHD prophylaxis remains a challenging task after allo-HSCT. While the combination of cyclosporine A (CsA) and a short course of methotrexate (Mtx) after transplantation is considered as the gold standard for GVHD prophylaxis after conventional myeloablative allo-HSCT from HLA-identical siblings, there is no consensus on the optimal preventive GVHD prophylaxis after RIC allo-HSCT. On the other hand, recent and ongoing studies are evaluating a promising GVHD prophylaxis strategy using post-transplantation cyclophosphamide (PTCy). The aim of this study is to evaluate the impact of different GVHD prophylaxis used after RIC allo-HSCT in patients receiving peripheral blood stem cells (PBSC) from unrelated donors for hematological malignancies. Patients and methods: We evaluated 127 consecutive patients with hematological malignancies who received RIC allo-HSCT and were followed in our center between January 2008 and January 2016; 74 (58%) were males, median age was 58 years (range: 18-70), 52 (41%) had acute myeloid leukemia, 36 (28%) myelodysplastic syndrome, 12 (10%) myeloproliferative syndrome, 9 (7%) Non-Hodgkin lymphoma, 9 (7%) chronic lymphocytic leukemia, 6 (5%) multiple myeloma and 3 (2%) chronic myeloid leukemia. At transplantation, 65 (51%) patients were in complete response (CR) or chronic phase (CP). RIC regimen consisted on fludarabine, intermediate doses of IV busulfan and anti-thymocyte golbulins (ATG) (Thymoblobulin) in 56 (44%) patients and a sequential FLAMSA regimen in 71 (56%) patients and who also received similar doses of ATG (Thymoglobulin). PBSC donors were 10/10 HLA matched in 81 (64%) patients and 9/10 HLA mismatched in 46 (36%) patients. Patients were divided according to GVHD prophylaxis into 3 groups: group 1 consisted on CsA alone with 23 (18%) patients, group 2 include patients who received either CsA + mycophenolate mofetil (MMF), n= 64 (50%) or CsA + Mtx, n= 20 (16%) or CsA + cyclophosphamide n= 5 (4%), and group 3 included patients receiving CsA + MMF + tacrolimus n= 15 (12%) patients. Results: After transplantation, all patients in group 1 engrafted after a median of 17 (3-25) days, 81/89 (91%) engrafted in group 2 after a median of 17 (5-58) days and 14/15 (94%) engrafted in group 3 after a median of 16 (9-24) days. We did not observe any significant impact of the type of GVHD prophylaxis on the 100-day incidence of grade II to IV acute GVHD, which occurred in 6/15 (40%), 34/81 (42%) and 7/14 (50%) for the groups 1, 2 and 3 respectively (p=0.18). Grade III-IV acute GVHD occurred in 3 (20%), 24 (29%) and 5 (33%) in the three groups respectively (p=0.11). Similarly, cumulative incidence of 1 year chronic GVHD was not different between groups 1, 2 and 3 reaching 46%, 43% and 46% respectively (p=0.6) among them 3/15 (20%), 18 (22%) and 3/14 (21%) patients had an extensive form. After a median follow-up of 22 months for surviving patients, although there was no significant difference between the three groups in terms of non-relapse mortality, we observed more infection-related mortality with 45% and 83% in groups 2 and 3 respectively compared to 47% in group 1. The cumulative incidence of relapse at 2 years was 22%, 31 and 26% for the three groups respectively (p=0.23). Overall survival rates at two years were 43%, 31% and 44 % for groups 1, 2 and 3 respectively (p=0.42). The multivariate analysis taking into account the type of disease, donor HLA matching, disease status at transplantation, type of RIC and the type of prophylaxis, showed that the incidence of acute GVHD was influenced only by the use of FLAMSA regimen from mismatched donors, HR= 2.2 [1.3-3.1], p=0.05 which had also the same impact on the occurrence of chronic GVHD. Conclusion: Despite its limitations and the need for prospective randomized studies, the results of our study suggest that in the RIC allo-HSCT from unrelated donors, the different GVHD prophylaxis associations lead to similar GVHD outcomes. Patients with more immunosuppressive drugs had a higher incidence of infection-related mortality and in which PTCy could be a better option. Disclosures Nicolini: BMS: Consultancy, Honoraria; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Ariad: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 668-668
Author(s):  
Marie Bleakley ◽  
Ted A. Gooley ◽  
Barbara Hilzinger ◽  
Stanley R Riddell ◽  
Warren D Shlomchik

