Disulfiram, an clinically used anti-alcoholism drug has the potential to target acute myeloid leukemia cells in a copper-dependent manner in vivo

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5040-5040
Author(s):  
Bing Xu ◽  
Rongwei Li ◽  
Huijuan Dong ◽  
Feili Chen ◽  
Yuejian Liu ◽  
...  

Abstract Background Disulfiram(DS), an old drug clinically used for alcoholism, was reported to have antitumor effects, recent studies have found that Copper(Cu) can significantly enhance the DS-induced cell death in vitro in a variety of tumor cells. Our previous studies also demonstrated that disulfiram/copper (DS/Cu) couldtarget human leukemia cell lines(like KG1α,Molt4) through the activation of JNK, in vitro. However, there is few report about the ability of DS/Cu in killing cancer cells in vivo. Aims This study aims to explore the effect of DS/Cu on acute myeloid leukemia cell line KG1αin vivo and clarify the underlining mechanism. Methods 6-8 week old female NOD/SCID mice were sublethally irradiated with 2Gy X-ray the day before transplantation, followed by intravenous injection of KG1α cells (1×107 cells) suspended in 0.2 mL of PBS. 5 weeks after transplantation mice were randomly divided into three treatment groups: vehicle (0.9% saline), a combination of DS and Cu daily for 2 weeks, Ara-C alone twice before killing. Mice were sacrificed after 2 weeks treatment with tissues of spleen, liver, bone marrow being observed using histopathology method to detect the invasion of leukemia. The DS/Cu-induced p-c-jun activation was also examined by western blot using tissues of spleen, liver, bone marrow. Statistical analysis was carried out with one-way ANOVA to assess statistical significance (*p < 0.05). Results 4 weeks after transplantation, mice were dispirited with low appetite, down-bent gait, wrinkled fur, slow move, just like suffered from leukemia. What’s more, immature blasts like morphology similar to KG1α were found in the peripheral blood of the mice(11%±3.41). All the mice were sacrificed after 2 weeks treatment, mice in control group were observed with slightly larger spleen and liver with the morphology of invasion of leukemia such as a granular appearance than the other two groups. Histopathology examination showed that leukemia cells infiltrate liver, spleen and bone marrow, and the immunohistochemistry examination found that the leukemia cells in spleen, liver and bone marrow expressed human specific antigen CD45 with the highest expression level in the control group. Moreover, solid tumor could be observed in the peritoneal cavity of two mice in the control group with expression of human specific antigen CD45detected by immunohistochemistry examination. Western blot in this study showed DS/Cu complex induced phosphorylation of c-Jun expression in the spleen, liver and bone marrow. Conclusion DS/Cu complex could effectively target the acute myeloid leukemia cells in the acute leukemia NOD/SCID mice while inhibiting the invasion of leukemia to some extent, and the activation of JNK might play a functional role in DS/Cu mediated antileukemic effects. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1520-1520
Author(s):  
Marion Chapellier ◽  
Jun Chen ◽  
Carl Sandén ◽  
Milena Mazan ◽  
Eliza Majewska ◽  
...  

