Protein Kinase C-ß Dependent IL-8 Release Promotes Acute Myeloid Leukemia Blast Cell Survival in Co-Cultures with Bone Marrow Stromal Cells

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3064-3064
Author(s):  
Amina M Abdul-Aziz ◽  
Manar S Shafat ◽  
Matthew J Lawes ◽  
Kristian M Bowles ◽  
Stuart A Rushworth

Abstract Introduction: Acute myeloid leukemia (AML) cells exhibit a high level of spontaneous apoptosis when cultured in vitro but have a prolonged survival time in vivo indicating that the tissue microenvironment plays a critical role in promoting AML cell survival. Knowledge of the complexity of the bone marrow microenvironment is increasing especially with respect to the bone marrow mesenchymal stromal cells [BM-MSC] which are considered a major protective cell type. Other studies have demonstrated the ability of BM-MSC to protect leukemia cells from spontaneous and chemotherapy-induced apoptosis. Increasing evidence suggests the existence of crosstalk between leukemia cells and BM stromal cells to create a leukemia-promoting environment. Recently our group and others have shown that this crosstalk is achieved by a complex communication system that involves multiple bidirectional signals which enhance AML survival and proliferation. Here we report a novel interaction between AML blasts and BM-MSC which benefits AML proliferation and survival. Methods: To investigate the interaction between primary AML blasts and BM-MSC we isolated AML and BM-MSC from the same patient and used an autologous in vitro culture assay to analyze the cytokine profile. Conditioned medium was collected from cultures of primary human AML alone or cultured with autologous BM-MSC and analyzed using Proteome Profiler Human XL Cytokine Array and target specific ELISAs. Real-time PCR was also used to verify the array data. MIF-Receptor inhibitors (SB 225002- CXCR2, AMD3100 - CXCR4 and CD74 blocking antibody - CD74) and signaling kinase inhibitors (LY294002- PI3K/AKT, PD098059 - MAPK, Ro-31-8220 - PKC) were used for initial determination of MIF signaling pathways in BM-MSC. Specific PKC isoform inhibitors (Go6976-PKCα/ß and enzastaurin -PKCß) were then used to determine isoform specific activation. Western blot and siRNA were used to confirm the role of AML derived MIF in regulating downstream BM-MSC signaling pathways including MAPK, PI3K/AKT, and PKC. Results: We initially examined the cytokine profile in cultured human AML compared to AML cultured with autologous BM-MSC or BM-MSC alone and found that MIF was highly expressed by primary AML and that IL-8 was increased in AML/BM-MSC co-cultures. The observed changes in IL-8 were confirmed by ELISA assays. RT-PCR was used to measure MIF and IL-8 gene expression from RNA extracted from primary AML or BM-MSC cultured alone or in combination. Results confirmed that MIF is highly expressed at the RNA and protein level by AML blasts and IL-8 transcription and cytokine release was upregulated in BM-MSC in response to co-culture with AML. Next we found that recombinant MIF increases IL-8 mRNA and protein expression in BM-MSC. Moreover, the MIF inhibition by, ISO-1, inhibits AML induced IL-8 expression and secretion by BM-MSC. Next we sought to determine which kinase signaling cascade is activated by MIF. We used a panel of protein kinase inhibitors and found that the pan-PKC inhibitor Ro-31-8220 completely inhibits AML and MIF induced IL-8 mRNA at sub micromolar concentrations. To further identify the specific PKC isoform responsible for linking AML induced MIF to IL-8 we used PKC isoform specific inhibitors (Go6976 and enzastaurin) which significantly inhibited MIF induced IL-8 expression and protein in BM-MSC. The introduction of PKCß siRNA dramatically inhibited MIF induced IL-8 mRNA expression in BM-MSC confirming that PKCß regulates AML induced BM-MSC derived IL-8 expression. Finally, inhibition of AML/BM-MSC co-cultures with the PKCß inhibitor enzastaurin inhibits BM-MSC induced AML survival in vitro. Conclusions: These results reported here show a novel bidirectional survival mechanism between AML blasts and BM-MSC. Furthermore this work identifies the PKC-ß-IL8 pathway in the BM-MSC of patients with AML as a novel target for future treatment strategies. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3685-3685
Author(s):  
Michael Andreeff ◽  
Rui-yu Wang ◽  
Richard E. Davis ◽  
Rodrigo Jacamo ◽  
Peter P. Ruvolo ◽  
...  

