NaïVe T Cell Depletion of PBSC Grafts Results in Very Low Rates of Chronic Gvhd and High Survival

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 668-668
Author(s):  
Marie Bleakley ◽  
Ted A. Gooley ◽  
Barbara Hilzinger ◽  
Stanley R Riddell ◽  
Warren D Shlomchik

Abstract Background Graft-versus-host disease (GVHD) frequently causes morbidity and mortality after allogeneic hematopoietic cell transplantation (HCT) as a result of organ damage and infections. In HLA-identical HCT, GVHD results from recognition by donor T cells of minor histocompatibility (H) antigens on recipient tissues. Complete T cell depletion (TCD) of donor hematopoietic cell products is more effective than pharmacologic immunosuppression for preventing GVHD, but is complicated by delayed immune reconstitution and consequent life-threatening infections.Approaches to HCT which preferentially deplete the T cells that primarily cause GVHD and preserve pathogen-specific T cells may improve HCT outcomes. Mature CD3+ CD8+ and CD3+ CD4+ T cells can be classified into CD45RA+ CD62L+ naïve (TN) and CD45RO+ memory (TM) subsets, the latter of which includes effector memory (TEM) and central memory (TCM) cells. Murine studies in which allogeneic TCD bone marrow (BM) is transplanted with purified T cells from individual T cell subsets to irradiated minor H antigen disparate recipients have demonstrated that the most severe GVHD results from transplanting T cells of the TN subset. Purified TCM causes mild GVHD and TEM do not cause detectable GVHD and can transfer immunity to pathogens.In vitro studies have similarly demonstrated that human donor CD8+ T cells specific for recipient minor H antigens are found predominantly within the TN cell subset, suggesting selective TN cell depletion may alter the GVHD incidence and/or severity in human HCT. Methods and results We developed an effective process for engineering human peripheral blood stem cell (PBSC) grafts that depletes CD45RA+ TN cells and retains CD34+ stem cells and functional CD45RO+ TM cells specific for a broad range of opportunistic pathogens (Bleakley BBMT 2014). We are conducting clinical trials to evaluate the selective depletion of TN cells from HLA-matched allogeneic PBSC grafts for the prevention of GVHD in patients with acute leukemia, the first of which has been published (Bleakley JCI 2015, N=35). Seventy patients have now been treated on three consecutive phase II trials. The median age was 34 years (1-56 years), 56% of patients had a diagnosis of ALL, 46% had previously relapsed or had detectable disease (MRD or relapse) at the time of HCT, and 23% had unrelated donor (URD) grafts. Intensive myeloablative, TBI-containing (13.2Gy) conditioning was used for 63 patients, whilst 7 patients received a medium intensity 'midi' preparative regimen, including 4Gy of TBI. The TN-depletion procedure was successfully performed on URD PBSC products shipped overnight from donor centers throughout the US, as well as on MRD PBSC collected at our centers. Reliable engraftment with high-level donor chimerism was observed in recipients of 'midi' as well as intensive myeloablative conditioning. The 2-year estimates of overall survival, disease-free survival, survival free of relapse and chronic GVHD (CRFS) and survival free of relapse, grade II-IV acute GVHD, and chronic GVHD (GRFS) are 79%, 73%, 69% and 63% respectively. Median follow-up among survivors is 26 months. The frequency and severity of chronic GVHD is remarkably low (5%) compared to historical rates of 40-60% chronic GVHD in HLA-matched PBSC transplantation with conventional calcineurin inhibitor-based immunosuppression. Relapse and non-relapse mortality (NRM) are acceptably low at 19% and 8%, respectively. No NRM occurred in patients <40 years. Updated results will be presented. Conclusions The outcomes of recipients of TN-depleted PBSC grafts compare very favorably to published results of HCT for patients with acute leukemia. For example, the 69% incidence of CRFS at 2 years in TN-depleted recipients compares with reported 2-year GRFS rates of 37% and 17% in recipients of allogeneic PBSC from HLA-matched related donors with or without ATG (Kroger et al. NEJM 2016). Our results suggest that TN-depletion of PBSC grafts may reduce the risk of chronic GVHD without negatively impacting other important HCT outcomes. Disclosures Riddell: Juno Therapeutics: Equity Ownership, Patents & Royalties, Research Funding; Cell Medica: Consultancy, Honoraria; Adaptive Biotechnologies: Consultancy, Honoraria.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2979-2979
Author(s):  
Ibrahim Yakoub-Agha ◽  
Pasquine Saule ◽  
Leonardo Magro ◽  
Pascale Cracco ◽  
Valerie Coiteux ◽  
...  

