Targeted Sequencing Reveals a Relationship Between Mutational Burden and Clinical Phenotype in MPNs

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4061-4061
Author(s):  
Bartlomiej Getta ◽  
Franck Rapaport ◽  
Sean Devlin ◽  
Chen Zhao ◽  
Kristina Marie Knapp ◽  
...  

Abstract The Philadelphia-chromosome negative myeloproliferative neoplasms (MPNs) Essential Thrombocytosis (ET), Polycythemia Vera (PV), and Myelofibrosis (MF) are characterized by mutations, which drive JAK-STAT pathway activation. Several studies have demonstrated the presence of recurrent somatic mutations outside of the JAK-STAT pathway, which accumulate over time, and may impact disease phenotype and outcome. We sought to determine the influence of somatic mutations on clinical phenotype and prognosis. We sequenced a total of 30 genes recurrently mutated in myeloid malignancies in a cohort of 162 MPN patients (pts) using a next generation sequencing platform. The cohort included 49 pts with ET, 26 PV, 38 Primary Myelofibrosis (MF), 11 Post ET MF, 14 Post PV MF, 12 with leukemic transformations of MPN (LT), 7 with MPN-unclassified (MPN-U) and 5 others. Median age was 59 years and 79 were men. A Total of 288 gene mutations were identified with the most commonly mutated genes being JAK2 (n=121, 74%), TET2 (n=31, 19%), DNMT3A (n=18, 11%), ASXL1 (n=16, 10%), IDH2 (n=10, 6%), RAS (n=12, 7%), TYK2 (n=8, 5%) and TP53 (n=7, 4%). We did not find any mutations in NPM1, CBL, SRSF2 and no FLT3 -ITD. CALR was not assessed in 20 pts and these were excluded from mutation number analysis. Importantly, we identified a relationship between the absolute number of mutations found per pt, disease phenotype, and age (table 1). Pts with/without prior chemotherapy or radiotherapy exposure did not have a difference in mutation number (1.5 vs. 1.9). Cases of ET or PV with fibrotic transformation had more mutations in ASXL1, RAS, EZH2, PHF6 and MPL than pre fibrotic ET or PV suggesting these may be relevant in disease progression and development of fibrosis. Mutations in TET2, RAS and PHF6 were more frequent in cases with LT compared to those with chronic phase MPN. Pts over 40 were more likely to have mutations in TET2 (p=0.026) and JAK2 (p=0.019) and ASXL1 mutations were more common in pts with abnormal cytogenetics than in those with normal cytogenetics (p=0.003). Thrombotic events, which are an important cause of morbidity in MPN patients, negatively correlated with mutations in ASXL1 (p=0.044). Prognosis as measured by DIPPS and DIPSS-Plus scores appeared to correlate with the average number of mutations found in MF patients (table 2). We examined several cases for which serial samples were available, and noted the acquisition of new mutational events despite ongoing therapy. We noted that the most commonly acquired mutations occurred in epigenetic modifying (DNMT3A, TET, IDH, ASXL1) and in growth signaling pathway (RAS, CBL) genes. These occurred despite active therapy and often without an overt change in clinical phenotype. Further details of these serial samples will be presented. We conclude that the number and spectrum of somatic mutations correlate with disease phenotype of MPN. Younger pts have fewer mutations, as do pts with normal cytogenetics. JAK2 and TET2 mutations were more common in older pts. We show that a subset of pts acquire mutations in epigenetic modifiers and in genes involved in growth signaling pathways during disease course, and that mutations in TET2, RAS and PHF6 were enriched at the time of leukemic transformation. Taken together, these results indicate that mutations outside the JAK-STAT pathway influence disease phenotype, and that the acquisition of mutations over time may predict for disease progression. Serial evaluation of mutational burden over time therefore warrants exploration in the clinical setting. Table 1. Average number of mutations appeared to correlate with disease phenotype, age and abnormal cytogenetics. Average Number of Mutations N Mean (SD) P-value Age < 40 years 13 1.4 (0.9) 0.026 Age > 40 years 12 2 (1) No Thrombosis 113 2 (1) 0.712 Thrombosis 28 1.9 (1) Normal Cytogenetics 64 1.8 (0.9) 0.016 Abnormal Cytogenetics 40 2.3 (1.2) ET/PV/PMF 99 1.8 (0.8) 0.029 LT 10 3 (1.5) ET/PV 66 1.6 (0.7) 0.01 Post ET/PV MF 22 2.3 (1.1) ET 44 1.6 (0.7) < 0.001 PV 22 1.5 (0.9) PMF 33 2.2 (0.9) Post ET/PV MF 22 2.3 (1.1) LT 10 3 (1.5) Table 2. Disease prognostic scores in MF appear to correlate with the average number of mutations found per patient. Risk category N Average number mutations DIPSS Low 8 1.5 Intermediate-1 19 2.4 Intermediate-2 9 1.8 High 1 5 DIPSS-Plus Low 6 1.5 Intermediate-1 12 2 Intermediate-2 14 2.2 High 1 5 Figure 1. Comutation map of genomic alterations. Each hash mark on x-axis represents an individual patient. Figure 1. Comutation map of genomic alterations. Each hash mark on x-axis represents an individual patient. Disclosures Levine: CTI BioPharma: Membership on an entity's Board of Directors or advisory committees; Loxo Oncology: Membership on an entity's Board of Directors or advisory committees; Foundation Medicine: Consultancy.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 27-28
Author(s):  
HeeJin Cheon ◽  
Jeffrey C Xing ◽  
David S Chung ◽  
Mariella F Toro ◽  
Cait E Hamele ◽  
...  