Abstract The bone marrow microenvironment (BME) in acute myeloid leukemia (AML) generates resistance signals that protect AML cells/stem cells from chemotherapy. The mechanisms how the BME might support leukemia cell survival are unclear but elucidation of this process could prove useful for therapy design. Here we report new insights specific to stroma functionality in AML. A series of novel experimental approaches were developed including : 1) nanostring micro-RNA and proteomic analysis using reverse-phase protein arrays (RPPAs) of MSC derived from AML patients and normal donors; 2) genome-wide RNA analysis of FACS-sorted MSCs using Illumina arrays of genetically-defined human and murine AML cell lines/primary AML samples after co-culture with normal MSC in vitro; 3) in vivo interaction between genetically-defined murine AML and stromal cells in syngenic C57BL/6J mice, followed by harvesting and FACS-isolation of specific MSC after leukemia engraftment; 4) use of genetically-modified human MSC in vivo in our ectopic humanized bone marrow model in NSG mice (Blood 2012 : 119,4971), followed by bioluminescence growth and homing analysis of human leukemia cells. This model allows the study of in vivo effects of altered MSC on human AML development. 1) Proteomic and transcriptomic analysis of primary MSC from AML patients (n = 106) and normal MSC (n = 71) by RPPA using validated mAbs to 150 proteins and phospho-proteins demonstrated major differences by hierarchical clustering analysis: GSKA, STAT1, PDK1, PP2A, CDKN1A, CDK4, and STAT5AB were significantly over-expressed in AML- vs. normal MSC, while STMN1, SIRT1, SMAD1, SMAD4, HSP90 and EIF2S1 were under-expressed. Differences were observed between MSC from newly diagnosed vs. relapsed AML-MSC. Nanostring analysis of 38 AML-MSC and 24 normal MSC identified differential expression of numerous miRs, a select group of which has been validated so far by qRT-PCR. AML MSC express reduced levels of let-7g, let-7c, miR 21 and miR93, and elevated levels of miR410 compared to normal MSC. Pathways were identified in MSC that might contribute to leukemia survival. 2) Analysis OCI-AML3 cells co-cultured with normal -MSC revealed upregulation of a variety of genes in MSC encoding cytokines and chemokines and gene set enrichment analysis (GSEA) identified activation of NFkB in MSC as a potential cause of these changes. When the ectopic humanized bone marrow model system in NSG mice was used, suppression of NFkB in MSC resulted in a ∼ 50% reduction of AML burden. When murine MSC cultured with wt p53 MLL/ENL-Luc-FLT3-ITD cells were compared to isogenic cells with deleted p53, striking differences were seen in the MSC transcriptome: 429 differentially expressed genes were identified that distinguished co-cultures with p53wt and p53-/- cells, suggesting that AML cells may communicate signals to their microenvironment in a p53-dependent manner. GSEA identified NFkB and HIF-1a as targets, data were confirmed independently, and HIF-1a knockout MSC were found to be inhospitable for AML in the ectopic in vivo model. 3) These syngenic cells were introduced into B57BL/6J mice and MSC were isolated after leukemia engraftment: 147 genes were consistently upregulated and 236 genes downregulated in MSC by their interactions with AML in vivo. Upregulated genes included CTGF, CXCL12, genes related to complement (C4A, C4B, Serpin G1), and IGFBP5, an inhibitor of osteoblast differentiation. Identification of CXCL12 was intriguing as Link's group recently reported the critical role of CXCL12 produced by early MSC in normal hematopoiesis (Nature 2013 : 495,227). Both AML-ETO and MLL-ENL leukemias caused upregulation of CTGF, metalloproteinases, adhesion molecules, and NFkB-related genes in vivo. IPA analysis showed responses in BM-MSC associated with inflammation, cellular movement, cell-cell signaling, cellular growth and proliferation and immune cell trafficking. Conclusion AML cells induce changes in MSC, in short term co-cultures in vitro, or in syngenic systems in vivo, that are consistent with pro-survival, anti-apoptotic, and growth-stimulatory signals that mimic inflammatory responses. Large-scale analysis of primary AML-derived MSC confirms and extends this data. Results facilitate the development of therapeutic strategies to render the BM microenvironment inhospitable to leukemia cells but supportive of normal hematopoiesis. Disclosures: Lowe: Blueprint Medicines: Consultancy; Constellation Pharmaceuticals: Consultancy; Mirimus Inc.: Consultancy.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5040-5040
Author(s):  
Bing Xu ◽  
Rongwei Li ◽  
Huijuan Dong ◽  
Feili Chen ◽  
Yuejian Liu ◽  
...  