Abstract MJ and JF provided equal contribution as senior authors Acute myeloid leukemia (AML) is associated with poor survival and characterized by an accumulation of immature myeloid blasts in the bone marrow. To efficiently target AML, new therapies directed to leukemia stem cells (LSCs), a self-renewing population that constitutes a chemo-resistant reservoir responsible for disease relapse, are warranted. Cyclin-dependent kinase 8 inhibitors' (CDK8i) anti-cancer activity has been demonstrated in human acute myeloid leukemia (AML) cell lines. Efficacy has been associated with activation of super enhancer regions and reduction of STAT5 S726 phosphorylation in sensitive cells (Pelish, Nature, 2015). SEL120-34A (Selvita, Poland), a selective low nanomolar CDK8/CDK19 inhibitor, has been shown to have antileukemic effect in a panel of AML cell lines (Rzymski, Oncotarget 2017). To evaluate whether primitive AML cells, enriched for LSCs, are sensitive to CDK8 inhibition, we tested the CDK8i SEL120-34A and Senexin B on TEX cells, an AML cell line that exhibits a hierarchical organization and can be used as a LSC model (Warner, Leukemia, 2005). Treatment of TEX cells with SEL120-34A or Senexin B resulted in an inhibition of cell growth (IC50 of 8 and 31 nM respectively at 10 days of culture), associated with reduced activation of STAT5 and STAT1. Both STAT proteins were previously identified as biomarkers for SEL120-34A activity (Rzymski, Oncotarget 2017). In addition, RNA sequencing followed by gene-set enrichment analysis (GSEA) revealed a loss of a LSC signature. To functionally address the effects of CDK8i on LSCs, we used a murine dsRed+ AML model driven by retroviral MLL-AF9 expression. This model has a well-defined LSC population and initiates AML with a short latency, enabling rapid follow-up experiments in syngeneic hosts. Treatment of c-Kit+ AML cells with SEL120-34A or Senexin B in vitro resulted in strong inhibition of leukemia cell growth (IC50 of 119 and 143 nM, respectively, at 7 days of culture), associated with increased apoptosis and reduced cycling of the cells. To address the in vivo therapeutic efficacy of SEL120-34A, mice injected with AML cells 10 days earlier were treated orally for 12 consecutive days using doses of 20 and 40 mg/kg before sacrificed. No tolerability issues were observed with mice maintaining a stable weight through the treatment. Whereas the control group had 87% leukemia cells in the peripheral blood at the end-point analysis, SEL120-34A treated animals showed a dose-dependent selective anti-leukemic activity with a corresponding 78% (20 mg/kg) and 67% (40 mg/kg, p=0.011) of leukemia cells. Similarly, a significant selective dose-dependent anti-leukemic activity of SEL120-34A was observed also in the bone marrow. In addition, a dose-dependent reduced white blood cell count and smaller spleen size upon SEL120-34A treatment was observed, demonstrating that CDK8 inhibition has selective anti-leukemic activity in vivo. Notably, SEL120-34A treatment resulted in granulocytic (Gr1+CD11b-) differentiation of the AML cells (5.8% of the AML cells in the control group; 21.9% at 20 mg/kg, p=0.03; and 22.3%, p=0.0037 at 40 mg/kg). Moreover, SEL120-34A treatment resulted in strong inhibition of Stat5 S726 and Stat1 S727 phosphorylation in AML bone marrow cells harvested from the mice. To test the efficacy of CDK8 inhibition on AML patient cells, four AML patient derived xenografts were treated with SEL120-34A ex vivo. In all four samples, two of which contained activating mutations in FLT3, SEL120-34A treatment resulted in a significant antileukemic activity with decreased number of AML cells and an increase in apoptotic cells. Taken together, our data from murine and human AML models indicate that CDK8 inhibition has therapeutic efficacy in primitive AML cells. SEL120-34A treatment in vivo resulted in reduced leukemia cell burden in both blood and bone marrow accompanied by granulocytic differentiation. Treatment of AML cells in cultures consistently resulted in a reduction in AML cell number and increased apoptosis. Ongoing and future experiments will address whether SEL120-34A treatment also extends survival of mice with AML in syngeneic and patient-derived xenograft models. These data highlight CDK8 as a promising therapeutic target in AML and provides preclinical proof of concept for anti-leukemic efficacy of the clinical candidate SEL120-34A in relevant AML models. Disclosures Mazan: Selvita S.A.: Employment. Majewska:Selvita S.A.: Employment. Wiklik:Selvita S.A.: Employment. Combik:Selvita S.A.: Employment. Masiejczyk:Selvita S.A.: Employment. Fiedor:Selvita S.A.: Employment. Obacz:Selvita S.A.: Employment. Bialas:Selvita S.A.: Employment. Chesy:Selvita S.A.: Employment. Gabor-Worwa:Selvita S.A.: Employment. Brzózka:Selvita S.A.: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Rzymski:Selvita S.A.: Employment, Equity Ownership. Fioretos:Cantargia: Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