Abstract Background Graft-versus-host disease (GVHD) frequently causes morbidity and mortality after allogeneic hematopoietic cell transplantation (HCT) as a result of organ damage and infections. In HLA-identical HCT, GVHD results from recognition by donor T cells of minor histocompatibility (H) antigens on recipient tissues. Complete T cell depletion (TCD) of donor hematopoietic cell products is more effective than pharmacologic immunosuppression for preventing GVHD, but is complicated by delayed immune reconstitution and consequent life-threatening infections.Approaches to HCT which preferentially deplete the T cells that primarily cause GVHD and preserve pathogen-specific T cells may improve HCT outcomes. Mature CD3+ CD8+ and CD3+ CD4+ T cells can be classified into CD45RA+ CD62L+ naïve (TN) and CD45RO+ memory (TM) subsets, the latter of which includes effector memory (TEM) and central memory (TCM) cells. Murine studies in which allogeneic TCD bone marrow (BM) is transplanted with purified T cells from individual T cell subsets to irradiated minor H antigen disparate recipients have demonstrated that the most severe GVHD results from transplanting T cells of the TN subset. Purified TCM causes mild GVHD and TEM do not cause detectable GVHD and can transfer immunity to pathogens.In vitro studies have similarly demonstrated that human donor CD8+ T cells specific for recipient minor H antigens are found predominantly within the TN cell subset, suggesting selective TN cell depletion may alter the GVHD incidence and/or severity in human HCT. Methods and results We developed an effective process for engineering human peripheral blood stem cell (PBSC) grafts that depletes CD45RA+ TN cells and retains CD34+ stem cells and functional CD45RO+ TM cells specific for a broad range of opportunistic pathogens (Bleakley BBMT 2014). We are conducting clinical trials to evaluate the selective depletion of TN cells from HLA-matched allogeneic PBSC grafts for the prevention of GVHD in patients with acute leukemia, the first of which has been published (Bleakley JCI 2015, N=35). Seventy patients have now been treated on three consecutive phase II trials. The median age was 34 years (1-56 years), 56% of patients had a diagnosis of ALL, 46% had previously relapsed or had detectable disease (MRD or relapse) at the time of HCT, and 23% had unrelated donor (URD) grafts. Intensive myeloablative, TBI-containing (13.2Gy) conditioning was used for 63 patients, whilst 7 patients received a medium intensity 'midi' preparative regimen, including 4Gy of TBI. The TN-depletion procedure was successfully performed on URD PBSC products shipped overnight from donor centers throughout the US, as well as on MRD PBSC collected at our centers. Reliable engraftment with high-level donor chimerism was observed in recipients of 'midi' as well as intensive myeloablative conditioning. The 2-year estimates of overall survival, disease-free survival, survival free of relapse and chronic GVHD (CRFS) and survival free of relapse, grade II-IV acute GVHD, and chronic GVHD (GRFS) are 79%, 73%, 69% and 63% respectively. Median follow-up among survivors is 26 months. The frequency and severity of chronic GVHD is remarkably low (5%) compared to historical rates of 40-60% chronic GVHD in HLA-matched PBSC transplantation with conventional calcineurin inhibitor-based immunosuppression. Relapse and non-relapse mortality (NRM) are acceptably low at 19% and 8%, respectively. No NRM occurred in patients <40 years. Updated results will be presented. Conclusions The outcomes of recipients of TN-depleted PBSC grafts compare very favorably to published results of HCT for patients with acute leukemia. For example, the 69% incidence of CRFS at 2 years in TN-depleted recipients compares with reported 2-year GRFS rates of 37% and 17% in recipients of allogeneic PBSC from HLA-matched related donors with or without ATG (Kroger et al. NEJM 2016). Our results suggest that TN-depletion of PBSC grafts may reduce the risk of chronic GVHD without negatively impacting other important HCT outcomes. Disclosures Riddell: Juno Therapeutics: Equity Ownership, Patents & Royalties, Research Funding; Cell Medica: Consultancy, Honoraria; Adaptive Biotechnologies: Consultancy, Honoraria.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 5080-5080 ◽  
Author(s):  
Johannes Schetelig ◽  
Martin Bornhaeuser ◽  
Christian Thiede ◽  
Brigitte Mohr ◽  
Uta Oelschlaegel ◽  
...  