Abstract Background Disulfiram(DS), an old drug clinically used for alcoholism, was reported to have antitumor effects, recent studies have found that Copper(Cu) can significantly enhance the DS-induced cell death in vitro in a variety of tumor cells. Our previous studies also demonstrated that disulfiram/copper (DS/Cu) couldtarget human leukemia cell lines(like KG1α,Molt4) through the activation of JNK, in vitro. However, there is few report about the ability of DS/Cu in killing cancer cells in vivo. Aims This study aims to explore the effect of DS/Cu on acute myeloid leukemia cell line KG1αin vivo and clarify the underlining mechanism. Methods 6-8 week old female NOD/SCID mice were sublethally irradiated with 2Gy X-ray the day before transplantation, followed by intravenous injection of KG1α cells (1×107 cells) suspended in 0.2 mL of PBS. 5 weeks after transplantation mice were randomly divided into three treatment groups: vehicle (0.9% saline), a combination of DS and Cu daily for 2 weeks, Ara-C alone twice before killing. Mice were sacrificed after 2 weeks treatment with tissues of spleen, liver, bone marrow being observed using histopathology method to detect the invasion of leukemia. The DS/Cu-induced p-c-jun activation was also examined by western blot using tissues of spleen, liver, bone marrow. Statistical analysis was carried out with one-way ANOVA to assess statistical significance (*p < 0.05). Results 4 weeks after transplantation, mice were dispirited with low appetite, down-bent gait, wrinkled fur, slow move, just like suffered from leukemia. What’s more, immature blasts like morphology similar to KG1α were found in the peripheral blood of the mice(11%±3.41). All the mice were sacrificed after 2 weeks treatment, mice in control group were observed with slightly larger spleen and liver with the morphology of invasion of leukemia such as a granular appearance than the other two groups. Histopathology examination showed that leukemia cells infiltrate liver, spleen and bone marrow, and the immunohistochemistry examination found that the leukemia cells in spleen, liver and bone marrow expressed human specific antigen CD45 with the highest expression level in the control group. Moreover, solid tumor could be observed in the peritoneal cavity of two mice in the control group with expression of human specific antigen CD45detected by immunohistochemistry examination. Western blot in this study showed DS/Cu complex induced phosphorylation of c-Jun expression in the spleen, liver and bone marrow. Conclusion DS/Cu complex could effectively target the acute myeloid leukemia cells in the acute leukemia NOD/SCID mice while inhibiting the invasion of leukemia to some extent, and the activation of JNK might play a functional role in DS/Cu mediated antileukemic effects. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 57 (9) ◽  
pp. 2192-2194
Author(s):  
Yosuke Niwa ◽  
Yosuke Minami ◽  
Akihiro Abe ◽  
Fumihiko Hayakawa ◽  
Kiyofumi Yamada ◽  
...  

Oncogene ◽  
2019 ◽  
Vol 39 (6) ◽  
pp. 1198-1212
Author(s):  
Farah Kouzi ◽  
Kazem Zibara ◽  
Jerome Bourgeais ◽  
Frederic Picou ◽  
Nathalie Gallay ◽  
...  

Abstract The bone marrow (BM) niche impacts the progression of acute myeloid leukemia (AML) by favoring the chemoresistance of AML cells. Intimate interactions between leukemic cells and BM mesenchymal stromal cells (BM-MSCs) play key roles in this process. Direct intercellular communications between hematopoietic cells and BM-MSCs involve connexins, components of gap junctions. We postulated that blocking gap junction assembly could modify cell–cell interactions in the leukemic niche and consequently the chemoresistance. The comparison of BM-MSCs from AML patients and healthy donors revealed a specific profile of connexins in BM-MSCs of the leukemic niche and the effects of carbenoxolone (CBX), a gap junction disruptor, were evaluated on AML cells. CBX presents an antileukemic effect without affecting normal BM-CD34+ progenitor cells. The proapoptotic effect of CBX on AML cells is in line with the extinction of energy metabolism. CBX acts synergistically with cytarabine (Ara-C) in vitro and in vivo. Coculture experiments of AML cells with BM-MSCs revealed that CBX neutralizes the protective effect of the niche against the Ara-C-induced apoptosis of leukemic cells. Altogether, these results suggest that CBX could be of therapeutic interest to reduce the chemoresistance favored by the leukemic niche, by targeting gap junctions, without affecting normal hematopoiesis.


Sign in / Sign up

Export Citation Format

Share Document