Introduction: Large Granular Lymphocyte (LGL) leukemia is a rare lymphoproliferative disorder characterized by clonal expansion of either CD3+ cytotoxic T cells expressing T cell receptor (TCR) alpha beta or CD3- natural killer (NK) cells. A less frequent CD3+ T cell subtype expresses TCR gamma delta (GD). Here, we present the molecular landscape of known LGL types (T, NK, GD) from analysis of the largest patient cohort assembled to date. An integrative analysis of genomic datasets from all LGL subtypes is necessary to more precisely define the shared and unique etiology of this rare disorder. Methods: We collected paired saliva and PBMC samples and related clinical information from 116 LGL leukemia patients after informed consent. The assembled cohort consisted of 93 T-LGL, 11 NK-LGL, and 12 GD T-LGL patients. Genomic analyses were performed on the leukemic (PBMC) and germline (saliva) samples after whole exome sequencing (WES) and transcriptome sequencing (RNAseq, PBMC only). Results: Somatic mutations were detected in the previously described potential drivers STAT3 (n=56), TNFAIP3 (n=9), and PIK3R1 (n=4). We also identified somatic mutations in CDH8 (n=3) and CCL22 (n=4), which we postulate as putative drivers based on mutational clustering. CDH8 was mutated in all three LGL subtypes, but CCL22 somatic mutations were only observed in NK-LGL patients. We observed that STAT3 and CCL22 together account for 64% (7/11) of NK-LGL cases. STAT3 is the most recurrently mutated gene in LGL leukemia, yet concurrent molecular and clinical features are incompletely defined. Interestingly, patients with STAT3 mutations have a higher mutational burden (P=0.0006) compared to those with wild-type (WT) STAT3. This effect is independent of the age of the patient, which correlates with the mutational burden (R=0.26, P=0.0039) and agrees with the finding that the dominant mutational signatures in this cohort exhibit clock-like properties. We also observed that patients with STAT3 mutations are enriched (P=0.0273) for additional mutations in chromatin modifier enzymes such as KMT2D, TET2, DNMT3A, and SETD1B (Figure 1). We found that ~10% of the samples exhibit broad somatic copy-number aberrations, and a patient with somatic mutations in STAT3 and KMT2D displayed high-level microsatellite instability. STAT3 mutations were also significantly associated with increased expression of genes involved in apoptosis, complement activation, and interferon cytokine signaling compared to STAT3 WT (FDR &lt; 0.05). Early-onset LGL patients with age 51 years or less (n=28), as defined by the bottom quartile of the cohort, displayed no differential enrichment of the somatic driver genes. Interestingly, the age of the patient was significantly associated with absolute neutrophil counts (ANC) (P = 0.0068), with younger patients exhibiting lower neutrophil counts, even after adjusting for the presence of STAT3 mutation, as it is associated with lower ANC. As neutropenia is a hallmark feature of LGL leukemia and often a trigger for initiating therapy, the association of young age with lower neutrophil counts and lower somatic mutational burden suggests other mechanisms may be involved. Focusing on the germline variants, we found that 17 of the patients (14.6%) had at least one pathogenic or likely pathogenic germline variant with known oncogenic association as annotated using CharGer. 5 patients had pathogenic mutations in known tumor suppressors including FANCC (n=1), BRCA1 (n=1), PALB2 (n=1), MUTYH (n=1), and SDHA (n=1), while 1 patient had pathogenic mutations in ALK, a known oncogene. Conclusions: We report on the genomic analyses done on whole exome and RNA-seq data from the largest cohort assembled for LGL leukemia to date. We show that the presence of STAT3 mutation is significantly associated with an increase in mutation burden and additional somatic mutations in chromatin modifiers, hinting at potential pathogenic mechanisms within STAT3 mutated patients. By combining LGL subtypes in our analysis, we were able to identify CDH8 as a putative driver that is present in T, NK, and GD subtypes. Additionally, we report CCL22 mutations specific to NK-LGL leukemia, however did not detect any subtype specific mutations in GD T-LGL. We found that about 15% of the patients carry at least one pathogenic germline variant with known oncogenic associations. These findings highlight emerging etiologic insights into this rare disorder. Disclosures Feith: Kymera Therapeutics: Membership on an entity's Board of Directors or advisory committees. Loughran:Keystone Nano: Membership on an entity's Board of Directors or advisory committees; Bioniz Therapeutics: Membership on an entity's Board of Directors or advisory committees; Kymera Therapeutics: Membership on an entity's Board of Directors or advisory committees; Dren Bio: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3156-3156
Author(s):  
Mai Aly ◽  
Naoko Hosono ◽  
Przychodzen Bartlomiej ◽  
Hideki Makishima ◽  
Nagata Yasunobu ◽  
...  

Abstract Recurrent somatic mutations of CUX1 are described in myeloid neoplasms. CUX1 is located at chromosome 7q22.1; -7/del(7q) involving CUX1 locus are common abnormalities in myelodysplastic syndromes (MDS). Mutations and loss of heterozygosity involving CUX1 have been also described in breast, lung and uterine cancers. Preliminary functional studies, lack of a mutational hotspot and coincidental deletions suggest loss of function/hypomorphic consequences of these molecular defects. CUX1 (p200), contains 4 evolutionarily conserved DNA-binding domains, including 3 CUT repeats and a CUT homeodomain. Functionally, CUX1 regulates many genes involved in DNA replication and chromosome segregation. Cell-based assays have established a role for CUX1 in the control of cell-cycle progression, cell motility, and invasion .The objective of this study is to assess the molecular context and clinical significance of CUX1 mutations and deletions in myeloid neoplasms. We analyzed a subset of 1478 patients [24% lower-risk MDS, 17% higher-risk MDS, 22% primary (p)AML, 14% secondary AML, 14% MDS/myeloproliferative neoplasms (MPN) and 9% MPN] for the presence of CUX1 mutations and deletions. No CUX1 mutations were found in core binding factor AML. We correlated the presence of these lesions with clinical parameters, cytogenetic abnormalities, and molecular features including clonal architecture and associated somatic mutations. Copy number variation and their boundaries were analyzed by Single Nucleotide Polymorphism (SNP) arrays and mutations by multiamplicon deep sequencing utilizing a panel targeting 60 most commonly mutated genes in myeloid neoplasms. In total cohort 4 % of patients had CUX1 mutations and 6% had locus deletions (affecting ch 7q commonly deleted region: 7q22.1) including 90% of del (7q) cases. Expression of CUX1 is significantly lower in AML with -7/del(7q) compared to AML with normal cytogenetics (p<.00001) and also in MDS with -7/del(7q) compared tohealthy controls (p=.004). Additionally, decreased expression of CUX1 was found in 15% of MDS and 8% of AML patients without -7/del(7q) or related mutations. Cases with lower expression had worse OS compared to patients with higher expression (p=.002). In terms of configuration, most mutations were heterozygous, 5% of mutations were hemizygous and 4% were homozygous (due to UPD). Among 75 somatic CUX1mutations; 72% were missense, 20% where frame shift and 8% where non sense. CUX1 mutations were associated with either lower-risk MDS (p=.0001) and pAML (p=.04) while deletions involving the CUX1 locus were significantly related to higher-risk MDS (p=.05). Heterozygous CUX1 mutations were more commonly associated with normal cytogenetics (p=.01). Patients with -7/del(7q) frequently represented del(5q) (p=.04) and thrombocytopenia (p=.001). The OS of patients with CUX1 mutations was shorter (p=.04) as was that of patients with CUX1/deletions (p=.02) when compared to wild type. We subsequently studied the molecular background of CUX1 alterations. CUX1 mutations (vs. wild type) were associated with TET2 (31% vs. 14%, p=.006), ASXL1 (29% vs. 9%, p=.0005), BCOR (28% vs. 8%, p=.0004), and cohesion mutations (26%, vs. 5%, p=.0005), while NPM1 mutations showed the reverse relationship (1% vs. 7%, p=.03). RAS and CUX1 mutations were mutually exclusive (0% vs. 6%, p=.03). When we analyzed clonal hierarchy in the context of CUX1 mutations; dominant CUX1 mutations (24%; mean VAF=49%); were accomplished by ASXL1 (21%) and SRSF2 (14%) mutations which were the most common secondary events in this context. Phenotypically, dominant CUX1 mutations were associated with MDS/MPN (42%) and MDS (33%). 14% of CUX1 mutant cases did not harbor any other alterations and were not associated with a discernable phenotype. Secondary CUX1 lesions (62%; mean VAF=22%) were found in the context of dominant TET2 mutations (16%). The pathomorphologic context of secondary CUX1 mutation did not differ from that of primary lesions. AML seemed to be underrepresented (p=.006) and MPN overrepresented (p=.019) among dominant CUX1 mutant cases. In conclusion, CUX1 lesions including locus deletions with haploinsuffciency, mutations and a fraction of cases with decreased CUX1 expression can be encountered in MDS and related neoplasms, chiefly AML. CUX1 dysfunction is associated with poor survival likely due to its distinct molecular background. Disclosures Makishima: The Yasuda Medical Foundation: Research Funding. Sekeres:Millenium/Takeda: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3272-3272 ◽  
Author(s):  
Jeff Hall ◽  
Jenan Al Hafidh ◽  
Emily Balmert ◽  
Bashar Dabbas ◽  
Christine Vaupel ◽  
...  