Abstract The curative potential of allo-SCT for malignancies derives from the progressive reconstitution of the immune system and the development of effective anti-tumor immunity, but GVHD and disease relapse remain considerable obstacles to improvement in overall outcomes. Because in recipients target antigens are persisting, donor-derived T-cell responses may be expected to lead to the accumulation of a sizable proportion of differentiated T-cells, as happens following infection with persisting pathogens. A few cross-sectional studies have pointed to the preponderance of certain memory T-cell subsets associated with chronic GVHD (cGVHD), but the subset identified differed between studies. Inasmuch as qualitative T-cell recovery takes months to years to complete and there is substantial variability in time to development of GVHD or relapse, serial analysis might be more suitable to unveil early changes in T-cell subset composition attributable to transplantation-related events. From October 2003 on, 55 pts who underwent an allo-SCT after myeloablative conditioning were monitored prospectively in terms of clinical post-graft complications, including graft rejection, infections, GVHD and relapse. Blood samples were obtained on days 30±2, 60±3, 90±5, 180±10 and 365±15 post-transplant. Naive (CD45RA+CCR7+), central memory (TCM, CD45RAnegCCR7+), effector memory (TEM, CD45RAnegCCR7neg), and terminally differentiated effector (TTD, CD45RA+CCR7neg) were enumerated within the CD4+ and CD8+ pools, and the percentage of cells coexpressing CD28 was calculated within each eight subsets. The degree of donor-derived T-cell chimerism was assessed by real time PCR (sensitivity ≤ 1%). Median follow-up was 733 d (404–1251). Dynamics of CD4+ and CD8+ naive, TCM, TEM, and TTD were similar between the pts who developed cGVHD (n=15) and those who did not and between pts who relapsed and those who did not. However, costaining to detect CD28 demonstrated contrasting differences between cGVHD and relapse. At day 30, pts who subsequently relapsed (n=17) had elevated percentages of cells keeping CD28 expression within CD8+ T-cell subsets (TCM, p=.001; TCM, p=.021; and TTD, p=.007). Conversely, pts who subsequently developed cGVHD (n=15; only one relapsed) had diminished percentages of CD28+ cells within the two CD8+CCR7+ subsets at day 30 (p=.002 and p=.034, respectively). Loss of CD28 expression is known to be a hallmark of CMV infection but multivariate analysis ruled out, however, a confounding effect of CMV. Adjusted hazard ratios were 0.10 (95% CI, 0.01-0.76; p=.026) and 5.56 (95% CI, 1.16-25.00; p=.032) with CD28neg cells 16.7% of all CD8+ TCM at day 30 for relapse and cGVHD, respectively. Furthermore, pts with relapse had more often mixed chimerism at day 30 while those with cGVHD had more often full-donor chimerism (p=.042 and p=.023, respectively). CONCLUSION: This prospective study is the first to associate an early contrasting change in CD8+CD28neg T-cells with the risk of relapse and cGVHD after a myeloablative conditioning. Determination at day 30 of the proportions of CD8+ T-cell subsets expressing CD28 and of the level of T-cell chimerism could assist in predicting risk of relapse and cGVHD and help build an algorithm for the management of immunosuppressive treatment.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 692-692 ◽  
Author(s):  
Peter Lang ◽  
Tobias Feuchtinger ◽  
Heiko-Manuel Teltschik ◽  
Michael Schumm ◽  
Patrick Schlegel ◽  
...  