Abstract Recently we demonstrated that RIC with busulfan, fludarabine and ATG followed by allogeneic hematopoietic stem cell transplantation (HSCT) induced molecular remissions in patients (pts) with advanced CLL. However, this approach was hampered by severe GVHD. In an attempt to lower the rate of severe GVHD we replaced ATG by campath in a new study protocol. Patients and Methods: 20 pts with a median age of 54 years (range, 43 to 64) and advanced CLL were included. A median of 3 prior chemotherapy regimens had been given before HSCT, including fludarabine-containing regimens in all but two pts with autoimmune hemolysis. High risk cytogenetic features (17p−, 11q−, +12) were present in 9 pts. After conditioning with busulfan (8 mg/kg), fludarabine (150 mg/m2) and campath (75 mg) on days −9 to −5 peripheral blood stem cells from matched related (n=4) or unrelated donors (n=16) were transplanted. GVHD prophylaxis consisted of CSA monotherapy. Campath levels were analysed in frozen serum samples by BioAnaLab, Oxford, UK. Results: Two pts had no detectable campath level at the day of HSCT, while four pts had levels between 0.5 to 1.8 microgram/mL. Regeneration of neutrophils (>0.5/nl) and platelets (>20/nl) required a median of 17 (range, 14–25) and 10 (range, 0–27) days, respectively. Incomplete T-cell chimerism (<50%) was observed in 7 pts and subsequently 3 pts experienced secondary graft failure on days 134, 152 and 324. Six pts received donor lymphocyte infusions (DLI) for the conversion of incomplete T-cell chimerism (N=4) or progressive disease (N=2). Sponaneous acute GVHD II° to IV° occurred in 9/20 pts. After DLI four additional pts developed acute GVHD II° to IV°. Limited chronic GVHD occurred in 9 and extensive disease in 2 pts. In CMV seropositive pts the day 100 probability of CMV infection was 74% (95% CI, 44% to 100%). Severe encephalitis (HHV6, EBV and JC virus as suspected agents) was observed in 5 pts. Two pts recovered without sequelae, 2 pts are cognitively handicaped and one pt died. Hemorrhagic cystitis (CTC 2/3) occurred in 2 pts. After a median follow-up of 13 months (range, 6 – 26 months), 15 pts are alive. Four pts died from treatment related complications. Causes of death were pneumonia of unknown etiology (N=2), encephalitis (N=1) and GVHD grade IV (N=1). One pt died from severe acute GVHD subsequent to the treatment of relapse with DLI. One-year overall and progression-free survival was 75% (95% CI, 55% to 95%) and 50% (95% CI, 25% to 75%), respectively. The one-year probability of non-relapse mortality was 20% (95% CI, 2% to 38%). The number of binding sites for campath is highly variable in pts with progressive CLL resulting in interindividually highly variable pharmacokinetics. Differences in the extent of in vivo T-cell depletion might therefore explain the individually varying T-cell engraftment pattern. In addition, the high incidence of severe viral infections reflects impaired immunoreconstitution. Including pts after DLI we observed a substantial rate of severe GVHD. Based on these data we decided to skip the strategy of in vivo T-cell depletion with campath in patients with CLL.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3059-3059
Author(s):  
Eva M Wagner ◽  
Lukas A Schaefer ◽  
Tobias Bopp ◽  
Matthias Theobald ◽  
Wolfgang Herr ◽  
...  