Abstract Background: Establishing the diagnosis of myelodysplastic syndromes requires excluding benign causes of cytopenias and is based largely on morphologic criteria subject to substantial interobserver variability. Clonal hematopoiesis defined by the presence of a typical karyotype abnormality can serve as presumptive evidence of MDS in the absence of other diagnostic criteria, however these lesions are absent in the majority of cases. Somatic mutations are much more common in patients who meet the diagnostic criteria for MDS. However, the frequency of clonal somatic mutations in patients with meaningful cytopenias who lack morphologic evidence of MDS is not known and could help identify those at increased risk of progressive disease. Methods: We conducted a prospective study enrolling patients with unexplained cytopenias, suspected of having MDS into one of three groups (positive for MDS, equivocal, or negative) based on traditional diagnostic methods of morphology, cytogenetics and flow cytometry. We conducted massively parallel amplicon-based sequencing using the Illumina MiSeq platform on bone marrow samples from consenting patients to examine the mutation status of 21 genes implicated in MDS (SF3B1, SRSF2, U2AF1, ZRSR2, TET2, IDH1, IDH2, DNMT3A, EZH2, ASXL1, SETBP1, TP53, PHF6, RUNX1, ETV6, CBL, NRAS, KIT, JAK2, MPL, NPM1). The minimum coverage was 500x, and only variants with minor allele fractions >5% were reported. Results: Eleven community oncology practices in the US enrolled 145 patients with cytopenias suspected of having MDS. Of these, 86 have been sequenced to date. The ages of the sequenced patients ranged from 31 to 97 years with an average age of 71. Bone marrow material from these 86 patients were examined by two hematopathologists and enrolled into three arms based on their findings; confirmed MDS (n=8), equivocal evidence of MDS (n=12), and non-MDS (n=66). We identified clinically significant MDS-associated somatic variants in all three categories. Variants were found in 5 of 8 confirmed MDS, in 9 of 12 with equivocal MDS, and in 16 of the 66 non-MDS patients. The finding of clinically significant variants in 16 of 66 (24%) in the non-MDS group was unexpected and included 6 patients with mutations in the TET2 gene,6 patients with mutations in the TP53 gene, as well as patients with mutations in RUNX1 (n=2), DNMT3A, SETBP1, ASXL1 and ZRSR2. There were no differences in age or blood counts between patients with mutations and those without them within the non-MDS group. Nor were there any significant differences in these measures between diagnostic groups. Discussion: Somatically acquired variants in the non-MDS group may be the result of early, low grade MDS without sufficient observable pathological characteristics, may indicate the presence of another disease affecting hematopoietic development, or may be incidental age-related somatic mutations. Our study may underestimate the fraction of patients with such mutations as genes not sequenced here may provide evidence of clonal hematopoiesis in more patients. Surprisingly, the number of patients without clear evidence of MDS greatly outnumbered those with a firm morphologic diagnosis in this prospective study. The large fraction of these patients with somatic mutations suggests that clonal cytopenias may be much more common than estimates based on the prevalence of MDS would indicate. Additional follow up may allow us to determine how these patients evolve clinically over time. Sequencing of the remaining 59 patients and additional analyses are ongoing and will include the association of somatic variants with age, type and severity of cytopenia, and features of the bone marrow morphology. All 145 patients, including 103 in the arm without evidence of MDS will be included in the study when presented at the ASH meeting. Conclusion: Somatic mutations in genes typically associated with MDS can be found in a substantial fraction of patients with little or no morphologic evidence of the disease. Identification of clonal cytopenias may help exclude benign alternative diagnoses and impact how these patients are followed clinically over time. Disclosures Hall: Genoptix Medical Laboratory: Employment. Al Hafidh:Genoptix Medical Laboratory: Employment. Balmert:Genoptix Medical Laboratory: Employment. Dabbas:Genoptix, Inc., a Novartis company: Employment, Equity Ownership. Vaupel:Genoptix Medical Laboratory: Employment. El Hader:Genoptix Medical Laboratory: Employment. McGinniss:Genoptix Medical Laboratory: Employment. Beruti:Genoptix Medical Laboratory: Employment. Bejar:Genoptix Medical Laboratory: Consultancy, Honoraria, Licensed IP, no royalties Patents & Royalties, Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2731-2731
Author(s):  
Peter W Chomczynski ◽  
Michael J. Clemente ◽  
Srinivasa Reddy Sanikommu ◽  
Alek d Nielsen ◽  
Cassandra M. Hirsch ◽  
...  

Abstract T-large granular lymphocyte leukemia (T-LGLL) is a clonal lymphoproliferative disorder of cytotoxic T-cells (CTL) that is associated with cytopenias, predominantly neutropenia and reticulocytopenic anemia. From a scientific point of view, T-LGLL provides a natural model to study the dynamics of CTL responses; the heterogeneity of the disorder allows for examining the diversity of CTL responses in both autoimmune disorders and putatively chronic reactive conditions. A proportion of patients may have an extreme reactive process that mimics an indolent neoplastic lymphoproliferation. NGS and deep T-cell repertoire (TCR) sequencing provide insight into the clonal dynamics at work in T-LGLL patients. A large proportion of T-LGLL patients present with a bona-fide low-grade leukemia; this notion is supported by the discovery of recurrent somatic STAT3 mutations in some patients. STAT3 clonal burden represents an excellent marker that can be serially monitored along with clinical milestones to ultimately gain a more comprehensive understanding of disease etiology and natural history. We collected a cohort of 183 LGLL patients and screened them via deep NGS for mutation status of STAT3. In 36% of patients, 4 distinct somatic mutations (Y640F, N647I, D661V, D661Y) were identified in the SH2 domain of STAT3. In patients with wildtype STAT3, no somatic mutation was implicated in clonal expansion except for a small minority with STAT5 mutations present. We performed a longitudinal analysis of 20 representative STAT3-mutated T-LGLL patients with up to 10-year follow-up and an average of 7 analyzed blood samples per case. All serial samples were deep-sequenced to detect and determine the VAF of the known STAT3 mutations. Overall, STAT3 mutation VAF had a significant, inverse relationship to both hemoglobin and absolute neutrophil count (ANC) (both p<=0.001). In 7/11 cases harboring the Y640F mutation, chemotherapy led to remission accompanied by a decrease in VAF; 3 were asymptomatic and received no treatment. In patients with D661V or D661Y, 6/9 achieved remission with treatment. Only 1/3 cases with N647I entered remission. This longitudinal cohort can be sub-categorized into distinct patterns of clonal dynamics: 1) emerging STAT3 mutation in 20% of patients with a decrease in ANC as VAF of STAT3 clones expand; 2) an opposite trend in 40% of patients where VAF decreased due to therapeutic manipulations; 3) stable VAF in 20% of patients with little change over time; 4) codominant or dominant/secondary STAT3 mutations with distinct subclonal burden in 20% of patients. We performed deep TCR NGS on a representative subset of 9 patients to explore how STAT3 mutations correlated with T-cell clonal expansions. The data were processed by an extensive bioanalytic pipeline to quantify the relative abundance of each CDR3 rearrangement within a patient's TCR. Our cohort had an average of over 53,000 CDR3 templates per sample and was compared with 587 healthy controls. Our results demonstrate multiple patterns of clonal dynamics over the course of T-LGLL. Within each case, the immunodominant