Abstract T-cell depletion of the graft is an effective method to prevent or completely avoid Graft-versus-Host Disease (GvHD) in haploidentical stem cell transplantation. In order to increase the T-cell depletion efficacy while maintaining the anti-tumor and anti-infectious properties of the graft, we have investigated a new T-cell depletion method which removes αβ+ T-lymphocytes via a biotinylated anti-TcRαβ antibody followed by an anti-biotin antibody conjugated to magnetic microbeads while retaining γδ+ T-lymphocytes, Natural killer (NK) cells and other cells in the graft. In addition, CD19+ B-lymphocytes were concomitantly depleted for the prevention of posttransplant EBV-associated lymphoproliferative disease. The CliniMACS system was used for manipulation of peripheral stem cell grafts from full haplotype mismatched family donors in 35 patients. Results The overall depletion of αβ+ T-cells was highly effective with 4.6 log (range 3.8–5.0). Patients received a median number of only 14 x 103/kg residual αβ+ T-cells. Recovery of CD34+ stem cells was 72%, and the median number of infused CD34+ stem cells was 12 x 106/kg (range 5-38 x 106/kg). Additionally, the patients received 2 types of potential antileukemic effector cells: 107 x 106/kg (range 35 -192 x 106/kg) CD56+ NK-cells and 11 x 106/kg (range 5–30 x 106/kg) γδ+ T-lymphocytes. Diagnoses were ALL (n=20), AML/MDS/JMML (n=9), nonmalignant diseases (n=4), solid tumors (n=2); disease status: CR2-CR6 (n=17), active disease (n=18). 23 patients received a second or third SCT (65%). A toxicity reduced conditioning regimen (fludarabin 40mg/m² or clofarabin 50mg/m² (day -8 to d -5), thiotepa 10mg/kg (d -4), melphalan 70mg/m² (d -3 and d -2) was used. The anti CD3 specific OKT3 antibody was used as rejection prophylaxis from day -8 to day -1 without affecting cotransfused effector cells because of its short half-life period in the first 7 patients. However, due to its restricted availability, the substance was substituted since 2011 by a reduced ATG-F dose (15mg/kg) given at start of the conditioning regimen in order not to impair NK and γδ+ T-cells of the grafts (1 mg/kg d -12, 4 mg/kg d -11, 5 mg/kg d -10 and -9; n=28 patients). Short course MMF (until day +30) was given in 25 patients. Graft rejection occurred in 14% of the patients. However, after reconditioning and second stem cell donation, final engraftment was achieved in all patients. The median time to reach neutrophil and platelet recovery in patients with primary engraftment was 10 and 11 days respectively. All patients showed a rapid immune reconstitution with 250 (OKT3 conditioning) and 273 (ATG conditioning) CD3+ T-cells/µl, 30 (OKT3) and 47 (ATG) CD3+4+/µl and 300 (OKT3) and 382 (ATG) CD56+ NK-cells/µl at day +30 posttransplant. γδ+ T-cells started to expand faster than αβ+ T-cells in the early post-transplant period (156 vs. 82 cells/µl at day +30) whereas at day +90, αβ+ T-cells were predominant (170 vs. 134 cells/µl). Acute GvHD grade 0-I occurred in 25 patients (71%); 6 patients had GvHD II (17%), 3 patients had GvHD III (9%) and one patients experienced GvHD grade IV (3%). 3 patients experienced chronic GvHD (8%). Incidence of acute GvHD was not influenced by the number of residual T cells or by the type of serotherapy. 1 year EFS for patients with acute leukemias was 66% (any CR) and 14% (active disease).TRM at 1 year was 20%. Conclusions These data indicate that transplantation of TcR αβ+/CD19 depleted cells from a haploidentical donor results in sustained engraftment, remarkably fast immune reconstitution and low incidence of both acute and chronic GvHD. OKT3 could be substituted by ATG without negative effects. The anti-leukemic efficacy of this approach in comparison to other methods of T-cell depletion needs to be evaluated with a longer patient follow-up. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Quentin Le Hingrat ◽  
Irini Sereti ◽  
Alan L. Landay ◽  
Ivona Pandrea ◽  
Cristian Apetrei

CD4+ T-cell depletion is pathognomonic for AIDS in both HIV and simian immunodeficiency virus (SIV) infections. It occurs early, is massive at mucosal sites, and is not entirely reverted by antiretroviral therapy (ART), particularly if initiated when T-cell functions are compromised. HIV/SIV infect and kill activated CCR5-expressing memory and effector CD4+ T-cells from the intestinal lamina propria. Acute CD4+ T-cell depletion is substantial in progressive, nonprogressive and controlled infections. Clinical outcome is predicted by the mucosal CD4+ T-cell recovery during chronic infection, with no recovery occurring in rapid progressors, and partial, transient recovery, the degree of which depends on the virus control, in normal and long-term progressors. The nonprogressive infection of African nonhuman primate SIV hosts is characterized by partial mucosal CD4+ T-cell restoration, despite high viral replication. Complete, albeit very slow, recovery of mucosal CD4+ T-cells occurs in controllers. Early ART does not prevent acute mucosal CD4+ T-cell depletion, yet it greatly improves their restoration, sometimes to preinfection levels. Comparative studies of the different models of SIV infection support a critical role of immune activation/inflammation (IA/INFL), in addition to viral replication, in CD4+ T-cell depletion, with immune restoration occurring only when these parameters are kept at bay. CD4+ T-cell depletion is persistent, and the recovery is very slow, even when both the virus and IA/INFL are completely controlled. Nevertheless, partial mucosal CD4+ T-cell recovery is sufficient for a healthy life in natural hosts. Cell death and loss of CD4+ T-cell subsets critical for gut health contribute to mucosal inflammation and enteropathy, which weaken the mucosal barrier, leading to microbial translocation, a major driver of IA/INFL. In turn, IA/INFL trigger CD4+ T-cells to become either viral targets or apoptotic, fueling their loss. CD4+ T-cell depletion also drives opportunistic infections, cancers, and comorbidities. It is thus critical to preserve CD4+ T cells (through early ART) during HIV/SIV infection. Even in early-treated subjects, residual IA/INFL can persist, preventing/delaying CD4+ T-cell restoration. New therapeutic strategies limiting mucosal pathology, microbial translocation and IA/INFL, to improve CD4+ T-cell recovery and the overall HIV prognosis are needed, and SIV models are extensively used to this goal.