Author(s):  
Yudi Miao ◽  
Behnam Mahdavi ◽  
Mohammad Zangeneh

IntroductionThe present study investigated the anti-acute myeloid leukemia effects of Ziziphora clinopodides Lam leaf aqueous extract conjugated cadmium nanoparticles.Material and methodsTo synthesize CdNPs, Z. clinopodides aqueous extract was mixed with Cd(NO3)2 .4H2O. The characterization of the biosynthesized cadmium nanoparticles was carried out using many various techniques such as UV-Vis. and FT-IR spectroscopy, XRD, FE-SEM, and EDS.ResultsThe uniform spherical morphology of NPs was proved by FE-SEM images with NPs the average size of 26.78cnm. For investigating the antioxidant properties of Cd(NO3)2, Z. clinopodides, CdNPs, and Daunorubicin, the DPPH test was used. The cadmium nanoparticles inhibited half of the DPPH molecules in a concentration of 196 µg/mL. To survey the cytotoxicity and anti-acute myeloid leukemia effects of Cd(NO3)2, Z. clinopodides, CdNPs, and Daunorubicin, MTT assay was used on the human acute myeloid leukemia cell lines i.e., Murine C1498, 32D-FLT3-ITD, and Human HL-60/vcr. The IC50 of the cadmium nanoparticles was 168, 205, and 210 µg/mL against Murine C1498, 32D-FLT3-ITD, and Human HL-60/vcr cell lines, respectively. In the part of in vivo study, DMBA was used for inducing acute myeloid leukemia in mice. CdNPs similar to daunorubicin ameliorated significantly (p≤0.01) the biochemical, inflammatory, RBC, WBC, platelet, stereological, histopathological, and cellular-molecular parameters compared to the other groups.ConclusionsAs mentioned, the cadmium nanoparticles had significant anti-acute myeloid leukemia effects. After approving the above results in the clinical trial studies, these cadmium nanoparticles can be used as a chemotherapeutic drug to treat acute myeloid leukemia in humans.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2846-2846 ◽  
Author(s):  
Nan-Nan Zhang ◽  
Lei Chen ◽  
Wu Zhang ◽  
Xian-Yang Li ◽  
Lin-Jia Jiang ◽  
...  

Abstract Acute promyelocytic leukemia (APL) is initiated by the formation of PML/RARα oncogenic fusion protein, a potent transcriptional repressor. Retinoid acid (RA) at pharmacological dosage can physically bind to the PML/RARα protein, ushering in the unfolding of downstream programs normally regulated by the wild type RARα. However, through what particular regulatory pathways RA inhibits APL malignant hematopoiesis has remained largely obscured. Rig-I is one of the genes whose mRNA levels were highly up-regulated, along with all-trans-RA (ATRA)-induced terminal granulocytic differentiation of APL cell line NB4 cells in vitro. Based on the analysis of a Rig-I−/− mouse model, recently we have reported a critical regulatory role of Rig-I in normal granulopoiesis. To understand the functional contribution of Rig-I induction in RA-mediated leukemia cell differentiation, we converted a pair of previously reported Rig-I RNAi-duplex sequences into a miR30a-based small hairpin-encoding sequence, which was expressed under the CMV enhancer/promoter within a lentiviral vector. As expected, Rig-I shRNAmir30 infection induced a significant knockdown of Rig-I protein level, and accordingly its delivery into HL-60 cells partially inhibited ATRA-induced granulocytic differentiation, growth inhibition/cell cycle arrest and apoptosis induction, suggesting that Rig-I upregulation participates in RA-induced granulocytic differentiation of acute myeloid leukemia cells. In order to investigate the effect of Rig-I induction on the proliferation of APL cells in vivo, we transduced PML/RARα-harboring leukemic cells with vector or Rig-I-expressing retrovirus, and then transplanted these cells into the syngeneic mice. The vector-transduced APL cells readily expanded in vivo, but the proliferation of Rig-I-transduced cells was apparently prohibited. Moreover, we found that the forced expression of Rig-I induced the expression of numerous ISGs in APL cells, which was recapitulated by the transduction of the C terminal part of Rig-I, but not by the N terminal part. In line with this, during the in vitro short-term culture post-IFNγ or IFNα stimulation, Stat1 phosphorylation at p701 in Rig-I−/− granulocytes was significantly inhibited. In parallel, the induction of multiple ISGs by IFNs was also significantly impaired. In conclusion, our findings indicate that the Rig-I induction inhibited APL reconstitution potentially through up-regulating a number of ISGs via regulating Stat1Tyr701 phosphorylation.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4818-4818
Author(s):  
Yanwen Zheng ◽  
Zhengwei Mao ◽  
Bin Yin