clones in serial samples were identified and correlated with STAT3 VAF burden over time. When patients were in remission, both STAT3 VAF and clonality were typically low. Interestingly, functional remission occurred in 2 cases despite increases in both clonality and STAT3 VAF. In 5/9 cases, the T-LGLL process involved 1 STAT3 mutation and 1 corresponding pathogenic clonotype displaying similar dynamics over time. In patients with 2 mutations, multiple high-frequency clonotypes were observed. Most significantly, comparison of STAT3 VAF and the dominant clonotype(s) revealed that STAT3 mutation can arise within a pre-existing clonal expansion that may harbor 2 branching mutations in extreme cases. Identification of CDR3 rearrangement sequences allowed for analysis of the distribution of clonotypes among patients and controls. The pathogenic clonotypes found in T-LGLL patients were detected in a high proportion of controls but at extremely low frequencies. This suggests that these potentially autoimmune clones exist in normal individuals but are effectively suppressed. No pathogenic clonotypes were shared among disease patients. In sum, analysis of clonal dynamics suggests that STAT3 mutations can occur in the context of pre-existing oligoclonal responses and involve otherwise low-frequency clonal specificities. Disclosures Sekeres: Celgene: Membership on an entity's Board of Directors or advisory committees; Millenium/Takeda: Membership on an entity's Board of Directors or advisory committees. Carraway:Celgene: Research Funding, Speakers Bureau; Baxalta: Speakers Bureau; Incyte: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Mustjoki:Novartis: Honoraria, Research Funding; Pfizer: Honoraria, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding; Ariad: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2075-2075
Author(s):  
Sagar S. Patel ◽  
Betty K. Hamilton ◽  
Lisa Rybicki ◽  
Dawn Thomas ◽  
Arden Emrick ◽  
...  

Abstract Background MHC class I chain-related gene A (MICA) is a polymorphic ligand of the natural killer (NKG2D) receptor on immune effector cells. The activating NKG2D receptor controls immune responses by regulating NK cells, NKT cells and γδ-T cells. Dimorphisms at sequence position 129 of the MICA gene confers varying levels of binding affinity to NKG2D receptor. MICA previously has been associated with post-allogeneic hematopoietic cell transplantation (alloHCT) outcomes including graft-versus-host-disease (GvHD), infection, and relapse. However, it is unclear how MICA interacts with cytogenetic and somatic mutations in regards to these outcomes in acute myeloid leukemia (AML). Methods We conducted a single center, retrospective analysis of adult AML patients in first or second complete remission (CR1, CR2), who underwent T-cell replete matched related or unrelated donor alloHCT. Analysis was limited to those who had MICA data available for donors and recipients. In addition to cytogenetic risk group stratification by European LeukemiaNet criteria (Döhner H, et al, Blood 2016), a subset of patients had a 36-gene somatic mutation panel assessed prior to alloHCT by next-generation sequencing. Dimorphisms at the MICA-129 position have previously been categorized as weaker (valine/valine: V/V), heterozygous (methionine/valine: M/V), or stronger (methionine/methionine: M/M) receptor binding affinity. Fine and Gray or Cox regression was used to identify the association of MICA and outcomes with results as hazard ratios (HR) and 95% confidence intervals (CI). Results From 2000 - 2017, 131 AML patients were identified meeting inclusion criteria. Median age at transplant was 54 years (18-74), with 98% Caucasian. Disease status at transplant included 78% CR1 and 22% CR2. Cytogenetic risk stratification showed 13% of patients as favorable, 56% as intermediate, and 31% as adverse-risk. The five most common somatic mutations were FLT3 (15%), NPM1 (14%), DNMT3A (11%), TET2 (7%), and NRAS (6%). 60% of patients had a related donor. A myeloablative transplant was performed in 84% of patients and 53% had a bone marrow graft source. The most common conditioning regimen used was busulfan/cyclophosphamide (52%). 12% of patients were MICA mismatched with their donor. The distribution of donor MICA-129 polymorphisms were 41% V/V, 53% M/V, and 6% M/M. In univariable analysis, donor-recipient MICA mismatch tended to be associated with a lower risk of infection (HR 0.49, CI 0.23-1.02, P=0.06) and grade 2-4 acute GvHD (HR 0.25, CI 0.06-1.04, P=0.06) but was not associated with other post-transplant outcomes. In multivariable analysis, donor MICA-129 V/V was associated with a higher risk of non-relapse mortality (NRM) (HR 2.02, CI 1.01-4.05, P=0.047) (Figure 1) along with increasing patient age at transplant (HR 1.46, CI 1.10-1.93, p=0.008) and the presence of a TET2 mutation (HR 6.00, CI 1.77-20.3, P=0.004). There were no differences between the V/V and the M/V+M/M cohorts regarding somatic mutational status, cytogenetics and other pre-transplant characteristics and post-transplant outcomes. With a median follow-up of 65 months for both cohorts, 45% vs. 49% of patients remain alive, respectively. The most common causes of death between the V/V and the M/V+M/M cohorts was relapse (38% vs. 62%) and infection (31% vs. 8%), respectively. Conclusion While previous studies have demonstrated associations of somatic mutations and cytogenetics with survival outcomes after alloHCT for AML, we observed mutations in TET2 and the V/V donor MICA-129 polymorphism to be independently prognostic for NRM. Mechanistic studies may be considered to assess for possible interactions of TET2 mutations with NK cell alloreactivity. The weaker binding affinity to the NKG2D receptor by the V/V phenotype may diminish immune responses against pathogens that subsequently contribute to higher NRM. These observations may have implications for enhancing patient risk stratification prior to transplant and optimizing donor selection. Future investigation with larger cohorts interrogating pre-transplant AML somatic mutations with MICA polymorphisms on post-transplant outcomes may further elucidate which subsets of patients may benefit most from transplant. Disclosures Nazha: MEI: Consultancy. Mukherjee:Pfizer: Honoraria; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Projects in Knowledge: Honoraria; BioPharm Communications: Consultancy; Bristol Myers Squib: Honoraria, Speakers Bureau; Takeda Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; LEK Consulting: Consultancy, Honoraria; Aplastic Anemia & MDS International Foundation in Joint Partnership with Cleveland Clinic Taussig Cancer Institute: Honoraria. Advani:Amgen: Research Funding; Pfizer: Honoraria, Research Funding; Glycomimetics: Consultancy; Novartis: Consultancy. Carraway:Novartis: Speakers Bureau; Balaxa: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Jazz: Speakers Bureau; FibroGen: Consultancy; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Amgen: Membership on an entity's Board of Directors or advisory committees; Agios: Consultancy, Speakers Bureau. Gerds:Apexx Oncology: Consultancy; Celgene: Consultancy; Incyte: Consultancy; CTI Biopharma: Consultancy. Sekeres:Celgene: Membership on an entity's Board of Directors or advisory committees; Opsona: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Opsona: Membership on an entity's Board of Directors or advisory committees. Maciejewski:Apellis Pharmaceuticals: Consultancy; Ra Pharmaceuticals, Inc: Consultancy; Alexion Pharmaceuticals, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Ra Pharmaceuticals, Inc: Consultancy; Alexion Pharmaceuticals, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Apellis Pharmaceuticals: Consultancy. Majhail:Incyte: Honoraria; Anthem, Inc.: Consultancy; Atara: Honoraria.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4309-4309
Author(s):  
María Abáigar ◽  
Jesús M Hernández-Sánchez ◽  
David Tamborero ◽  
Marta Martín-Izquierdo ◽  
María Díez-Campelo ◽  
...  