2020 ◽  
Author(s):  
Julian C. Assmann ◽  
Don E. Farthing ◽  
Keita Saito ◽  
Natella Maglakelidze ◽  
Brittany Oliver ◽  
...  

AbstractGraft-versus-host disease (GvHD) is a prominent barrier to allogeneic hematopoietic stem cell transplantation (HSCT). Definitive diagnosis of GvHD is invasive and biopsies of involved tissues pose a high risk of bleeding and infection. Our previous studies in a chronic GvHD mouse model demonstrated that alloreactive CD4+ T cells are distributed to target organs ahead of overt symptoms, meanwhile CD4+ T cell activation is tied to increased glycolysis. Thus, we hypothesized that metabolic imaging of glycolysis would allow non-invasive detection of insipient GvHD in target organs infiltrated by glycolytic effector memory CD4+ T cells. We metabolically characterized CD4+ T cell subsets on day 14 post-transplant before the onset of chronic GvHD in a pre-clinical mouse model and performed 13C hyperpolarized magnetic resonance imaging (MRI) to quantify glycolytic activity in the liver of mice over the course of the disease. Intracellular metabolic screening and ex vivo metabolic profiling of CD4+ T cell subsets at day 14 confirmed that activated CD4+ T cells were highly glycolytic. Concurrently, hyperpolarized 13C-pyruvate MRI of the liver showed high conversion of pyruvate to lactate, indicative of increased glycolytic activity, that distinguished allogeneic from syngeneic HSCT recipients prior to the development of overt chronic GvHD. Furthermore, single cell sequencing of T cells in patients undergoing allogeneic HSCT indicated that similar metabolic changes may play a role in acute GvHD, providing a rationale for testing this imaging approach in the clinical post-HSCT setting. Our imaging approach is amenable to clinical translation and may allow early, non-invasive diagnosis of GvHD.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2898-2898
Author(s):  
Juanita M. Shaffer ◽  
Jean Villard ◽  
Terry Means ◽  
David Dombkowski ◽  
Bimalangshu Dey ◽  
...  