Abstract Abstract 4818 Acute myeloid leukemia (AML) is a detrimental disease with difficult diagnosis and treatment. Understanding the biology of AML at the molecular and cellular levels would be essential to successful management of the disease. However, the notoriously known difficulty in manipulation of leukemia cells has long hindered the dissection of AML pathogenesis. The advent of CdSe/ZnS quantum dots (QDs) represents an important advancement in the research field of nanotechnology, which have recently also been applied for imaging of live cells. Here, we have introduced a non-genetic approach of marking blood cells, by taking advantage of QD technology. We compared QDs complexed with different vehicles, including a peptide Tat (QDs-Tat), cationic polymer Turbofect (QDs-Tf) and liposome Lipofectamine 2000 (QDs-Lip), in their abilities to mark cells. QDs-Tat showed the highest efficiency in delivery into hematopoietic cells, among the three vehicles. We then examined QDs-Tat labelling of leukemia cell lines, and found that QDs-Tat could label 293T, bone marrow (BM) cells, THP-1, MEG-01 and HL-60 with a decreasing efficiency. The efficiency of QDs-Tat delivery was dependent on the concentration of QDs-Tat applied, but not the length of incubation time. In addition, more uniform intracellular distributions of QDs in 293T and leukemia cells were obtained with QDs-Tat, compared with the granule-like formation obtained with QDs-Lip. Clearly, QD fluorescence was sharp and tolerant to repetitive photo excitations, and could be detected in 293T for up to one week following labelling. In summary, our results suggest that QDs have provided a photostable, non-genetic and transient approach that labels normal and malignant hematopoietic cells in a cell type-, vehicle-, and QD concentration-dependent manner. We expect for potentially wide applications of QDs as an easy and fast tool assisting investigations of various types of blood cells in the near future. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 125 (26) ◽  
pp. 4060-4068 ◽  
Author(s):  
Farideh Miraki-Moud ◽  
Essam Ghazaly ◽  
Linda Ariza-McNaughton ◽  
Katharine A. Hodby ◽  
Andrew Clear ◽  
...  

Key Points Most AMLs lack ASS1, which allows synthesis of arginine, and so depend on exogenous sources. Depletion of arginine via ADI-PEG 20 reduces the burden of primary AML in vivo and in vitro.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1663 ◽  
Author(s):  
Arne Velthaus ◽  
Kerstin Cornils ◽  
Jan K. Hennigs ◽  
Saskia Grüb ◽  
Hauke Stamm ◽  
...  

Leukemia-initiating cells reside within the bone marrow in specialized niches where they undergo complex interactions with their surrounding stromal cells. We have identified the actin-binding protein Plastin-3 (PLS3) as potential player within the leukemic bone marrow niche and investigated its functional role in acute myeloid leukemia. High expression of PLS3 was associated with a poor overall and event-free survival for AML patients. These findings were supported by functional in vitro and in vivo experiments. AML cells with a PLS3 knockdown showed significantly reduced colony numbers in vitro while the PLS3 overexpression variants resulted in significantly enhanced colony numbers compared to their respective controls. Furthermore, the survival of NSG mice transplanted with the PLS3 knockdown cells showed a significantly prolonged survival in comparison to mice transplanted with the control AML cells. Further studies should focus on the underlying leukemia-promoting mechanisms and investigate PLS3 as therapeutic target.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3685-3685
Author(s):  
Michael Andreeff ◽  
Rui-yu Wang ◽  
Richard E. Davis ◽  
Rodrigo Jacamo ◽  
Peter P. Ruvolo ◽  
...  