Abstract Introduction: Myelodysplastic syndromes (MDS) are hematological disorders at high risk of progression to acute myeloid leukemia (AML). Although, next-generation sequencing has increased our understanding of the pathogenesis of these disorders, the dynamics of these changes and clonal evolution during progression have just begun to be understood. This study aimed to identify the genetic abnormalities and study the clonal evolution during the progression from MDS to AML. Methods: A combination of whole exome (WES) and targeted-deep sequencing was performed on 40 serial samples (20 MDS/CMML patients evolving to AML) collected at two time-points: at diagnosis (disease presentation) and at AML transformation (disease evolution). Patients were divided in two different groups: those who received no disease modifying treatment before they transformed into AML (n=13), and those treated with lenalidomide (Lena, n=2) and azacytidine (AZA, n=5) and then progressed. Initially, WES was performed on the whole cohort at the MDS stage and at the leukemic phase (after AML progression). Driver mutations were identified, after variant calling by a standardized bioinformatics pipeline, by using the novel tool "Cancer Genome Interpreter" (https://www.cancergenomeinterpreter.org). Secondly, to validate WES results, 30 paired samples of the initial cohort were analyzed with a custom capture enrichment panel of 117 genes, previously related to myeloid neoplasms. Results: A total of 121 mutations in 70 different genes were identified at the AML stage, with mostly all of them (120 mutations) already present at the MDS stage. Only 5 mutations were only detected at the MDS phase and disappeared during progression (JAK2, KRAS, RUNX1, WT1, PARN). These results suggested that the majority of the molecular lesions occurring in MDS were already present at initial presentation of the disease, at clonal or subclonal levels, and were retained during AML evolution. To study the dynamics of these mutations during the evolution from MDS/CMML to AML, we compared the variant allele frequencies (VAFs) detected at the AML stage to that at the MDS stage in each patient. We identified different dynamics: mutations that were initially present but increased (clonal expansion; STAG2) or decreased (clonal reduction; TP53) during clinical course; mutations that were newly acquired (BCOR) or disappearing (JAK2, KRAS) over time; and mutations that remained stable (SRSF2, SF3B1) during the evolution of the disease. It should be noted that mutational burden of STAG2 were found frequently increased (3/4 patients), with clonal sizes increasing more than three times at the AML transformation (26>80%, 12>93%, 23>86%). Similarly, in 4/8 patients with TET2 mutations, their VAFs were double increased (22>42%, 15>61%, 50>96%, 17>100%), in 2/8 were decreased (60>37%, 51>31%), while in the remaining 2 stayed stable (53>48%, 47>48%) at the AML stage. On the other hand, mutations in SRSF2 (n=3/4), IDH2 (n=2/3), ASXL1 (n=2/3), and SF3B1 (n=3/3) showed no changes during progression to AML. This could be explained somehow because, in leukemic phase, disappearing clones could be suppressed by the clonal expansion of other clones with other mutations. Furthermore we analyzed clonal dynamics in patients who received treatment with Lena or AZA and after that evolved to AML, and compared to non-treated patients. We observed that disappearing clones, initially present at diagnosis, were more frequent in the "evolved after AZA" group vs. non-treated (80% vs. 38%). By contrast, increasing mutations were similar between "evolved after AZA" and non-treated patients (60% vs. 61%). These mutations involved KRAS, DNMT1, SMC3, TP53 and TET2among others. Therefore AZA treatment could remove some mutated clones. However, eventual transformation to AML would occur through persistent clones that acquire a growth advantage and expand during the course of the disease. By contrast, lenalidomide did not reduce the mutational burden in the two patients studied. Conclusions: Our study showed that the progression to AML could be explained by different mutational processes, as well as by the occurrence of unique and complex changes in the clonal architecture of the disease during the evolution. Mutations in STAG2, a gene of the cohesin complex, could play an important role in the progression of the disease. [FP7/2007-2013] nº306242-NGS-PTL; BIO/SA52/14; FEHH 2015-16 (MA) Disclosures Del Cañizo: Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Jansen-Cilag: Membership on an entity's Board of Directors or advisory committees, Research Funding; Arry: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 9-10
Author(s):  
Piers Blombery ◽  
Ella R Thompson ◽  
Xiangting Chen ◽  
Tamia Nguyen ◽  
Mary Ann Anderson ◽  
...  