Abstract Purpose: To evaluate T cell recovery and donor chimerism following haploidentical hematopoietic cell transplantation (HCT) with a non-myeloablative conditioning approach that includes T cell depletion of host and donor and delayed DLI. Methods: Eighteen patients, 3 cohorts of 4 patients each and 1 cohort of 6 evaluable patients/10 transplanted, with chemorefractory hematologic malignancies, received related HLA 1–3 of 6, A, B, or DR antigen mismatched donor HCT after non-myeloablative conditioning with Medi-507 (anti-CD2 humanized mAb; Biotransplant, Inc.), cyclophosphamide, thymic irradiation and peritransplant cyclosporine. The patients in Protocols A received a MEDI-507 test dose of 0.1 mg/kg on Day -2 followed by 0.6 mg/kg on Days −1, 0 and +1 and transplantation of unmanipulated bone marrow. In Protocol B, the timing and dose of Medi-507 was modified. The patients in Protocol C and D received the latter Medi-507 protocol, but were given Isolex ®-selected CD34+ cells from G-CSF mobilized PBSC. Protocol D differs from Protocol C with the addition of fludarabine to more reliably achieve sustained chimerism. Donor leukocyte infusions were administered in an effort to convert mixed to full donor chimerism and to achieve a graft-versus-tumor effect. Chimerism was measured by peripheral blood microsatellite markers or by flow cytometry using HLA-specific mAbs. T cell recovery and phenotype were followed by flow cytometry. Because a high percentage of CD4 T cells post- transplant were CD25high, we performed quantitative RTPCR for Foxp3 and CTLA-4 on sorted PBMC populations. Results: T cell depletion early post-HCT was detected in all patients. There was a marked difference in the percentage of graft acceptance/loss, GVHD prevalence, and T cell phenotype related to each protocol modification. The majority (&gt;90%) of CD4 T cells appearing in the first 100 days post-SCT were CD45RO+/CD45RA- “memory” cells and CD8 T cells were CD45RO+CD45RA-/CD62L-. In addition, a remarkably high percentage (19.5–75%, mean 38.1%) of CD4 T cells expressed high levels of CD25 in recipients of Protocols A, B, and C early post-HCT. CD25 expression decreased as T cell counts increased. By quantitative RTPCR, we found that sorted CD25highCD4 T cells expressed Foxp3 and CTLA-4, consistent with a regulatory phenotype. The addition of fludarabine in Protocol D resulted in an overall reduction in the percentage of peripheral CD4CD25high T cells compared to Protocol C at 4 weeks post-HCT (C 23.43% +/−4.7% versus D 2.1% +/− 0.9%, p&lt;0.00005). The addition of fludarabine improved sustained engraftment from 2/4 in Protocol C to 5/6 in Protocol D. In Protocol C, T cell chimerism conversion occurred following DLI in 2/4 patients with no or grade II skin-limited GVHD. In Protocol D, full or near full donor chimerism was achieved in 5/6 patients, 3 spontaneously and 2 following DLI, and grade I–IV GVHD developed in 5/6 patients. Conclusions: These data suggest that the addition of fludarabine may increase the incidence of sustained and full donor chimerism. Fludarabine efficiently depleted host CD4+CD25high Foxp3+ cells, which may have a regulatory role, preventing spontaneous chimerism conversion and associated GVHD.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3059-3059
Author(s):  
Eva M Wagner ◽  
Lukas A Schaefer ◽  
Tobias Bopp ◽  
Matthias Theobald ◽  
Wolfgang Herr ◽  
...  

Abstract Abstract 3059 Introduction: The monoclonal anti-CD52antibody Alemtuzumab is frequently used for T-cell depletion (TCD) in the context of allogeneic hematopoietic stem cell transplantation (HSCT) to prevent graft versus host disease (GVHD). We previously demonstrated the long term persistence of functionally impaired glycosylphosphatidylinositol (GPI)-anchor negative effector T-cells in patients receiving high dose (100mg) Alemtuzumab in combination with a dose reduced conditioning regimen (Fludarabin + Melpahlan) (Meyer, Wagner et al. BMT 2010). Despite of Alemtuzumab-mediated TCD, half of our patients developed acute GVHD. Since regulatory T cells (Treg) play a major role for controlling GVHD, we asked whether GPI-anchor negative Treg are present in patients with or without GVHD. Methods: We analyzed peripheral blood samples of 12 patients with acute GVHD (aGVHD), 7 patients with chronic GVHD (cGVHD), and 10 patients who never developed GVHD after Alemtuzumab-mediated TCD. To analyze Treg-subsets, we stained for CD3, CD4, CD25, CD127, FoxP3, CD52 as well as for the activation-markers GARP, HLA-DR and CD45RA. Treg were identified as CD3+CD4+CD25+CD127- or CD3+CD4+CD25+FoxP3+ cells and subdivided according to their CD52-expression. We used FLAER staining to confirm that the loss of CD52 on Treg resulted from the loss of the GPI-anchors themselves. We were able to study Treg subpopulations in the time course of patients who recovered from acute GVHD in comparison to patients with persisting late acute GVHD. In individual patients, we isolated GPI-anchor positive and negative Treg by FACS-Sort, expanded them and performed Treg suppression assays. Results: GPI-anchor negative Treg were observed in all patients, independent of the development of GVHD. However, the frequency of GPI-anchor negative Treg varied considerably between patients with acute GvHD and those with chronic GVHD or without GvHD. The percentage of GPI-anchor negative Treg was significantly elevated in patients with aGVHD: median 80.35% (range 56,2–96,8%) in comparison to 17,4% (range 0–57,8%) in patients with cGVHD or without GVHD. Activated Treg were almost exclusively detected among GPI-anchor positive Treg-subpopulation. Patients who resolved from aGVHD restored GPI-anchor positive Treg and the amount of activated Treg rose. The percentage of GPI-anchor negative Treg populations remained high in patients with ongoing aGVHD. In addition, these patients had no GARP-positive activated Treg even under long term immunosuppressive treatment. Preliminary experiments with sorted and expanded Treg populations suggest that GPI-anchor negative Treg were unable to suppress T-cell proliferation upon IL-2 stimulation. Summary: We demonstrate for the first time the reconstitution of GPI-anchor negative Treg in patients following Alemtuzumab-mediated TCD. These T cells were functionally altered and were less likely to exhibit an activated phenotype in vivo. Ongoing acute GVHD was associated with high percentages of GPI-negative Treg suggesting that their functional alteration might play a role in aGVHD pathophysiology. This is in line with the finding that only in patients who resolved aGVHD, the frequency of GPI-anchor positive Treg increased significantly. Further functional analyses are ongoing to estimate the cellular consequence of missing GPI-anchored proteins. In addition, correlating the reconstitution of GPI-anchor negative T-cell populations with further clinical events is ongoing. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5470-5470
Author(s):  
Osamu Imataki ◽  
Yumiko Ohbayashi ◽  
Yukiko Ohue ◽  
Harumi Matsuka ◽  
Makiko Uemura ◽  
...  