Abstract The bone marrow microenvironment (BME) in acute myeloid leukemia (AML) generates resistance signals that protect AML cells/stem cells from chemotherapy. The mechanisms how the BME might support leukemia cell survival are unclear but elucidation of this process could prove useful for therapy design. Here we report new insights specific to stroma functionality in AML. A series of novel experimental approaches were developed including : 1) nanostring micro-RNA and proteomic analysis using reverse-phase protein arrays (RPPAs) of MSC derived from AML patients and normal donors; 2) genome-wide RNA analysis of FACS-sorted MSCs using Illumina arrays of genetically-defined human and murine AML cell lines/primary AML samples after co-culture with normal MSC in vitro; 3) in vivo interaction between genetically-defined murine AML and stromal cells in syngenic C57BL/6J mice, followed by harvesting and FACS-isolation of specific MSC after leukemia engraftment; 4) use of genetically-modified human MSC in vivo in our ectopic humanized bone marrow model in NSG mice (Blood 2012 : 119,4971), followed by bioluminescence growth and homing analysis of human leukemia cells. This model allows the study of in vivo effects of altered MSC on human AML development. 1) Proteomic and transcriptomic analysis of primary MSC from AML patients (n = 106) and normal MSC (n = 71) by RPPA using validated mAbs to 150 proteins and phospho-proteins demonstrated major differences by hierarchical clustering analysis: GSKA, STAT1, PDK1, PP2A, CDKN1A, CDK4, and STAT5AB were significantly over-expressed in AML- vs. normal MSC, while STMN1, SIRT1, SMAD1, SMAD4, HSP90 and EIF2S1 were under-expressed. Differences were observed between MSC from newly diagnosed vs. relapsed AML-MSC. Nanostring analysis of 38 AML-MSC and 24 normal MSC identified differential expression of numerous miRs, a select group of which has been validated so far by qRT-PCR. AML MSC express reduced levels of let-7g, let-7c, miR 21 and miR93, and elevated levels of miR410 compared to normal MSC. Pathways were identified in MSC that might contribute to leukemia survival. 2) Analysis OCI-AML3 cells co-cultured with normal -MSC revealed upregulation of a variety of genes in MSC encoding cytokines and chemokines and gene set enrichment analysis (GSEA) identified activation of NFkB in MSC as a potential cause of these changes. When the ectopic humanized bone marrow model system in NSG mice was used, suppression of NFkB in MSC resulted in a ∼ 50% reduction of AML burden. When murine MSC cultured with wt p53 MLL/ENL-Luc-FLT3-ITD cells were compared to isogenic cells with deleted p53, striking differences were seen in the MSC transcriptome: 429 differentially expressed genes were identified that distinguished co-cultures with p53wt and p53-/- cells, suggesting that AML cells may communicate signals to their microenvironment in a p53-dependent manner. GSEA identified NFkB and HIF-1a as targets, data were confirmed independently, and HIF-1a knockout MSC were found to be inhospitable for AML in the ectopic in vivo model. 3) These syngenic cells were introduced into B57BL/6J mice and MSC were isolated after leukemia engraftment: 147 genes were consistently upregulated and 236 genes downregulated in MSC by their interactions with AML in vivo. Upregulated genes included CTGF, CXCL12, genes related to complement (C4A, C4B, Serpin G1), and IGFBP5, an inhibitor of osteoblast differentiation. Identification of CXCL12 was intriguing as Link's group recently reported the critical role of CXCL12 produced by early MSC in normal hematopoiesis (Nature 2013 : 495,227). Both AML-ETO and MLL-ENL leukemias caused upregulation of CTGF, metalloproteinases, adhesion molecules, and NFkB-related genes in vivo. IPA analysis showed responses in BM-MSC associated with inflammation, cellular movement, cell-cell signaling, cellular growth and proliferation and immune cell trafficking. Conclusion AML cells induce changes in MSC, in short term co-cultures in vitro, or in syngenic systems in vivo, that are consistent with pro-survival, anti-apoptotic, and growth-stimulatory signals that mimic inflammatory responses. Large-scale analysis of primary AML-derived MSC confirms and extends this data. Results facilitate the development of therapeutic strategies to render the BM microenvironment inhospitable to leukemia cells but supportive of normal hematopoiesis. Disclosures: Lowe: Blueprint Medicines: Consultancy; Constellation Pharmaceuticals: Consultancy; Mirimus Inc.: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document