Venetoclax (Ven) is an effective element of treatments for chronic lymphocytic leukemia (CLL) with high response rates observed in the upfront and relapsed/refractory (R/R) settings. In addition to inducing apoptosis in CLL cells, Ven also induces apoptosis within normal and malignant myeloid lineage populations (accounting for its efficacy in the treatment of acute myeloid leukemia). We investigated the effects of Ven outside the target tumor compartment in patients (pts) with CLL receiving long-term continuous Ven and make the novel observation of the development of BAX-mutated clonal hematopoiesis in this heavily pre-treated patient group. 92 pts with CLL receiving continuous non time-limited Ven have been treated at our institutions on clinical trials. Of these, 41 had sufficient (&gt;6 mo) follow up (median 70; range 14-95 mo) and suitable samples available for further analysis. 38/41 (93%) pts had received previous treatment with alkylators and/or fludarabine. In order to assess the non-CLL compartment in these 41 pts we identified those with peripheral blood or bone marrow aspirate samples taken during deep response to Ven demonstrating either minimal (&lt;5%) or no CLL involvement by flow cytometry (sensitivity 10-4). We initially performed unique molecular index (UMI)-based targeted next generation sequencing of apoptosis pathway genes as well a panel of 60 genes recurrently mutated in lymphoid and myeloid malignancy. From these 41 pts we identified mutations in the apoptosis effector BAX in samples from 12 (29%). 20 different BAX mutations were observed across these 12 pts at variant allele frequencies (VAF) consistent with their occurrence in the non-CLL compartment. Mutations included frameshift, nonsense, canonical splice site and missense mutations occurring in key structural elements of BAX consistent with a loss-of-function mechanism (Fig 1A). Interestingly, an enrichment of missense and truncating mutations predicted to escape nonsense mediated decay were observed at the C-terminus of the BAX protein affecting the critical α9 helix. Mutations in this region have previously been shown in cell lines to cause aberrant intracellular BAX localization and abrogation of normal BAX function in apoptosis (Fresquet Blood 2014; Kuwana J Biol Chem 2020). For comparison, NGS targeted sequencing for BAX mutations was performed on samples from cohorts of pts with (i) myeloid or lymphoid malignancy (n=80) or (ii) R/R CLL treated with BTK inhibitors (n=15) after a similar extent of preceding chemotherapy. Neither of these cohorts had previous exposure to Ven. BAX mutations were not detected in any samples from these pts. Longitudinal sampling from pts on Ven harboring BAX mutations in the non-CLL compartment was performed to further understand compartment dynamics over time (in 9 pts over 21-93 months of follow up). Multiple pts demonstrated a progressive increase in VAF of single BAX mutations over time to become clonally dominant within the non-CLL compartment and with observed VAFs consistent with their presence in the myeloid compartment. Mutations in other genes implicated in clonal hematopoiesis and myeloid malignancy including ASXL1, DNMT3A, TET2, U2AF1 and ZRSR2 were also detected in these pts samples. Targeted amplicon single cell sequencing (Mission Bio) demonstrated the co-occurrence of clonally progressive BAX mutations within the same clones as mutations in DNMT3A and ASXL1 as well as the existence of further BAX mutations at low VAF outside these dominant clones which remained non-progressive over time (Fig 1B). In addition, fluctuations in the presence and VAF of myeloid-disease associated mutations was noted with Ven exposure. In aggregate these data are consistent with the existence of a selective pressure within the myeloid compartment of these pts and an interplay of BAX with other mutations in determining survival and enrichment of these clones over time with ongoing Ven therapy. In summary, we have observed the development of BAX-mutated clonal hematopoiesis specifically in pts with CLL treated with long-term Ven. These data are consistent with a multi-lineage pharmacological effect of Ven leading to a survival advantage for clones harboring BAX mutations within the myeloid compartment during chronic Ven exposure. Finally, our data support the further investigation of BAX mutations as a potential resistance mechanism in myeloid malignancies treated with Ven. Disclosures Blombery: Invivoscribe: Honoraria; Amgen: Consultancy; Janssen: Honoraria; Novartis: Consultancy. Anderson:Walter and Eliza Hall Institute: Patents & Royalties: milestone and royalty payments related to venetoclax.. Seymour:Celgene: Consultancy, Honoraria, Research Funding; F. Hoffmann-La Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Janssen: Consultancy, Honoraria, Research Funding; AstraZeneca: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Gilead: Consultancy; Mei Pharma: Consultancy, Honoraria; Morphosys: Consultancy, Honoraria; Nurix: Honoraria; AbbVie: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Tam:Janssen: Honoraria, Research Funding; AbbVie: Honoraria, Research Funding; BeiGene: Honoraria. Huang:Servier: Research Funding; Walter and Eliza Hall Institute: Patents & Royalties: milestone and royalty payments related to venetoclax.; Genentech: Research Funding. Wei:Janssen: Honoraria, Other; Walter and Eliza Hall Institute: Patents & Royalties; AMGEN: Honoraria, Other: Advisory committee, Research Funding; Novartis: Honoraria, Research Funding, Speakers Bureau; Astellas: Honoraria, Other: Advisory committee; Pfizer: Honoraria, Other: Advisory committee; Macrogenics: Honoraria, Other: Advisory committee; Abbvie: Honoraria, Other: Advisory committee, Research Funding, Speakers Bureau; Genentech: Honoraria, Other: Advisory committee; Servier: Consultancy, Honoraria, Other: Advisory committee; Celgene: Honoraria, Other: Advisory committee, Speakers Bureau; Astra-Zeneca: Honoraria, Other: Advisory committee, Research Funding. Roberts:Janssen: Research Funding; Servier: Research Funding; AbbVie: Research Funding; Genentech: Patents & Royalties: for venetoclax to one of my employers (Walter & Eliza Hall Institute); I receive a share of these royalties.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 28-28
Author(s):  
Hassan Awada ◽  
Arda Durmaz ◽  
Carmel Gurnari ◽  
Ashwin Kishtagari ◽  
Manja Meggendorfer ◽  
...  

Genetic mutations (somatic or germline), cytogenetic abnormalities and their combinations contribute to the heterogeneity of acute myeloid leukemia (AML) phenotypes. To date, prototypic founder lesions [e.g., t(8;21), inv(16), t(15;17)] define only a fraction of AML subgroups with specific prognoses. Indeed, in a larger proportion of AML patients, somatic mutations or cytogenetic abnormalities potentially serve as driver lesions in combination with numerous acquired secondary hits. However, their combinatorial complexity can preclude the resolution of distinct genomic classifications and overlap across classical pathomorphologic AML subtypes, including de novo/primary (pAML) and secondary AML (sAML) evolving from an antecedent myeloid neoplasm (MN). These prognostically discrete AML subtypes are themselves nonspecific due to variable understanding of their pathogenetic links, especially in cases without overt dysplasia. Without dysplasia, reliance is mainly on anamnestic clinical information that might be unavailable or cannot be correctly assigned due to a short prodromal history of antecedent MN. We explored the potential of genomic markers to sub-classify AML objectively and provide unbiased personalized prognostication, irrespective of the clinicopathological information, and thus become a standard in AML assessment. We collected and analyzed genomic data from a multicenter cohort of 6788 AML patients using standard and machine learning (ML) methods. A total of 13,879 somatic mutations were identified and used to predict traditional pathomorphologic AML classifications. Logistic regression modeling (LRM) detected mutations in CEBPA (both monoallelic "CEBPAMo" and biallelic "CEBPABi"), DNMT3A, FLT3ITD, FLT3TKD, GATA2, IDH1, IDH2R140, NRAS, NPM1 