Abstract Background: T cells from a stem cell source are inevitably contaminated, and over 5.0×104/kg T cells are thought to induce graft-versus-host disease (GVHD) in HLA-mismatched or haplo-identical stem cell transplantations (SCTs) [4]. To suppress GVHD reactions, a procedure for T-cell depletion (TCD) was developed over the past several decades, especially for HLA-mismatched and haplo-identical SCTs, which are at high risk for GVHD. To reduce the incidence of GVHD, a potentially effective agent is anti-thymocyte globulin (ATG), which is generally administered at a dose of ≥ 5-10 mg/kg. Based on data regarding the use of ATG for the treatment of aplastic anemia, we hypothesized that ATG might accommodate engraftment and inhibit GVHD. We attempted to use a lower dose of ATG to decrease non-relapse mortality (NRM) in Japanese patients undergoing an HLA-matched SCT. Patients and method: We treated patients with hematological diseases who underwent an allogeneic SCT after March 2010 without or with 2.5 mg/kg ATG. The inclusion criteria for underlying disease included both hematological malignancies and bone marrow failures. All consecutive patients transplanted from an allogeneic related or unrelated donor were included. Cord blood transplantations were omitted from this analysis. The patients who underwent an SCT before February 2010 (n=20) were examined as the control group without ATG treatment. ATG was administered 1 day prior to the transplantation day at 2.5 mg/kg with 500 mg/body methylpredonisolone as a preconditioning procedure. GVHD prophylaxis, tacrolimus 0.03 mg/kg and short-term MTX (10-7-7 mg/m2) was adapted for both the ATG group and the control group. Results: Thirty-nine (21 male, 18 female) recipients were recruited (median age 49 yrs, range 19-64 yrs). Their underlying diseases were acute myeloid leukemia (n=14), acute lymphoblastic leukemia (n=10), myelodysplastic syndrome (n=5), lymphoma (n=7), and myeloma, aplastic anemia, and other malignancy (n=1 each). Preparation regimens were myeloablative for 17 patients (14 cyclophosphamide [CY]/total body irradiation [TBI], two busulfan [BU]/CY, and another) and non-myeloablative for the other 22 patients (14 fludarabine/melphalan [Flu/Mel] and eight Flu/BU). All but one patient achieved engraftment, and one secondary graft failure was observed. The overall incidences of acute and chronic GVHD were 63.2% and 15.8% for the ATG-treated patients (40.0% and 25.0% for the control cohort), respectively. Acute GVHD (grades II to IV and III to IV) in the recipients who received ATG occurred in 21.1% and 0.0% (control cohort, 10.0% and 5.0%), respectively. The estimated probability of overall survival (OS) 2.5 yrs after transplantation was 77.8% for the ATG group (controls, 57.1%). The relapse rate 2.5 yrs after transplantation was 21.1% and 20.0% in the ATG and control groups, respectively. The NRM rate was decreased after ATG treatment: 25.0% vs. 10.5% (not significant). The causes of mortality with or without ATG were recurrent diseases (n=1 and 2), infection (n=1 and 0), and adverse events caused by transplant-related complication (n=1 and 5), respectively. No deaths due to acute or chronic GVHD occurred. Discussion: Low-dose ATG could suppress the incidence of severe acute GVHD and chronic GVHD without increasing the NRM, although our study design did not have enough power to make a conclusion about the efficacy of low-dose ATG. However, partial T-cell depletion may be effective for HLA-matched SCT recipients. Our results show that ATG at 2.5 mg/kg can be used safely for the Japanese transplant population of HLA-matched donors. Low-dose ATG is a potential treatment to partially disempower T cells from a stem cell source, which are inevitably contaminated. Recent developments in the prophylaxis for GVHD, such as selective cytotoxic T-cell depletion by using a post-transplant CY regimen, are promising strategies to fully suppress T cells as the GVHD enhancer. Previous studies revealed the clinical efficacy of GVHD prophylaxis but did not clarify the significance of its survival benefit. Likewise, our present findings indicated a lack of survival benefit by ATG treatment in this small study. However, the low-dose ATG contributed to a reduction of severe GVHD. Although early mortality after transplantation is decreasing, late-onset comorbidity including chronic GVHD remains a significant problem. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1994 ◽  
Vol 83 (10) ◽  
pp. 3090-3096 ◽  
Author(s):  
LF Verdonck ◽  
AW Dekker ◽  
GC de Gast ◽  
ML van Kempen ◽  
HM Lokhorst ◽  
...  