Abstract Abstract 3059 Introduction: The monoclonal anti-CD52antibody Alemtuzumab is frequently used for T-cell depletion (TCD) in the context of allogeneic hematopoietic stem cell transplantation (HSCT) to prevent graft versus host disease (GVHD). We previously demonstrated the long term persistence of functionally impaired glycosylphosphatidylinositol (GPI)-anchor negative effector T-cells in patients receiving high dose (100mg) Alemtuzumab in combination with a dose reduced conditioning regimen (Fludarabin + Melpahlan) (Meyer, Wagner et al. BMT 2010). Despite of Alemtuzumab-mediated TCD, half of our patients developed acute GVHD. Since regulatory T cells (Treg) play a major role for controlling GVHD, we asked whether GPI-anchor negative Treg are present in patients with or without GVHD. Methods: We analyzed peripheral blood samples of 12 patients with acute GVHD (aGVHD), 7 patients with chronic GVHD (cGVHD), and 10 patients who never developed GVHD after Alemtuzumab-mediated TCD. To analyze Treg-subsets, we stained for CD3, CD4, CD25, CD127, FoxP3, CD52 as well as for the activation-markers GARP, HLA-DR and CD45RA. Treg were identified as CD3+CD4+CD25+CD127- or CD3+CD4+CD25+FoxP3+ cells and subdivided according to their CD52-expression. We used FLAER staining to confirm that the loss of CD52 on Treg resulted from the loss of the GPI-anchors themselves. We were able to study Treg subpopulations in the time course of patients who recovered from acute GVHD in comparison to patients with persisting late acute GVHD. In individual patients, we isolated GPI-anchor positive and negative Treg by FACS-Sort, expanded them and performed Treg suppression assays. Results: GPI-anchor negative Treg were observed in all patients, independent of the development of GVHD. However, the frequency of GPI-anchor negative Treg varied considerably between patients with acute GvHD and those with chronic GVHD or without GvHD. The percentage of GPI-anchor negative Treg was significantly elevated in patients with aGVHD: median 80.35% (range 56,2–96,8%) in comparison to 17,4% (range 0–57,8%) in patients with cGVHD or without GVHD. Activated Treg were almost exclusively detected among GPI-anchor positive Treg-subpopulation. Patients who resolved from aGVHD restored GPI-anchor positive Treg and the amount of activated Treg rose. The percentage of GPI-anchor negative Treg populations remained high in patients with ongoing aGVHD. In addition, these patients had no GARP-positive activated Treg even under long term immunosuppressive treatment. Preliminary experiments with sorted and expanded Treg populations suggest that GPI-anchor negative Treg were unable to suppress T-cell proliferation upon IL-2 stimulation. Summary: We demonstrate for the first time the reconstitution of GPI-anchor negative Treg in patients following Alemtuzumab-mediated TCD. These T cells were functionally altered and were less likely to exhibit an activated phenotype in vivo. Ongoing acute GVHD was associated with high percentages of GPI-negative Treg suggesting that their functional alteration might play a role in aGVHD pathophysiology. This is in line with the finding that only in patients who resolved aGVHD, the frequency of GPI-anchor positive Treg increased significantly. Further functional analyses are ongoing to estimate the cellular consequence of missing GPI-anchored proteins. In addition, correlating the reconstitution of GPI-anchor negative T-cell populations with further clinical events is ongoing. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document