and WT1 being enriched in pAML while mutations in ASXL1, RUNX1, SF3B1, SRSF2, U2AF1, -5/del(5q), -7/del(7q), -17/del(17P), del(20q), +8 and complex karyotype being prevalent in sAML. Despite these significant findings, the genomic profiles of pAML vs. sAML identified by LRM resulted in only 74% cross-validation accuracy of the predictive performance when used to re-assign them. Therefore, we applied Bayesian Latent Class Analysis that identified 4 unique genomic clusters of distinct prognoses [low risk (LR), intermediate-low risk (Int-Lo), intermediate-high risk (Int-Hi) and high risk (HR) of poor survival) that were validated by survival analysis. To link each prognostic group to pathogenetic features, we generated a random forest (RF) model that extracted invariant genomic features driving each group and resulted in 97% cross-validation accuracy when used for prognostication. The model's globally most important genomic features, quantified by mean decrease in accuracy, included NPM1MT, RUNX1MT, ASXL1MT, SRSF2MT, TP53MT, -5/del(5q), DNMT3AMT, -17/del(17p), BCOR/L1MT and others. The LR group was characterized by the highest prevalence of normal cytogenetics (88%) and NPM1MT (100%; 86% with VAF&gt;20%) with co-occurring DNMT3AMT (52%), FLT3ITD-MT (27%; 91% with VAF &lt;50%), IDH2R140-MT (16%, while absent IDH2R172-MT), and depletion or absence of ASXL1MT, EZH2MT, RUNX1MT, TP53MT and complex cytogenetics. Int-Lo had a higher percentage of abnormal cytogenetics cases than LR, the highest frequency of CEBPABi-MT (9%), IDH2R172K-MT (4%), FLT3ITD-MT (14%) and FLT3TKD-MT (6%) occurring without NPM1MT, while absence of NPM1MT, ASXL1MT, RUNX1MT and TP53MT. Int-Hi had the highest frequency of ASXL1MT (39%), BCOR/L1MT (16%), DNMT3AMT without NPM1MT (19%), EZH2MT (9%), RUNX1MT (52%), SF3B1MT (7%), SRSF2MT (38%) and U2AF1MT (12%). Finally, HR had the highest prevalence of abnormal cytogenetics (96%), -5/del(5q) (68%), -7del(7q) (35%), -17del(17p) (31%) and the highest odds of complex karyotype (76%) as well as TP53MT (70%). The model was then internally and externally validated using a cohort of 203 AML cases from the MD Anderson Cancer Center. The RF prognostication model and group-specific survival estimates will be available via a web-based open-access resource. In conclusion, the heterogeneity inherent in the genomic changes across nearly 7000 AML patients is too vast for traditional prediction methods. Using newer ML methods, however, we were able to decipher a set of prognostic subgroups predictive of survival, allowing us to move AML into the era of personalized medicine. Disclosures Advani: OBI: Research Funding; Abbvie: Research Funding; Macrogenics: Research Funding; Glycomimetics: Consultancy, Other: Steering committee/ honoraria, Research Funding; Immunogen: Research Funding; Seattle Genetics: Other: Advisory board/ honoraria, Research Funding; Amgen: Consultancy, Other: steering committee/ honoraria, Research Funding; Kite: Other: Advisory board/ honoraria; Pfizer: Honoraria, Research Funding; Novartis: Consultancy, Other: advisory board; Takeda: Research Funding. Ravandi:Abbvie: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria; Amgen: Consultancy, Honoraria, Research Funding; Astellas: Consultancy, Honoraria, Research Funding; Orsenix: Consultancy, Honoraria, Research Funding; AstraZeneca: Consultancy, Honoraria; Jazz Pharmaceuticals: Consultancy, Honoraria, Research Funding; Xencor: Consultancy, Honoraria, Research Funding; Macrogenics: Research Funding; BMS: Consultancy, Honoraria, Research Funding. Carraway:Novartis: Consultancy, Speakers Bureau; Takeda: Other: Independent Advisory Committe (IRC); Stemline: Consultancy, Speakers Bureau; BMS: Consultancy, Other: Research support, Speakers Bureau; Abbvie: Other: Independent Advisory Committe (IRC); ASTEX: Other: Independent Advisory Committe (IRC); Jazz: Consultancy, Speakers Bureau. Saunthararajah:EpiDestiny: Consultancy, Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Kantarjian:Sanofi: Research Funding; Actinium: Honoraria, Membership on an entity's Board of Directors or advisory committees; Daiichi-Sankyo: Honoraria, Research Funding; BMS: Research Funding; Abbvie: Honoraria, Research Funding; Aptitute Health: Honoraria; Pfizer: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; Jazz: Research Funding; Immunogen: Research Funding; Adaptive biotechnologies: Honoraria; Ascentage: Research Funding; Amgen: Honoraria, Research Funding; BioAscend: Honoraria; Delta Fly: Honoraria; Janssen: Honoraria; Oxford Biomedical: Honoraria. Kadia:Pfizer: Honoraria, Research Funding; Novartis: Honoraria; Cyclacel: Research Funding; Ascentage: Research Funding; Astellas: Research Funding; Cellenkos: Research Funding; JAZZ: Honoraria, Research Funding; Astra Zeneca: Research Funding; Celgene: Research Funding; Incyte: Research Funding; Pulmotec: Research Funding; Abbvie: Honoraria, Research Funding; Genentech: Honoraria, Research Funding; BMS: Honoraria, Research Funding; Amgen: Research Funding. Sekeres:Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees; BMS: Consultancy, Membership on an entity's Board of Directors or advisory committees; Takeda/Millenium: Consultancy, Membership on an entity's Board of Directors or advisory committees. Maciejewski:Alexion, BMS: Speakers Bureau; Novartis, Roche: Consultancy, Honoraria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1527-1527
Author(s):  
Sara Rodríguez ◽  
Cirino Botta ◽  
Jon Celay ◽  
Ibai Goicoechea ◽  
Maria J Garcia-Barchino ◽  
...  

Background: Although MYD88 L265P is highly frequent in WM, by itself is insufficient to explain disease progression since most cases with IgM MGUS also have mutated MYD88. In fact, the percentage of MYD88 L265P in CD19+ cells isolated from WM patients is typically &lt;100%, which questions if this mutation initiates the formation of B-cell clones. Furthermore, a few WM patients have detectable MYD88 L265P in total bone marrow (BM) cells and not in CD19+ selected B cells, raising the possibility that other hematopoietic cells carry the MYD88 mutation. However, no one has investigated if the pathogenesis of WM is related to somatic mutations occurring at the hematopoietic stem cell level, similarly to what has been shown in CLL or hairy cell leukemia. Aim: Define the cellular origin of WM by comparing the genetic landscape of WM cells to that of CD34 progenitors, B cell precursors and residual normal B cells. Methods: We used multidimensional FACSorting to isolate a total of 43 cell subsets from BM aspirates of 8 WM patients: CD34+ progenitors, B cell precursors, residual normal B cells (if detectable), WM B cells, plasma cells (PCs) and T cells (germline control). Whole-exome sequencing (WES, mean depth 74x) was performed with the 10XGenomics Exome Solution for low DNA-input due to very low numbers of some cell types. We also performed single-cell RNA and B-cell receptor sequencing (scRNA/BCRseq) in total BM B cells and PCs (n=32,720) from 3 IgM MGUS and 2 WM patients. Accordingly, the clonotypic BCR detected in WM cells was unbiasedly investigated in all B cell maturation stages defined according to their molecular phenotype. In parallel, MYD88p.L252P (orthologous position of the human L265P mutation) transgenic mice were crossed with conditional Sca1Cre, Mb1Cre, and Cγ1Cre mice to selectively induce in vivo expression of MYD88 mutation in CD34 progenitors, B cell precursors and germinal center B cells, respectively. Upon immunization, mice from each cohort were necropsied at 5, 10 and 15 months of age and screened for the presence of hematological disease. Results: All 8 WM patients showed MYD88 L265P and 3 had mutated CXCR4. Notably, we found MYD88 L265P in B cell precursors from 1/8 cases and in residual normal B cells from 3/8 patients, which were confirmed by ASO-PCR. In addition, CXCR4 was simultaneously mutated in B cell precursors and WM B cells from one patient. Overall, CD34+ progenitors, B-cell precursors and residual normal B cells shared a median of 1 (range, 0-4; mean VAF, 0.16), 2 (range, 1-5; mean VAF, 0.14), and 4 (range, 1-13; mean VAF, 0.26) non-synonymous mutations with WM B cells. Some