Abstract Despite prophylaxis with immunosuppressive drugs, severe acute graft- versus-host disease (GVHD) remains a major cause of morbidity and mortality in patients transplanted with unmodified bone marrow (BM) grafts from HLA-identical siblings. Although T-cell depletion of the BM graft has evolved as the most effective method to prevent severe acute GVHD, this beneficial effect is counterbalanced by an increased rate of graft failure and relapse of the disease. To find an approach to T-cell depletion that may avoid these extreme risks, we gave BM recipients a fixed low number of 1 x 10(5) donor T cells per kilogram of recipient's body weight in the graft. This corresponds with 99% T-cell depletion and is achieved by the addition of T cells to the graft that was previously depleted of T cells. A total of 70 patients with hematologic malignancies or aplastic anemia, including 40 patients with standard- risk leukemias, received BM grafts, depleted of T cells according to this approach, from HLA-identical siblings. The preparative regimen consisted of cyclophosphamide and total body irradiation. The patients also received a short course of cyclosporine posttransplant. Graft failure did not occur. Acute GVHD, only grade I or II, was seen in 70% of the patients and was limited to the skin in all patients. Chronic GVHD occurred in 31% of the patients and, with the exception of 1 patient, was limited to the skin as well. Relapse occurred in 3 of 40 (8%) patients with standard-risk leukemias, resulting in a projected survival at 5 years of 80%. Patients with standard-risk diseases had a procedure-related mortality of 11%. Quality of life, determined 1 year after BM transplant, was good in almost all patients with standard-risk diseases. Thus, this approach of T-cell depletion may be an approach that avoids the development of severe acute and chronic GVHD without damaging the function or antileukemic effect of the graft and that has a low transplant-related morbidity and mortality.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 195-195 ◽  
Author(s):  
Alice Bertaina ◽  
Barbarella Lucarelli ◽  
Riccardo Masetti ◽  
Pietro Merli ◽  
Roberto Rondelli ◽  
...  