mutations were found all the way from CD34+ progenitors to WM B cells and PCs. Interestingly, concordance between the mutational landscape of WM B cells and PCs was &lt;100% (median of 85%, range: 25%-100%), suggesting that not all WB B cells differentiate into PCs. A median of 7 (range, 2-19; mean VAF, 0.39) mutations were unique to WM B cells. Accordingly, many clonal mutations in WM B cells were undetectable in normal cells. Thus, the few somatic mutations observed in patients' lymphopoiesis could not result from contamination during FACSorting since in such cases, all clonal mutations would be detectable in normal cells. Of note, while somatic mutations were systematically detected in normal cells from all patients, no copy number alterations (CNA) present in WM cells were detectable in normal cells. scRNA/BCRseq unveiled that clonotypic cells were confined mostly within mature B cell and PC clusters in IgM MGUS, whereas a fraction of clonotypic cells from WM patients showed a transcriptional profile overlapping with that of B cell precursors. In mice, induced expression of mutated MYD88 led to a moderate increase in the number of B220+CD138+ plasmablasts and B220-CD138+ PCs in lymphoid tissues and BM, but no signs of clonality or hematological disease. Interestingly, such increment was more evident in mice with activation of mutated MYD88 in CD34+ progenitors and B-cell precursors vs mice with MYD88 L252P induced in germinal center B cells. Conclusions: We show for the first time that WM patients have somatic mutations, including MYD88 L265P and in CXCR4, at the B cell progenitor level. Taken together, this study suggests that in some patients, WM could develop from B cell clones carrying MYD88 L265P rather than it being the initiating event, and that other mutations or CNA are required for the expansion of B cells and PCs with the WM phenotype. Disclosures Roccaro: Janssen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Transcan2-ERANET: Research Funding; AstraZeneca: Research Funding; European Hematology Association: Research Funding; Transcan2-ERANET: Research Funding; Associazione Italiana per al Ricerca sul Cancro (AIRC): Research Funding; Associazione Italiana per al Ricerca sul Cancro (AIRC): Research Funding; European Hematology Association: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees. San-Miguel:Amgen, Bristol-Myers Squibb, Celgene, Janssen, MSD, Novartis, Roche, Sanofi, and Takeda: Consultancy, Honoraria. Paiva:Amgen, Bristol-Myers Squibb, Celgene, Janssen, Merck, Novartis, Roche, and Sanofi; unrestricted grants from Celgene, EngMab, Sanofi, and Takeda; and consultancy for Celgene, Janssen, and Sanofi: Consultancy, Honoraria, Research Funding, Speakers Bureau.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4021-4021
Author(s):  
Fabien Le Bras ◽  
Philippe Gaulard ◽  
Marc Andre ◽  
Corinne Haioun ◽  
Romain Bosc ◽  
...  

Background: BIA-ALCL is a rare subtype of T cell lymphomas associated with textured breast implants which has recently been recognized. The pathogenesis of this entity remains elusive even if mutations in the JAK/STAT pathway have been identified. Little is known about the causes, prognostic factors of this disease, and treatment outcome. Methods: since 2016, a WebEx national multidisciplinary meeting has been implemented by the French Cancer Agency in order to better define therapeutic strategies for newly diagnosed cases after histologic confirmation. In the same time, BIA-ALCL registry was funded by LYSA in order to collect ambispectively, in France and Belgium, patient clinical data including reasons for breast implantation (breast augmentation, reconstruction), implant manufacturer, treatments and outcome. A biological program aiming molecular characterization of this T-cell lymphoma subtype has been set in coordination with the registry. Results: Fifty-eight patients (pts) have been analyzed so far among the 88 (67 in France and 21 in Belgium) identified from 2009 to 2019. Median age was 58 years (range 29-82) at diagnosis. In 29 out of the 58 pts (50%) the first implant followed a mastectomy for breast cancer. In this analysis, only implants in the breast(s) where the lymphoma occurred have been considered. Four pts (6.9%) had bilateral lymphoma and 54 pts had unilateral lymphoma (50% left side and 50% right side), 25 pts were implanted once (43.1%), 24 twice (41.4%) and 9 pts (15.5%) 3 times or more. The median delay between first implant and BIA-ALCL diagnosis was 11.9 years (range 4.1-37), and median delay from last implant to diagnosis was 6.5 years (range 0.2-25.4). The two clinical presentations i.e. seroma (n = 43, 74.1%) and breast tumor mass with or without seroma (n = 12, 20.7%) were most often correlated with the two distinct histological subtypes (in situ /mixed (n=41) or infiltrative (n=17). Three pts were diagnosed without any mass or seroma (1 lymph node involvement, 2 in the context of systematic implant removal). The majority of pts were stage I-II (n=45, 77.6%), and 13 (22.4%) pts were stage IV. One hundred and five implants have been used on lymphoma associated breast for these 58 patients. Considering available information regarding the type of implants, almost all patients had at least one silicone-filled (n=51) and at least one textured implant (n=49) with Biocell texturation (n=40, 69%). No patient had only smooth implant. Implant removal with total capsulectomy was performed in 49 patients and 17 underwent chemotherapy based mostly on CHOP or CHOP-like chemotherapy regimens (n=12) and brentuximab vedotin CHP (n=3). After 21 months of median follow-up, 52 pts are alive and free of evolutive disease and one was lost to follow up. Five pts have died, either from lymphoma progression alone (n=2), or associated with concomitant active breast cancer (n=2) and one due to another disease. All had an infiltrative histology, and the 2 patients who died from lymphoma were stage IV. All but one received systemic chemotherapy and one received palliative care only due to concomitant active breast cancer. One of these patients early relapsed after a first complete remission. After the BIA-ALCL diagnosis, breast reconstruction was performed in in 23 pts (39.7%), 17 with a new implant, lipofilling in 4 pts, with a flap in 4 pts, and one benefit from combined approaches. Whole exome sequencing and/or targeted deep sequencing was performed in 29 of these patients. Recurrent mutation of epigenetic modifiers were seen in 22 pts (76%) involving notably KMT2C (28%), CM2D (14%) and CREBBP (14%). Eighteen pts (62%) showed mutations in at least one member of JAK STAT signaling pathway including STAT3 (38%) and JAK1(21%). Conclusions: We here confirm that in situ BIA-ALCLs have an indolent clinical course and remain in complete remission mainly after implant removal. Infiltrative histological subtype which have a more aggressive clinical course should be precisely identified at baseline. In our series, most BIA-ALCL cases were associated with macrotextured implants with Biocell texturation observed in 69% of the cases. The molecular characterization of these cases highlights the key role of the JAK/STAT pathway, and the importance of epigenomics. Such observation provide basis to develop novel targeted therapies for patients with aggressive disease. Disclosures Le Bras: Takeda: Research Funding; Pfizer: Other: Travel grant; Jansen: Other: Travel grant. Haioun:novartis: Honoraria; celgene: Honoraria; roche: Consultancy; celgene: Consultancy; gilead: Consultancy; takeda: Consultancy; janssen cilag: Consultancy; amgen: Honoraria; servier: Honoraria. Bachy:Janssen Cilag: Honoraria; Janssen Cilag: Other: Travel, accomodation, Expense; Roche: Honoraria; Amgen: Honoraria; Roche: Consultancy; Gilead Science: Honoraria. Oberic:Roche: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria. Tilly:Roche: Consultancy; roche: Membership on an entity's Board of Directors or advisory committees; servier: Honoraria; merck: Honoraria; Gilead: Honoraria; Janssen: Honoraria; BMS: Honoraria; Karyopharm: Consultancy; Astra-Zeneca: Consultancy; Celgene: Consultancy, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document