Abstract Background: Allogeneic HSCT is a widely used treatment for children with acute leukemia (AL) either relapsed or at high risk of treatment failure. However, an HLA-identical sibling is available for only 20-25% of patients and an UD can be located in a suitable time only for a portion of the remaining population. HSCT from an HLA-haploidentical relative (haplo-HSCT) is now considered an alternative option, especially in view of the recent insights in graft manipulation. We recently developed a novel method of more selective T-cell depletion based on physical elimination of α/β T cells (ClinicalTrial.gov identifier: NCT01810120), shown to be effective for both preventing graft-versus-host disease (GvHD) and for conferring improved protection against infections in comparison to haplo-HSCT performed through the infusion of positively selected CD34+ cells. The initial results on 40 patients with AL were reported at the ASH Meeting in 2013 (Bertaina et al). We now present the comparison of the outcome of 80 children with AL given haplo-HSCT after α/β T-cell depletion (group 1) with that of patients transplanted from an HLA-identical sibling (group 2) or an UD (group 3) in the same time period. Patients and methods: All patients with AL were transplanted at the Bambino Gesù Children's Hospital in Rome, Italy, between December 2010 and September 2014; 80 patients were included in group 1, 41 in group 2 and 51 in group 3. Patients were offered α/β T-cell-depleted haplo-HSCT in the absence of suitable conventional donor (HLA identical sibling or 10/10 UD evaluated using high resolution typing) or if affected by rapidly progressive disease not permitting time to identify an UD. Clinical characteristics of patients assigned to the 3 groups and those of their donor are shown in Table1. All children were given a fully myeloablative regimen. No group 1 patient was given any post-transplantation GvHD prophylaxis, while patients of group 2 and 3 were given Cyclosporine-A and short-term methotrexate. Group 1 and 3 patients received ATG Fresenius® (4 mg/Kg/day) from day -5 to -3 for preventing both graft rejection and GvHD. Results: All group 2 and 3 patients had sustained engraftment of donor cells, while 1 of the 80 patients included in group 1 experienced primary graft failure and was rescued by haplo-HSCT from the other parent. The cumulative incidence (CI) of acute GvHD was 30%, 41% and 42%, respectively. Remarkably, all children of the group 1 who developed acute GvHD had a skin-only involvement, while 17% and 16.3% of those of group 2 and 3 had either gut or liver involvement (p&lt;0.001). The CI of chronic GvHD was significantly lower in group 1 children than in those of groups 2 and 3 (p=0.02, see also Figure 1-Panel A). None of the 4 group 1 patients experiencing chronic GvHD had the extensive form of the disease, while the CI of extensive chronic GvHD of group 2 and 3 was 8% and 14%, respectively (p=0.01). Four, 1 and 6 children of patients assigned in group 1, 2 and 3, respectively, died for transplant-related causes; the CI of transplantation-related mortality (TRM) in the 3 groups is shown in Figure 1-Panel B. Relapse was the main cause of treatment failure and occurred at a comparable CI in all the 3 groups (see also Panel C of Figure 1). The 3-year probability of Event-Free Survival (EFS) was comparable in the 3 groups (Figure 1 - Panel D). In multivariate analysis, a Total Body Irradiation (TBI)-containing regimen was the only variable favourably influencing EFS of group 1 children (hazard ratio 2.93, 95% Confidence Interval 1.24-6.95). No variable influenced EFS of group 2 and 3 patients. Conclusions: Overall, these data indicate that haplo-HSCT after α/β T-cell depletion is associated with a risk of TRM and leukemia recurrence comparable to that of transplantation from an HLA-identical sibling or an UD, this translating in a similar probability of EFS. In view of the low incidence of chronic GvHD, this transplant option has to be considered a competitive alternative for children with AL in need of an allograft. Table. Sibling (n=41) MUD (n=51) Haplo (n=80) Sex p=0.77 M 27 32 55 F 14 19 25 Age at Transplantation (years) 10.6 9.4 9.7 p=0.20 Disease p=0.23 ALL 34 35 56 AML 7 16 24 Disease status at Transplantation p=0.13 CR1 20 30 30 CR2 21 20 47 ≥CR3 0 1 3 CMV serology (Donor/Recipient) p=0.001 neg/neg 8 5 6 neg/pos 8 21 7 pos/neg 1 4 11 pos/pos 24 21 56 Source of Stem Cells p&lt;0.0001 BM 40 40 0 PBSC 1 11 80 Conditioning regimens p=0.10 TBI-based 26 29 60 non TBI-based 15 22 20 Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.


2005 ◽  
Vol 360 (1461) ◽  
pp. 1713-1721 ◽  
Author(s):  
Somia P Hickman ◽  
Laurence A Turka

The maintenance of T cell numbers in the periphery is mediated by distinct homeostatic mechanisms that ensure the proper representation of naïve and memory T cells. Homeostatic proliferation refers to the process by which T cells in lymphopenic hosts divide in the absence of cognate antigen to reconstitute the peripheral lymphoid compartment. During this process T cells acquire effector-memory like properties, including the ability to respond to low doses of antigen in the absence of CD28 costimulation. Furthermore, this capacity is retained long after proliferation has ceased. Accumulating data implicates homeostatic proliferation in autoimmune diseases and transplant rejection, and suggests that it may represent a barrier to tolerance in protocols that use T cell depletion. Implementing combination therapies that aim to promote the development and expansion of regulatory T cell populations while specifically targeting alloresponsive T cells may be the soundest approach to attaining allograft tolerance in the aftermath of T cell depletion and homeostatic proliferation.


Sign in / Sign up

Export Citation Format

Share Document